Recent advances on mathematical models involving singular nonlinearities

Pedro J. Torres

Departamento de Matemática Aplicada, Universidad de Granada (Spain)

Madrid, July 2014

Model I:

A mass-spring model of electrostatically actuated micro-electro-mechanical system

The model

Figure: Mass-spring model of electrostatically actuated MEMS

The model

$$
\begin{equation*}
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}} \tag{1}
\end{equation*}
$$

with $V(t)=v_{d c}+v_{a c} \cos (\omega t)$ (AC-DC voltage)

The model

$$
\begin{equation*}
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}} \tag{1}
\end{equation*}
$$

with $V(t)=v_{d c}+v_{a c} \cos (\omega t)$ (AC-DC voltage)

- H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, Jr., The resonant gate transistor, IEEE Transactions on Electron Devices, vol.14, no.3, pp. 117-133, 1967.

The model

$$
\begin{equation*}
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}} \tag{1}
\end{equation*}
$$

with $V(t)=v_{d c}+v_{a c} \cos (\omega t)$ (AC-DC voltage)

- H.C. Nathanson, W.E. Newell, R.A. Wickstrom, J.R. Davis, Jr., The resonant gate transistor, IEEE Transactions on Electron Devices, vol.14, no.3, pp. 117-133, 1967.
- M.I. Younis: MEMS Linear and Nonlinear Statics and Dynamics. Springer, NewYork (2011)

Static pull-in

Static pull-in

For a DC voltage $V(t)=v_{d c}>0$, equilibria are the roots of

$$
y\left(d-y^{2}\right)=\frac{\varepsilon_{0} A v_{d c}^{2}}{2 k}
$$

giving rise to a saddle-node bifurcation.

Static pull-in

For a DC voltage $V(t)=v_{d c}>0$, equilibria are the roots of

$$
y\left(d-y^{2}\right)=\frac{\varepsilon_{0} A v_{d c}^{2}}{2 k},
$$

giving rise to a saddle-node bifurcation.

Figure: Saddle-node bifurcation at $d_{0}=\frac{3}{2}\left(\frac{\varepsilon_{0} A v_{d c}^{2}}{k}\right)^{1 / 3}-$

Dynamic pull-in

For an AC-DC voltage $V(t)=v_{d c}+v_{a c} \cos (\omega t)$,

Dynamic pull-in \equiv non-autonomous saddle-node bifurcation

Main result

Let $V(t)$ be a continuous, positive, T-periodic function with $T=\frac{2 \pi}{\omega}$. By convenience, we call $V_{m}=\min _{[0, T]} V(t), V_{M}=\max _{[0, T]} V(t)$.

Theorem

There exists $d_{0}>0$ such that
(1) If $d<d_{0}$, (1) has no T-periodic solutions.
(2) If $d=d_{0}$, (1) has at least one T-periodic solution.
(3) If $d>d_{0}$, (1) has at least two T-periodic solutions.

Besides, d_{0} admits the following quantitative estimate

$$
\begin{equation*}
\frac{3}{2}\left(\frac{\varepsilon_{0} A V_{m}^{2}}{k}\right)^{1 / 3} \leq d_{0} \leq \frac{3}{2}\left(\frac{\varepsilon_{0} A V_{M}^{2}}{k}\right)^{1 / 3} \tag{2}
\end{equation*}
$$

Main result

Let $V(t)$ be a continuous, positive, T-periodic function with
$T=\frac{2 \pi}{\omega}$. By convenience, we call
$V_{m}=\min _{[0, T]} V(t), V_{M}=\max _{[0, T]} V(t)$.

Theorem

There exists $d_{0}>0$ such that
(1) If $d<d_{0}$, (1) has no T-periodic solutions.
(2) If $d=d_{0}$, (1) has at least one T-periodic solution.
(3) If $d>d_{0}$, (1) has at least two T-periodic solutions.

Besides, d_{0} admits the following quantitative estimate

$$
\begin{equation*}
\frac{3}{2}\left(\frac{\varepsilon_{0} A V_{m}^{2}}{k}\right)^{1 / 3} \leq d_{0} \leq \frac{3}{2}\left(\frac{\varepsilon_{0} A V_{M}^{2}}{k}\right)^{1 / 3} \tag{2}
\end{equation*}
$$

- Gutiérrez, A., Torres, P.J.: Non-autonomous saddle-node bifurcation in a canonical electrostatic MEMS, International J. Bifurcation and Chaos 23, No. 5, 1350088 (9 pages), (2013)

The model as a singular equation

$$
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}}
$$

The model as a singular equation

$$
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}}
$$

The change of variables

$$
u=d-y
$$

The model as a singular equation

$$
m y^{\prime \prime}+c y^{\prime}+k y=\frac{\varepsilon_{0} A}{2} \frac{V^{2}(t)}{(d-y)^{2}}
$$

The change of variables

$$
u=d-y
$$

leads to

$$
\begin{equation*}
u^{\prime \prime}+c u^{\prime}+k u+\frac{a(t)}{u^{2}}=s \tag{3}
\end{equation*}
$$

with $c, k>0, s:=k d / m$ and $a(t):=\frac{\varepsilon_{0} A}{2 m} V^{2}(t)$.

Sketch of the proof

A T-periodic solution of

$$
u^{\prime \prime}+c u^{\prime}+k u+\frac{a(t)}{u^{2}}=s
$$

is a fixed point of the functional

$$
\Phi[u]:=L^{-1}\left[s-(k+1) u+\frac{a(t)}{u^{2}}\right]
$$

where $L u:=u^{\prime \prime}+c u^{\prime}-u$.
Φ is a compact operator on the Banach space of the T-periodic continuous functions and the Leray-Schauder degree $\operatorname{deg}_{L S}(I-\Phi, \Omega)$ is well-defined whenever Φ has no fixed points in the boundary of Ω.

Sketch of the proof

- Existence of the unstable branch: lower and upper solution method

Sketch of the proof

- Existence of the unstable branch: lower and upper solution method
- Multiplicity (second branch): excision of the degree

Stability

Theorem

Assume that

$$
\begin{equation*}
4 k<\frac{\varepsilon_{0} A V_{m}^{2}}{2}\left(\frac{\omega c V_{m}^{2}}{\pi k d V_{M}^{2}}\right)^{3}+\omega^{2}+\frac{c^{2}}{m} \tag{4}
\end{equation*}
$$

Then, if $d>d_{0}$, there exist exactly two T-periodic solutions, one asymptotically stable and another unstable.

Stability

Theorem

Assume that

$$
\begin{equation*}
4 k<\frac{\varepsilon_{0} A V_{m}^{2}}{2}\left(\frac{\omega c V_{m}^{2}}{\pi k d V_{M}^{2}}\right)^{3}+\omega^{2}+\frac{c^{2}}{m} \tag{4}
\end{equation*}
$$

Then, if $d>d_{0}$, there exist exactly two T-periodic solutions, one asymptotically stable and another unstable.

- S. Ai, J. A. Pelesko, Dynamics of a canonical electrostatic MEMS/NEMS system, J. Dyn. Differ. Eqns., 20 (2007), 609-641. ("viscosity dominated regime")

Stability

Example

For the physical parameters: $m=3.5 \times 10^{-11} \mathrm{Kg}, k=0.17 \mathrm{~N} / \mathrm{m}$, $c=1.78 \times 10^{-6} \mathrm{Kg} / \mathrm{s}, A=1.6 \times 10^{-9} \mathrm{~m}^{2}, \varepsilon_{0}=8.85 \times 10^{-12}$ F / m. If $V(t)=10+2 \cos (\omega t) \mathrm{V}$, then the bifurcation value is bounded by $2.62033 \mu \mathrm{~m}<d_{0}<3.4336 \mu \mathrm{~m}$. If $d>d_{0}$ and $\omega \geq 0.76772 s^{-1}$ then there are exactly two periodic solutions, one asymptotically stable and the other unstable.

Open problem I

To identify the dynamic pull-in (non-autonomous saddle-node bifurcation) when $V(t)$ change its sign.

Model II:

Motion of fluid particles induced by a prescribed vortex path in a circular domain

The model

A fixed point vortex on the unbounded plane:

$$
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z}\right)
$$

where the complex variable ζ represents the evolution on the position of a particle transport induced by the flux generated by a fixed vortex placed at z.

The model

A fixed point vortex on the unbounded plane:

$$
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z}\right)
$$

where the complex variable ζ represents the evolution on the position of a particle transport induced by the flux generated by a fixed vortex placed at z.
This is a planar system with hamiltonian structure, where the stream function

$$
\Psi(\zeta)=\frac{\Gamma}{2 \pi} \ln |\zeta-z|
$$

plays the role of the hamiltonian.

The model

Influence of a circular domain of radius R :

$$
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-\frac{R^{2}}{|z|^{2}} z}\right) .
$$

The first term models the action of the vortex whereas the second term corresponds to the wall influence on the flow.

The model

Influence of a circular domain of radius R :

$$
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z}-\frac{1}{\zeta-\frac{R^{2}}{|z|^{2}} z}\right) .
$$

The first term models the action of the vortex whereas the second term corresponds to the wall influence on the flow. Now the hamiltonian is

$$
\Psi(\zeta)=\frac{\Gamma}{2 \pi} \ln \left|\frac{\zeta-z}{\bar{z} \zeta-R^{2}}\right|
$$

The model

Figure: Stream lines of a fixed vortex located at $(1,0)$ in the circular domain of radius $R=2$.

The model

If the vortex is moving following a prescribed path $z(t)$:

$$
\begin{equation*}
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z(t)}-\frac{1}{\zeta-\frac{R^{2}}{|z(t)|^{2}} z(t)}\right) \tag{5}
\end{equation*}
$$

The model

If the vortex is moving following a prescribed path $z(t)$:

$$
\begin{equation*}
\dot{\bar{\zeta}}=\frac{\Gamma}{2 \pi i}\left(\frac{1}{\zeta-z(t)}-\frac{1}{\zeta-\frac{R^{2}}{|z(t)|^{2}} z(t)}\right) . \tag{5}
\end{equation*}
$$

the hamiltonian

$$
\Psi(t, \zeta)=\frac{\Gamma}{2 \pi} \ln \left\lvert\, \frac{\zeta-z(t)}{\overline{z(t) \zeta-R^{2}} \mid}\right.
$$

is no more a conserved quantity.

The main result

Theorem 1

Let $z: \mathbb{R} \rightarrow \mathbb{C}$ be a T-periodic function of class C^{1}, such that $|z(t)|<R$ for all t. Then, for every integer $k \geq 1$, system (5) has infinitely many $k T$-periodic solutions lying in the disk $\mathcal{B}_{R}(0)$. More precisely, for every integer $k \geq 1$, there exists an integer j_{k}^{*} such that, for every integer $j \geq j_{k}^{*}$, system (5) has two $k T$-periodic solutions $\zeta_{k, j}^{(1)}(t), \zeta_{k, j}^{(2)}(t)$ such that, for $i=1,2$,

$$
\begin{equation*}
\left\|\zeta_{k, j}^{(i)}\right\|_{\infty} \leq R \quad \text { and } \quad \operatorname{rot}_{k T}\left(\zeta_{k, j}^{(i)}\right)=j \tag{6}
\end{equation*}
$$

Moreover, for every $k \geq 1, j \geq j_{k}^{*}$ and $i=1,2$,

$$
\begin{equation*}
\lim _{j \rightarrow+\infty}\left|\zeta_{k, j}^{(i)}(t)-z(t)\right|=0, \quad \text { uniformly in } t \in[0, k T] . \tag{7}
\end{equation*}
$$

The main result

Theorem 1

Let $z: \mathbb{R} \rightarrow \mathbb{C}$ be a T-periodic function of class C^{1}, such that $|z(t)|<R$ for all t. Then, for every integer $k \geq 1$, system (5) has infinitely many $k T$-periodic solutions lying in the disk $\mathcal{B}_{R}(0)$. More precisely, for every integer $k \geq 1$, there exists an integer j_{k}^{*} such that, for every integer $j \geq j_{k}^{*}$, system (5) has two $k T$-periodic solutions $\zeta_{k, j}^{(1)}(t), \zeta_{k, j}^{(2)}(t)$ such that, for $i=1,2$,

$$
\begin{equation*}
\left\|\zeta_{k, j}^{(i)}\right\|_{\infty} \leq R \quad \text { and } \quad \operatorname{rot}_{k T}\left(\zeta_{k, j}^{(i)}\right)=j \tag{6}
\end{equation*}
$$

Moreover, for every $k \geq 1, j \geq j_{k}^{*}$ and $i=1,2$,

$$
\begin{equation*}
\lim _{j \rightarrow+\infty}\left|\zeta_{k, j}^{(i)}(t)-z(t)\right|=0, \quad \text { uniformly in } t \in[0, k T] . \tag{7}
\end{equation*}
$$

- A. Boscaggin, P.J. Torres, Periodic motions of fluid particles induced by a prescribed vortex path in a circular domain, Physica D 261 (2013) 81-84

Open problem II

Existence of periodic solutions with rotation number equal to zero.

Open problem II

Existence of periodic solutions with rotation number equal to zero.

Figure: Stream lines induced by a vortex path $z(t)=\exp (i t)$ in the circular domain of radius $R=2$.

Model III:

Water transport across a cell membrane with fluctuating environmental conditions

The model

$$
\begin{align*}
& \dot{w}_{1}=\frac{x_{n p}}{w_{1}}+\sum_{j=2}^{n} \frac{w_{j}}{w_{1}}-\sum_{i=1}^{n} M_{i}(t), \tag{8}\\
& \dot{w}_{k}=b_{k}\left(M_{k}(t)-\frac{w_{k}}{w_{1}}\right), \quad k=2, \ldots, n .
\end{align*}
$$

The model

$$
\begin{align*}
& \dot{w}_{1}=\frac{x_{n p}}{w_{1}}+\sum_{j=2}^{n} \frac{w_{j}}{w_{1}}-\sum_{i=1}^{n} M_{i}(t) \tag{8}\\
& \dot{w}_{k}=b_{k}\left(M_{k}(t)-\frac{w_{k}}{w_{1}}\right), \quad k=2, \ldots, n
\end{align*}
$$

$w_{1}(t) \equiv$ intracellular water volume $w_{k}(t), k=2, \ldots, n \equiv$ amount of permeating intracellular solute species
$x_{n p} \geq 0 \equiv$ amount of non-permeating intracellular solute species (salts)
$M_{1}: \mathbb{R} \rightarrow[0,+\infty) \equiv$ extracellular concentration of non-permeating solute $M_{k}: \mathbb{R} \rightarrow[0,+\infty) k=2, \ldots, n \equiv$ extracellular concentrations of permeating solute species

The model

$$
\begin{align*}
& \dot{w}_{1}=\frac{x_{n p}}{w_{1}}+\sum_{j=2}^{n} \frac{w_{j}}{w_{1}}-\sum_{i=1}^{n} M_{i}(t) \tag{8}\\
& \dot{w}_{k}=b_{k}\left(M_{k}(t)-\frac{w_{k}}{w_{1}}\right), \quad k=2, \ldots, n .
\end{align*}
$$

$w_{1}(t) \equiv$ intracellular water volume $w_{k}(t), k=2, \ldots, n \equiv$ amount of permeating intracellular solute species
$x_{n p} \geq 0 \equiv$ amount of non-permeating intracellular solute species (salts)
$M_{1}: \mathbb{R} \rightarrow[0,+\infty) \equiv$ extracellular concentration of non-permeating solute $M_{k}: \mathbb{R} \rightarrow[0,+\infty) k=2, \ldots, n \equiv$ extracellular concentrations of permeating solute species

- Benson, J.D., Chicone, C.C., Critser, J.K.: A general model for the dynamics of cell volume, global stability and optimal control, J. Mathematical Biology, 63 (2), 339-359 (2011)

Main results

Theorem

Assume that $x_{n p}>0$. Then, system (8) has a T-periodic solution if and only if $\bar{M}_{1}>0$.

Main results

Theorem

Assume that $x_{n p}>0$. Then, system (8) has a T-periodic solution if and only if $\bar{M}_{1}>0$.

Theorem

Assume that $x_{n p}=0, M_{1}(t) \equiv 0$ and
(H_{1}) there exists $b>0$ such that $b=b_{k}$ for every $k=2, \ldots, n$.
Then, system (8) has infinitely many T-periodic solutions.

Main results

Theorem

Assume that $x_{n p}>0$. Then, system (8) has a T-periodic solution if and only if $\bar{M}_{1}>0$.

Theorem

Assume that $x_{n p}=0, M_{1}(t) \equiv 0$ and
(H_{1}) there exists $b>0$ such that $b=b_{k}$ for every $k=2, \ldots, n$.
Then, system (8) has infinitely many T-periodic solutions.

- P.J. Torres, Periodic oscillations of a model for membrane permeability with fluctuating environmental conditions, to appear in Journal of Mathematical Biology

Open problem III

$x_{n p}>0$: conditions for uniqueness and asymptotic
stability

Open problem III

$x_{n p}>0$: conditions for uniqueness and asymptotic stability
$x_{n p}=0:$ existence without condition (H1)

THANK YOU FOR YOUR ATTENTION!!

