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Physical background

Maxwell's equations:

10B 10D
V/\E:——a— V/\H:fa—
c ot c ot

V-D=0=V-B

c = speed of light in the vacuum
E = electric field

H = magnetic field

D = electric flux density

B = magnetic flux density



Physical background

Maxwell's equations:

10B 10D
V/\E:——a— V/\H:fa—
c ot c ot

V-D=0=V-B
It is assumed:
H = B (nhon-magnetic medium)
E(x,y,z,t) = u(x)eycos(kz — wt)
D(x,y,z,t) = e(x, 3u(x)?)E(x,y, z,t)

where (X, s) is called dielectric function.



Physical background

Figura: Wave propagation



Physical background

—0(x) + k?u(x) = ::jje(x, 1u(x)?)u(x)

Guidance conditions:

im u(x)= lim u(x)=0

X =00 X|—oo

/Ruz(x)dx +/Ruz(x)dx < 400



Physical background

—0(x) + k?u(x) = ::jje(x, 1u(x)?)u(x)

Guidance conditions:

u e HY(R)



Main problem

To study the existence of solutions in H1(RR) of the equation
— U+ a(x)u = b(x)f(u) (1)

with a,b € L*(R).



Related work

N.N. Akhmediev, Sov. Phys. JEPT, 56 (1982), 299-303.
—l+k%u = xa(Ju(x) + (1 = xa(x)) u(x)*

where A = [—d, d] is a closed interval and y, is the characteris-
tic function. It corresponds to the propagation of a guided wave
through an optical medium with dielectric function:

s(X,S):{ if x| <d,

c2
C(1+s) if x| >d,

N
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In general, ¢(x,s) = A(x) +B(x)s" with A, B piecewise-constant
functions (Kerr nonlinearities).
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@ D. Arcoya, S. Cingolani, J.L. Gamez [1999], SIAM J. Math.
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@ K. Kurata, M. Shibata, T. Watanabe [2005], Proc. Roy. Soc.
Edin.

@ T. Watanabe [2005], Nonlinear Anal.



How to attack the problem

@ Fixed point problem

@ Krasnoselskii fixed point theorem for compact operators in
cones os a Banach space

@ Compactness criterion



Fixed point problem. Green'’s function

Let a € L°°(R) be such that a. > 0 and b € L>(R) N L}(R).
Then, u € HY(R) is solution of

—U + a(x)u = b(x)f(u)
iff it is a fixed point of the operator

T:BC(R) — HY(R)

/ G(x,s)b(s)f(u(s))ds
where G(x, s) is the Green'’s function of the homogeneous

problem
—Uu+a(x)u =0,
u(—oo) = 0,u(+o00) =0.



Definition y properties of G(X, s).

uz(X)uz(s), a<X<s<+4oo
u1(s)uz(x), a<s<X <400

where uq, U, are solutions of the homogeneous problem such
that uy(—oo) = 0,uy(+o00) = 0. Moreover, u;,u, are positive
fucntions, u; increasing and u, decreasing.



Definition y properties of G(X, s).

Uz, Uy intersect in a unigue point Xo. Let us define

X < X
UZ(X)’ > A0,

p(x) =

X > Xo.
ur(x)’ °

(P1) G(x,s) > 0forall (x,s) € R?.
(P2) G(x,s) < G(s,s) forall (x,s) € R%
(P3) Given a compact P C R, we define
m1(P) = min{u.(infP), uz(supP)}.

Then,
G(x,s) > my(P)p(s)G(s,s) for all (x,s) € P x R.

(P4) G(s,s)p(s) > G(x,s)p(x) for all (x,s) € R2.




Fixed point theorem.,

Let B be a Banach space.

A set P C Bis acone if it is closed, nonempty, P ## {0} and
given X,y € P, A\, u € Ry then A\x + py € P.

| A,

Theorem

Let P be a cone in the Banach space B. Assume Q, Q? are
open bounded subsets of P (in the relative topology of P) with
0ecQland Q c Q2. If T: Q2 — P is a completely continuous
map satisfying:
(H1) Tu # uforallu € 9pQ* and \ > 1.
(H2) There exists e € P \ {0} such that u # Tu + e for all
uedpQ?andall ) >0,

Then, T has a fixed point in 2\ Q.

A\




Compactness criterion.

Proposition

Sea Q2 ¢ BC(R) whose functions are equicontinuous in each
compact interval of R. Let us assume that there exists
g € BC(R) such that lim},|_,» q(x) = 0 and

[u(x)| < q(x) vx € R,u € Q.

Then, Q is relatively compact.




Main result.

Theorem 1

Let [8,~] be such that xo € (3,7), [5,7] N Supp(b) # 0. Let
a € L*(R), b € L>°(R) N LY(R) be such that a, > 0, b, > 0.
Besides, f(s) > 0 para todo s > 0. In addition suppose that

(i) There exists r > 0 such that for every u € [0, r]

[e.e]

f(u) sup G(x,s)b(s)ds <.
XER J —c0
(i) There exists R > r > 0 such that for every u € [R, mlpoR]

f(u) mln/G(xs s)ds > R,
X€[B,7]

where po = miny¢(34] P(X)-

Then, there exists a positive solution u € HY(R) of (1) such that




e Step 1: Definition of the cone.

P = {u € BC(R) : u(x) >0, min _u(y) > mip(x)u(x) for all x

yEBA]

eStep2: T(P) C P.
Proof. For all 7 € R,

+oo
min Tu(x) = min/ G(x,s)b(s)f(u(s))ds

X€[6,7] X€[B] J -0

v

—0o0

Y

—0o0

= myp(7)Tu(7),

where (P3) and (P4) are used.

+o0
- / b(s)G(s, s)b(s)f (u(s))ds

+oo
ml/ p(7)G(7,s)b(s)f(u(s))ds

|



e Step 3: T is completely continuous.
Proof. Given a bounded Q2 C P, let us prove that T(Q2) is rela-
tively compact. There is M > 0 such that |ju|| < M for all u € Q.

Tu(x)| =

/G(x,s)b(s)f(u(s))ds < M*/G(x,s)b(s)ds —q(x)
R R

where M* = maxscom; f(S). Since b € LY, then g € HY. The
compactness criterion concludes the proof.



e Step 4: Krasnoselskii conditions.
(H1) Letbe Oy ={ueP:|u| <r}.
Given u € 0p4,
+oo
Tu(x) < M, sup G(x,s)b(s)ds <,
XER J -0
where My = maxseor f(s). Therefore, Tu # Au para A > 1,
u € 0pfls.



e Step 4: Krasnoselskii conditions.
(H2) Letbe Q = {u € P : minycis u(y) < R}

QU C
Ifu € 9p€2y,

R = min U(y) > myp(X)[[ul > mapolul],
YE[BY
therefore R
R<ux)<——Vx€e|[s,7]
SU() < VX € [8,0]

Take e € P such that e(x) = 1, x € [§,9]. If there exists A € (0,1) such
that u = Tu + Xe, given x € [3,1],
+o0o

u(x) = G(x,s)b(s)f(u(s))ds + re(x)

—oo

~
> mg min / G(x,s)b(s)ds+ A >R+ A >R
x€lB:7] /g

where mg = min i ]f(s) This contradicts R = miny¢ig 4 u(y).

s€[R, &



Odd homoclinics under symmetry conditions.

Under the assumptions of Theorem 1, if:
@ a(x) =a(—x), b(x) =b(—x) Wx,
@ f(—s)=—f(s) Vs,
there exists an odd solution u € H(R), positive in R* such that

r <l < mR.




Consequences for models in Nonlinear Optics.

—i(x) + k2u(x) = ‘:je(x, 1u(x)?)u(x)

Nonlinear contribution of the dielectric function is isolated with
the decomposition

eL(x) =e(x,0), enL(X,8) = e(x,8) — e (X).

For simplicity, it is assumed ey (X, s) = B(X)F(s).



Consequences for models in Nonlinear Optics.

Definition
A dielectric function e(x, s) = ¢, (x) + B(x)F(s) is called of Kerr
type if F is increasing, B, > 0, Supp(B) # 0 and

F(0) =0, sﬂToo F(s) = +c0.




Consequences for models in Nonlinear Optics.

Let us assume a dielectric function of Kerr type with
BellnL™. Ifk? > ‘g—zz lleL||, then there exists a positive
solution u € H(R) of (2). Moreover, if e, (x), B(x) are even
functions, there exists an odd solution G € H(R) of (2).




Consequences for models in Nonlinear Optics.

Proof.

a(x) = k? — %jq(x), b(x) = —B(x), f(s) = F(3s%)s

[()] There exists r > 0 such that
f(u) sup G(x,s)b(s)ds <r Yu € [0,r]
XER J —c0

This amounts to:

F(3r®)sup G(x,s)b(s)ds < 1

XeR J —
[(i1)] There exists R > r > 0 such that

f(u) min / G(x,s)b(s)ds > R Yu € [R, lp R]

X€[B,7]

This amounts to:

5
F(3R*) min / G(x,s)b(s)ds > 1
xX€[B /g



Consequences for models in Nonlinear Optics.

An example (Akhmediev):

[ g?+s  six] >d,
8(Xas)—{qz_i_DZ si x| <d,

NO LINEAL

=
JPAEN

NO LINEAL



Consequences for models in Nonlinear Optics.

An example (Akhmediev):

[ g?+s  sifx] <d,
8(Xas)—{qz_i_DZ si x| > d,

X LINEAL

 fF
20810

LINEAL



Consequences for models in Nonlinear Optics.

_ [ @®+b(x)s if [x| >d,
E(X,S){ q2+p2 if |X| <d,

with b € L>(R) N LY(R) positive.



Consequences for models in Nonlinear Optics.

[ q?+b(x)s i x| >d,
E(X,S){ q2+p2 if |X| <d,

with b € L>(R) N LY(R) positive.

The “limit case” e(x,s) = b(x)s is interesting in the context of
Bose-Einstein condensates.



Optical media with saturation

Definition

Una dielectric function £(x,s) = e.(x) + B(x)F(s) is called
saturable if F is increasing, B, > 0, Supp(B) # 0 and

F(0) =0, SETOOF(S) = F < +00.
s
g(x,8) =¢eL(x) + B(x)1 s

e(x,s) = e (x) +B(x)(1 —e~®).

[C.A. Stuart, Guidance properties of nonlinear planar waveguides, Arch. Ra-
tional Mech. Anal., 125 (1993), 145—-200.]



Optical media with saturation

Corollary

Let us assume a saturable dielectric function with B € L1 n L,
If:

0 k2> < e,
@ J[3,~] such that xo € (3,7), [3,7] N Supp(B) # () and

OOmm/G(xs ds>c
x€[B,]

then there exists a positive solution u € H(R) of (2). Moreover,
if . (X), B(x) are even functions, there exists an odd solution
i € HY(R) of (2).




Optical media with saturation

As a consequence, it is proved the existence of guided waves
E(x,y,z,t) = u(x)ez cos(kz — wt)

in saturable media for high values of w, k.



Consequences for models in Nonlinear Optics.

Branches of solutions in systems controlled by parameters:

g(X,8) = eL(X) + AB(X)F(s),

Corollary

Let us assume a dielectric function of Kerr type. If k? > °CJ—22 lleLll,
then for all A > O there exists a positive solution uy € H1(R) of
(2). Besides,

lim |juy|| = lim |juy|| = 0.
S luxl] = oo, Tim juyj

If e, (x), B(x) are even, then there exists a second branch of
odd solutions Gy, € H(R) with the same behaviour.




Consequences for models in Nonlinear Optics.

Proof. We need ry, R, such that

1
F(3r3) < (C%)\wz SUPycr ffoooG(x,s)B(s)ds) <
~1
< (C%Aw2m1p0 MiNy e (. fge(x,s)s(s)ds) < F(iR2).

By using that the nonlinearity is of Kerr type, ry < Ry, can be
chosen such that

lim ry, = 400, lim R, =0.
A—0+

A—-+oo

We obtain a branch uy such thatry < |ju,|| < mlpo



Consequences for models in Nonlinear Optics.

Corollary

Let us assume a dielectric function is saturable. If k2 > “;—22 lleLll,
then there exists \g > 0 such that for all A > \g there exists a
positive solution uy € H(R) of (2). Besides,
[im |juyl| = 0.
Jimus

If . (x), B(x) are even, then there exists a second branch of
odd solutions Gy € H(R) with the same behaviour.




Open directions of research.

@ Extension to systems:

—U+a(thu = by(t)(u+v)u?
{ —V +ax(t)v = by(t)(u+v)v2

“Manakov systems”
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—Au +a(t)u = b(t)u®



Open directions of research.

@ Extension to systems:

—U+a(thu = by(t)(u+v)u?
{ —V +ax(t)v = by(t)(u+v)v2

“Manakov systems”
@ higher dimensions:

—Au +a(t)u = b(t)u®

@ Dark solitons (heteroclinics).



