Guided waves in a nonlinear optical medium: a topological approach

Pedro J. Torres

Departamento de Matemática Aplicada, Universidad de Granada (Spain)

Lisboa, First Iberian Mathematical Meeting Febrero 2007

Physical background

Maxwell's equations:

$$
\begin{gathered}
\nabla \wedge E=-\frac{1}{c} \frac{\partial B}{\partial t} \quad \nabla \wedge H=\frac{1}{c} \frac{\partial D}{\partial t} \\
\nabla \cdot D=0=\nabla \cdot B
\end{gathered}
$$

$c \equiv$ speed of light in the vacuum
$E \equiv$ electric field
$H \equiv$ magnetic field
$D \equiv$ electric flux density
$B \equiv$ magnetic flux density

Physical background

Maxwell's equations:

$$
\begin{gathered}
\nabla \wedge E=-\frac{1}{c} \frac{\partial B}{\partial t} \quad \nabla \wedge H=\frac{1}{c} \frac{\partial D}{\partial t} \\
\nabla \cdot D=0=\nabla \cdot B
\end{gathered}
$$

It is assumed:

$$
\begin{gathered}
H \equiv B \text { (non-magnetic medium) } \\
E(x, y, z, t)=u(x) e_{2} \cos (k z-\omega t) \\
D(x, y, z, t)=\varepsilon\left(x, \frac{1}{2} u(x)^{2}\right) E(x, y, z, t)
\end{gathered}
$$

where $\varepsilon(x, s)$ is called dielectric function.

Physical background

Figura: Wave propagation

Physical background

$$
-\ddot{u}(x)+k^{2} u(x)=\frac{\omega^{2}}{c^{2}} \varepsilon\left(x, \frac{1}{2} u(x)^{2}\right) u(x)
$$

Guidance conditions:

$$
\begin{aligned}
& \lim _{|x| \rightarrow+\infty} u(x)=\lim _{|x| \rightarrow+\infty} \dot{u}(x)=0 \\
& \int_{\mathbb{R}} u^{2}(x) d x+\int_{\mathbb{R}} \dot{u}^{2}(x) d x<+\infty
\end{aligned}
$$

Physical background

$$
-\ddot{u}(x)+k^{2} u(x)=\frac{\omega^{2}}{c^{2}} \varepsilon\left(x, \frac{1}{2} u(x)^{2}\right) u(x)
$$

Guidance conditions:

$$
u \in H^{1}(\mathbb{R})
$$

Main problem

To study the existence of solutions in $H^{1}(\mathbb{R})$ of the equation

$$
\begin{equation*}
-\ddot{u}+a(x) u=b(x) f(u) \tag{1}
\end{equation*}
$$

with $a, b \in L^{\infty}(\mathbb{R})$.

Related work

N.N. Akhmediev, Sov. Phys. JEPT, 56 (1982), 299-303.

$$
-\ddot{u}+k^{2} u=\chi_{A}(x) u(x)+\left(1-\chi_{A}(x)\right) u(x)^{3}
$$

where $A=[-d, d]$ is a closed interval and χ_{A} is the characteristic function. It corresponds to the propagation of a guided wave through an optical medium with dielectric function:

$$
\varepsilon(x, s)= \begin{cases}\frac{\omega^{2}}{c^{2}} & \text { if }|x|<d \\ \frac{\omega^{2}}{c^{2}}(1+s) & \text { if }|x|>d\end{cases}
$$

Related work

In general, $\varepsilon(x, s)=A(x)+B(x) s^{n}$ with A, B piecewise-constant functions (Kerr nonlinearities).

- H.J. Ruppen [1997], Ann. Mat. Pura. Appl.
- A. Ambrosetti, D. Arcoya, J.L. Gámez [1998], Rend. Sem. Mat. Univ. Padova
- D. Arcoya, S. Cingolani, J.L. Gámez [1999], SIAM J. Math. Anal.
- K. Kurata, M. Shibata, T. Watanabe [2005], Proc. Roy. Soc. Edin.
- T. Watanabe [2005], Nonlinear Anal.

How to attack the problem

- Fixed point problem
- Krasnoselskii fixed point theorem for compact operators in cones os a Banach space
- Compactness criterion

Fixed point problem. Green's function

Let $a \in L^{\infty}(\mathbb{R})$ be such that $a_{*}>0$ and $b \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$. Then, $u \in H^{1}(\mathbb{R})$ is solution of

$$
-\ddot{u}+a(x) u=b(x) f(u)
$$

iff it is a fixed point of the operator

$$
T: B C(\mathbb{R}) \rightarrow H^{1}(\mathbb{R})
$$

$$
T u(x):=\int_{\mathbb{R}} G(x, s) b(s) f(u(s)) d s
$$

where $G(x, s)$ is the Green's function of the homogeneous problem

$$
\left\{\begin{array}{l}
-\ddot{u}+a(x) u=0 \\
u(-\infty)=0, u(+\infty)=0 .
\end{array}\right.
$$

Definition y properties of $G(x, s)$.

$$
G(x, s)= \begin{cases}u_{1}(x) u_{2}(s), & \alpha<x \leq s<+\infty \\ u_{1}(s) u_{2}(x), & \alpha<s \leq x<+\infty\end{cases}
$$

where u_{1}, u_{2} are solutions of the homogeneous problem such that $u_{1}(-\infty)=0, u_{2}(+\infty)=0$. Moreover, u_{1}, u_{2} are positive fucntions, u_{1} increasing and u_{2} decreasing.

Definition y properties of $G(x, s)$.

u_{1}, u_{2} intersect in a unique point x_{0}. Let us define

$$
p(x)= \begin{cases}\frac{1}{u_{2}(x)}, & x \leq x_{0} \\ \frac{1}{u_{1}(x)}, & x>x_{0}\end{cases}
$$

Properties

(P1) $G(x, s)>0$ for all $(x, s) \in \mathbb{R}^{2}$.
$(P 2) \quad G(x, s) \leq G(s, s)$ for all $(x, s) \in \mathbb{R}^{2}$.
$(P 3)$ Given a compact $P \subset \mathbb{R}$, we define

$$
m_{1}(P)=\min \left\{u_{1}(\inf P), u_{2}(\sup P)\right\}
$$

Then,

$$
G(x, s) \geq m_{1}(P) p(s) G(s, s) \text { for all }(x, s) \in P \times \mathbb{R}
$$

$(P 4) G(s, s) p(s) \geq G(x, s) p(x)$ for all $(x, s) \in \mathbb{R}^{2}$.

Fixed point theorem.

Let \mathcal{B} be a Banach space.

Definition

A set $\mathcal{P} \subset \mathcal{B}$ is a cone if it is closed, nonempty, $\mathcal{P} \neq\{0\}$ and given $x, y \in \mathcal{P}, \lambda, \mu \in \mathbb{R}_{+}$then $\lambda x+\mu y \in \mathcal{P}$.

Theorem

Let \mathcal{P} be a cone in the Banach space \mathcal{B}. Assume Ω^{1}, Ω^{2} are open bounded subsets of \mathcal{P} (in the relative topology of \mathcal{P}) with $0 \in \Omega^{1}$ and $\overline{\Omega^{1}} \subset \Omega^{2}$. If $T: \overline{\Omega^{2}} \rightarrow \mathcal{P}$ is a completely continuous map satisfying:
(H1) $T u \neq \lambda u$ for all $u \in \partial_{\mathcal{P}} \Omega^{1}$ and $\lambda>1$.
(H2) There exists $e \in \mathcal{P} \backslash\{0\}$ such that $u \neq T u+\lambda e$ for all $u \in \partial_{\mathcal{P}} \Omega^{2}$ and all $\lambda>0$,
Then, T has a fixed point in $\overline{\Omega^{2}} \backslash \Omega^{1}$.

Compactness criterion.

Proposition

Sea $\Omega \subset B C(\mathbb{R})$ whose functions are equicontinuous in each compact interval of \mathbb{R}. Let us assume that there exists $q \in B C(\mathbb{R})$ such that lím $_{|x| \rightarrow+\infty} q(x)=0$ and

$$
|u(x)| \leq q(x) \quad \forall x \in \mathbb{R}, u \in \Omega
$$

Then, Ω is relatively compact.

Main result.

Theorem 1

Let $[\beta, \gamma]$ be such that $x_{0} \in(\beta, \gamma),[\beta, \gamma] \cap \operatorname{Supp}(b) \neq \emptyset$. Let $a \in L^{\infty}(\mathbb{R}), b \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ be such that $a_{*}>0, b_{*} \geq 0$. Besides, $f(s) \geq 0$ para todo $s \geq 0$. In addition suppose that
(i) There exists $r>0$ such that for every $u \in[0, r]$

$$
f(u) \sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty} G(x, s) b(s) d s \leq r
$$

(ii) There exists $R>r>0$ such that for every $u \in\left[R, \frac{1}{m_{1} p_{0}} R\right]$

$$
f(u) \min _{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) b(s) d s \geq R
$$

where $p_{0}=$ mín $_{x \in[\beta, \gamma]} p(x)$.
Then, there exists a positive solution $u \in H^{1}(\mathbb{R})$ of (1) such that $r \leq\|u\| \leq \frac{1}{m_{1} p_{0}} R$.

Proof.

- Step 1: Definition of the cone.

$$
\mathcal{P}=\left\{u \in B C(\mathbb{R}): u(x) \geq 0, \min _{y \in[\beta, \gamma]} u(y) \geq m_{1} p(x) u(x) \text { for all } x\right\}
$$

- Step 2: $T(\mathcal{P}) \subset \mathcal{P}$.

Proof. For all $\tau \in \mathbb{R}$,

$$
\begin{aligned}
\operatorname{mín}_{x \in[\beta, \gamma]} T u(x) & =\min _{x \in[\beta, \gamma]} \int_{-\infty}^{+\infty} G(x, s) b(s) f(u(s)) d s \\
& \geq m_{1} \int_{-\infty}^{+\infty} p(s) G(s, s) b(s) f(u(s)) d s \\
& \geq m_{1} \int_{-\infty}^{+\infty} p(\tau) G(\tau, s) b(s) f(u(s)) d s \\
& =m_{1} p(\tau) T u(\tau)
\end{aligned}
$$

where $(P 3)$ and $(P 4)$ are used.

Proof.

- Step 3: T is completely continuous.

Proof. Given a bounded $\Omega \subset \mathcal{P}$, let us prove that $T(\Omega)$ is relatively compact. There is $M>0$ such that $\|u\| \leq M$ for all $u \in \Omega$.

$$
|T u(x)|=\left|\int_{\mathbb{R}} G(x, s) b(s) f(u(s)) d s\right| \leq M^{*} \int_{\mathbb{R}} G(x, s) b(s) d s=: q(x)
$$

where $M^{*}=\max _{s \in[0, M]} f(s)$. Since $b \in L^{1}$, then $q \in H^{1}$. The compactness criterion concludes the proof.

Proof.

- Step 4: Krasnoselskii conditions.
(H1) Let be $\Omega_{1}=\{u \in \mathcal{P}:\|u\| \leq r\}$. Given $u \in \partial_{\mathcal{P}} \Omega_{1}$,

$$
T u(x) \leq M_{r} \sup _{x \in \mathbb{R}} \int_{-\infty}^{+\infty} G(x, s) b(s) d s \leq r
$$

where $M_{r}=$ máx $_{s \in[0, r]} f(s)$. Therefore, $T u \neq \lambda u$ para $\lambda>1$, $u \in \partial_{\mathcal{P}} \Omega_{1}$.

Proof.

- Step 4: Krasnoselskii conditions.
(H2) Let be $\Omega_{2}=\left\{u \in \mathcal{P}:\right.$ minn $\left._{y \in[\beta, \gamma]} u(y)<R\right\}$

$$
\bar{\Omega}_{1} \subset \Omega_{2}
$$

If $u \in \partial_{\mathcal{P}} \Omega_{2}$,

$$
R=\min _{y \in[\beta, \gamma]} u(y) \geq m_{1} p(x)\|u\| \geq m_{1} p_{0}\|u\|
$$

therefore

$$
R \leq u(x) \leq \frac{R}{m_{1} p_{0}} \forall x \in[\beta, \gamma]
$$

Take $e \in \mathcal{P}$ such that $e(x)=1, x \in[\beta, \gamma]$. If there exists $\lambda \in(0,1)$ such that $u=T u+\lambda e$, given $x \in[\beta, \gamma]$,

$$
\begin{aligned}
u(x) & =\int_{-\infty}^{+\infty} G(x, s) b(s) f(u(s)) d s+\lambda e(x) \\
& \geq m_{R} \operatorname{mín}_{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) b(s) d s+\lambda \geq R+\lambda>R
\end{aligned}
$$

where $m_{R}=\min _{s \in\left[R, \frac{R}{m_{1} \rho_{0}}\right]} f(s)$. This contradicts $R=\min _{y \in[\beta, \gamma]} u(y)$.

Odd homoclinics under symmetry conditions.

$$
-\ddot{u}+a(x) u=b(x) f(u)
$$

Theorem 2

Under the assumptions of Theorem 1, if:

- $a(x)=a(-x), b(x)=b(-x) \quad \forall x$,
- $f(-s)=-f(s) \quad \forall s$,
there exists an odd solution $u \in H^{1}(\mathbb{R})$, positive in \mathbb{R}^{+}such that $r \leq\|u\| \leq \frac{1}{m_{1} p_{0}} R$.

Consequences for models in Nonlinear Optics.

$$
-\ddot{u}(x)+k^{2} u(x)=\frac{\omega^{2}}{c^{2}} \varepsilon\left(x, \frac{1}{2} u(x)^{2}\right) u(x)
$$

Nonlinear contribution of the dielectric function is isolated with the decomposition

$$
\varepsilon_{L}(x)=\varepsilon(x, 0), \quad \varepsilon_{N L}(x, s)=\varepsilon(x, s)-\varepsilon_{L}(x)
$$

For simplicity, it is assumed $\varepsilon_{N L}(x, s)=B(x) F(s)$.

Consequences for models in Nonlinear Optics.

$$
\begin{equation*}
-\ddot{u}(x)+\left(k^{2}-\frac{\omega^{2}}{c^{2}} \varepsilon_{L}(x)\right) u(x)=\frac{\omega^{2}}{c^{2}} B(x) F\left(\frac{1}{2} u(x)^{2}\right) u(x) \tag{2}
\end{equation*}
$$

Definition

A dielectric function $\varepsilon(x, s)=\varepsilon_{L}(x)+B(x) F(s)$ is called of Kerr type if F is increasing, $B_{*} \geq 0, \operatorname{Supp}(B) \neq \emptyset$ and

$$
F(0)=0, \quad \lim _{s \rightarrow+\infty} F(s)=+\infty .
$$

Consequences for models in Nonlinear Optics.

Corollary

Let us assume a dielectric function of Kerr type with $B \in L^{1} \cap L^{\infty}$. If $k^{2}>\frac{\omega^{2}}{c^{2}}\left\|\varepsilon_{L}\right\|$, then there exists a positive solution $u \in H^{1}(\mathbb{R})$ of (2). Moreover, if $\varepsilon_{L}(x), B(x)$ are even functions, there exists an odd solution $\tilde{u} \in H^{1}(\mathbb{R})$ of (2).

Consequences for models in Nonlinear Optics.

Proof.

$$
a(x)=k^{2}-\frac{\omega^{2}}{c^{2}} \varepsilon_{L}(x), b(x)=\frac{\omega^{2}}{c^{2}} B(x), f(s)=F\left(\frac{1}{2} s^{2}\right) s
$$

$[(i)]$ There exists $r>0$ such that

$$
f(u) \sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty} G(x, s) b(s) d s \leq r \quad \forall u \in[0, r]
$$

This amounts to:

$$
F\left(\frac{1}{2} r^{2}\right) \sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty} G(x, s) b(s) d s \leq 1
$$

[(ii)] There exists $R>r>0$ such that

$$
f(u) \min _{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) b(s) d s \geq R \quad \forall u \in\left[R, \frac{1}{m_{1} p_{0}} R\right]
$$

This amounts to:

$$
F\left(\frac{1}{2} R^{2}\right) \min _{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) b(s) d s \geq 1
$$

Consequences for models in Nonlinear Optics.

An example (Akhmediev):

$$
\varepsilon(x, s)= \begin{cases}q^{2}+s & \text { si }|x| \geq d \\ q^{2}+p^{2} & \text { si }|x|<d\end{cases}
$$

Consequences for models in Nonlinear Optics.

An example (Akhmediev):

$$
\varepsilon(x, s)= \begin{cases}q^{2}+s & \text { si }|x| \leq d \\ q^{2}+p^{2} & \text { si }|x|>d\end{cases}
$$

Consequences for models in Nonlinear Optics.

$$
\varepsilon(x, s)= \begin{cases}q^{2}+b(x) s & \text { if }|x| \geq d \\ q^{2}+p^{2} & \text { if }|x|<d\end{cases}
$$

with $b \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ positive.

Consequences for models in Nonlinear Optics.

$$
\varepsilon(x, s)= \begin{cases}q^{2}+b(x) s & \text { if }|x| \geq d \\ q^{2}+p^{2} & \text { if }|x|<d\end{cases}
$$

with $b \in L^{\infty}(\mathbb{R}) \cap L^{1}(\mathbb{R})$ positive.

The "limit case" $\varepsilon(x, s)=b(x) s$ is interesting in the context of Bose-Einstein condensates.

Optical media with saturation

Definition

Una dielectric function $\varepsilon(x, s)=\varepsilon_{L}(x)+B(x) F(s)$ is called saturable if F is increasing, $B_{*} \geq 0, \operatorname{Supp}(B) \neq \emptyset$ and

$$
F(0)=0, \quad \lim _{s \rightarrow+\infty} F(s)=F_{\infty}<+\infty
$$

$$
\begin{gathered}
\varepsilon(x, s)=\varepsilon_{L}(x)+B(x) \frac{s}{1+s} \\
\varepsilon(x, s)=\varepsilon_{L}(x)+B(x)\left(1-e^{-s}\right)
\end{gathered}
$$

[C.A. Stuart, Guidance properties of nonlinear planar waveguides, Arch. Rational Mech. Anal., 125 (1993), 145-200.]

Optical media with saturation

Corollary

Let us assume a saturable dielectric function with $B \in L^{1} \cap L^{\infty}$. If:

- $k^{2}>\frac{\omega^{2}}{c^{2}}\left\|\varepsilon_{L}\right\|$,
- $\exists[\beta, \gamma]$ such that $x_{0} \in(\beta, \gamma),[\beta, \gamma] \cap \operatorname{Supp}(B) \neq \emptyset$ and

$$
\omega^{2} F_{\infty} \min _{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) B(s) d s>c^{2},
$$

then there exists a positive solution $u \in H^{1}(\mathbb{R})$ of (2). Moreover, if $\varepsilon_{L}(x), B(x)$ are even functions, there exists an odd solution $\tilde{u} \in H^{1}(\mathbb{R})$ of (2).

Optical media with saturation

As a consequence, it is proved the existence of guided waves

$$
E(x, y, z, t)=u(x) e_{2} \cos (k z-\omega t)
$$

in saturable media for high values of ω, k.

Consequences for models in Nonlinear Optics.

Branches of solutions in systems controlled by parameters:

$$
\varepsilon(x, s)=\varepsilon_{L}(x)+\lambda B(x) F(s),
$$

Corollary

Let us assume a dielectric function of Kerr type. If $k^{2}>\frac{\omega^{2}}{c^{2}}\left\|\varepsilon_{L}\right\|$, then for all $\lambda>0$ there exists a positive solution $u_{\lambda} \in H^{1}(\mathbb{R})$ of (2). Besides,

$$
\lim _{\lambda \rightarrow 0^{+}}\left\|u_{\lambda}\right\|=+\infty, \quad \lim _{\lambda \rightarrow+\infty}\left\|u_{\lambda}\right\|=0 .
$$

If $\varepsilon_{L}(x), B(x)$ are even, then there exists a second branch of odd solutions $\tilde{u}_{\lambda} \in H^{1}(\mathbb{R})$ with the same behaviour.

Consequences for models in Nonlinear Optics.

Proof. We need r_{λ}, R_{λ} such that

$$
\begin{aligned}
F\left(\frac{1}{2} r_{\lambda}^{2}\right) & \leq\left(\frac{1}{c^{2}} \lambda \omega^{2} \sup _{x \in \mathbb{R}} \int_{-\infty}^{\infty} G(x, s) B(s) d s\right)^{-1} \leq \\
& \leq\left(\frac{1}{c^{2}} \lambda \omega^{2} m_{1} p_{0} \operatorname{mí}_{x \in[\beta, \gamma]} \int_{\beta}^{\gamma} G(x, s) B(s) d s\right)^{-1} \leq F\left(\frac{1}{2} R_{\lambda}^{2}\right)
\end{aligned}
$$

By using that the nonlinearity is of Kerr type, $r_{\lambda}<R_{\lambda}$ can be chosen such that

$$
\lim _{\lambda \rightarrow 0^{+}} r_{\lambda}=+\infty, \quad \lim _{\lambda \rightarrow+\infty} R_{\lambda}=0
$$

We obtain a branch u_{λ} such that $r_{\lambda} \leq\left\|u_{\lambda}\right\| \leq \frac{R_{\lambda}}{m_{1} p_{0}}$.

Consequences for models in Nonlinear Optics.

Corollary

Let us assume a dielectric function is saturable. If $k^{2}>\frac{\omega^{2}}{c^{2}}\left\|\varepsilon_{L}\right\|$, then there exists $\lambda_{0}>0$ such that for all $\lambda>\lambda_{0}$ there exists a positive solution $u_{\lambda} \in H^{1}(\mathbb{R})$ of (2). Besides,

$$
\lim _{\lambda \rightarrow+\infty}\left\|u_{\lambda}\right\|=0 .
$$

If $\varepsilon_{L}(x), B(x)$ are even, then there exists a second branch of odd solutions $\tilde{u}_{\lambda} \in H^{1}(\mathbb{R})$ with the same behaviour.

Open directions of research.

- Extension to systems:

$$
\left\{\begin{aligned}
-\ddot{u}+a_{1}(t) u & =b_{1}(t)(u+v) u^{2} \\
-\ddot{v}+a_{2}(t) v & =b_{2}(t)(u+v) v^{2}
\end{aligned}\right.
$$

"Manakov systems"

Open directions of research.

- Extension to systems:

$$
\left\{\begin{aligned}
-\ddot{u}+a_{1}(t) u & =b_{1}(t)(u+v) u^{2} \\
-\ddot{v}+a_{2}(t) v & =b_{2}(t)(u+v) v^{2}
\end{aligned}\right.
$$

"Manakov systems"

- higher dimensions:

$$
-\Delta u+a(t) u=b(t) u^{3}
$$

Open directions of research.

- Extension to systems:

$$
\left\{\begin{aligned}
-\ddot{u}+a_{1}(t) u & =b_{1}(t)(u+v) u^{2} \\
-\ddot{v}+a_{2}(t) v & =b_{2}(t)(u+v) v^{2}
\end{aligned}\right.
$$

"Manakov systems"

- higher dimensions:

$$
-\Delta u+a(t) u=b(t) u^{3}
$$

- Dark solitons (heteroclinics).

