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Physical background

Maxwell’s equations:

∇∧ E = −1
c

∂B
∂t

∇∧ H =
1
c

∂D
∂t

∇ · D = 0 = ∇ · B

c ≡ speed of light in the vacuum
E ≡ electric field
H ≡ magnetic field
D ≡ electric flux density
B ≡ magnetic flux density



Physical background

Maxwell’s equations:

∇∧ E = −1
c

∂B
∂t

∇∧ H =
1
c

∂D
∂t

∇ · D = 0 = ∇ · B

It is assumed:

H ≡ B (non-magnetic medium)

E(x , y , z, t) = u(x)e2 cos(kz − ωt)

D(x , y , z, t) = ε(x , 1
2u(x)2)E(x , y , z, t)

where ε(x , s) is called dielectric function.



Physical background

Figura: Wave propagation



Physical background

−ü(x) + k2u(x) =
ω2

c2 ε(x , 1
2 u(x)2)u(x)

Guidance conditions:

lı́m
|x |→+∞

u(x) = lı́m
|x |→+∞

u̇(x) = 0

∫
R

u2(x)dx +

∫
R

u̇2(x)dx < +∞



Physical background

−ü(x) + k2u(x) =
ω2

c2 ε(x , 1
2 u(x)2)u(x)

Guidance conditions:

u ∈ H1(R)



Main problem

To study the existence of solutions in H1(R) of the equation

− ü + a(x)u = b(x)f (u) (1)

with a, b ∈ L∞(R).
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−ü + k2u = χA(x)u(x) + (1− χA(x)) u(x)3

where A = [−d , d ] is a closed interval and χA is the characteris-
tic function. It corresponds to the propagation of a guided wave
through an optical medium with dielectric function:

ε(x , s) =

{
ω2

c2 if |x | < d ,
ω2

c2 (1 + s) if |x | > d ,
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How to attack the problem

Fixed point problem

Krasnoselskii fixed point theorem for compact operators in
cones os a Banach space

Compactness criterion



Fixed point problem. Green’s function

Let a ∈ L∞(R) be such that a∗ > 0 and b ∈ L∞(R) ∩ L1(R).
Then, u ∈ H1(R) is solution of

−ü + a(x)u = b(x)f (u)

iff it is a fixed point of the operator

T : BC(R) → H1(R)

Tu(x) :=

∫
R

G(x , s)b(s)f (u(s))ds,

where G(x , s) is the Green’s function of the homogeneous
problem {

−ü + a(x)u = 0,
u(−∞) = 0, u(+∞) = 0.



Definition y properties of G(x , s).

G(x , s) =

{
u1(x)u2(s), α < x ≤ s < +∞
u1(s)u2(x), α < s ≤ x < +∞

where u1, u2 are solutions of the homogeneous problem such
that u1(−∞) = 0, u2(+∞) = 0. Moreover, u1, u2 are positive
fucntions, u1 increasing and u2 decreasing.



Definition y properties of G(x , s).

u1, u2 intersect in a unique point x0. Let us define

p(x) =


1

u2(x)
, x ≤ x0,

1
u1(x)

, x > x0.

Properties

(P1) G(x , s) > 0 for all (x , s) ∈ R2.

(P2) G(x , s) ≤ G(s, s) for all (x , s) ∈ R2.

(P3) Given a compact P ⊂ R, we define

m1(P) = mı́n{u1(inf P), u2(sup P)}.

Then,
G(x , s) ≥ m1(P)p(s)G(s, s) for all (x , s) ∈ P × R.

(P4) G(s, s)p(s) ≥ G(x , s)p(x) for all (x , s) ∈ R2.



Fixed point theorem.

Let B be a Banach space.

Definition
A set P ⊂ B is a cone if it is closed, nonempty, P 6= {0} and
given x , y ∈ P, λ, µ ∈ R+ then λx + µy ∈ P.

Theorem

Let P be a cone in the Banach space B. Assume Ω1,Ω2 are
open bounded subsets of P (in the relative topology of P) with
0 ∈ Ω1 and Ω1 ⊂ Ω2. If T : Ω2 → P is a completely continuous
map satisfying:

(H1) Tu 6= λu for all u ∈ ∂PΩ1 and λ > 1.

(H2) There exists e ∈ P \ {0} such that u 6= Tu + λe for all
u ∈ ∂PΩ2 and all λ > 0,

Then, T has a fixed point in Ω2 \ Ω1.



Compactness criterion.

Proposition

Sea Ω ⊂ BC(R) whose functions are equicontinuous in each
compact interval of R. Let us assume that there exists
q ∈ BC(R) such that lı́m|x |→+∞ q(x) = 0 and

|u(x)| ≤ q(x) ∀x ∈ R, u ∈ Ω.

Then, Ω is relatively compact.



Main result.

Theorem 1
Let [β, γ] be such that x0 ∈ (β, γ), [β, γ] ∩ Supp(b) 6= ∅. Let
a ∈ L∞(R), b ∈ L∞(R) ∩ L1(R) be such that a∗ > 0, b∗ ≥ 0.
Besides, f (s) ≥ 0 para todo s ≥ 0. In addition suppose that

(i) There exists r > 0 such that for every u ∈ [0, r ]

f (u) sup
x∈R

∫ ∞

−∞
G(x , s)b(s)ds ≤ r .

(ii) There exists R > r > 0 such that for every u ∈ [R, 1
m1p0

R]

f (u) mı́n
x∈[β,γ]

∫ γ

β
G(x , s)b(s)ds ≥ R,

where p0 = mı́nx∈[β,γ] p(x).

Then, there exists a positive solution u ∈ H1(R) of (1) such that
r ≤ ‖u‖ ≤ 1

m1p0
R.



Proof.

• Step 1: Definition of the cone.

P =

{
u ∈ BC(R) : u(x) ≥ 0, mı́n

y∈[β,γ]
u(y) ≥ m1p(x)u(x) for all x

}
• Step 2: T (P) ⊂ P.
Proof. For all τ ∈ R,

mı́n
x∈[β,γ]

Tu(x) = mı́n
x∈[β,γ]

∫ +∞

−∞
G(x , s)b(s)f (u(s))ds

≥ m1

∫ +∞

−∞
p(s)G(s, s)b(s)f (u(s))ds

≥ m1

∫ +∞

−∞
p(τ)G(τ, s)b(s)f (u(s))ds

= m1p(τ)Tu(τ),

where (P3) and (P4) are used.



Proof.

• Step 3: T is completely continuous.
Proof. Given a bounded Ω ⊂ P, let us prove that T (Ω) is rela-
tively compact. There is M > 0 such that ‖u‖ ≤ M for all u ∈ Ω.

|Tu(x)| =
∣∣∣∣∫

R
G(x , s)b(s)f (u(s))ds

∣∣∣∣ ≤ M∗
∫

R
G(x , s)b(s)ds =: q(x)

where M∗ = máxs∈[0,M] f (s). Since b ∈ L1, then q ∈ H1. The
compactness criterion concludes the proof.



Proof.

• Step 4: Krasnoselskii conditions.

(H1) Let be Ω1 = {u ∈ P : ‖u‖ ≤ r}.
Given u ∈ ∂PΩ1,

Tu(x) ≤ Mr sup
x∈R

∫ +∞

−∞
G(x , s)b(s)ds ≤ r ,

where Mr = máxs∈[0,r ] f (s). Therefore, Tu 6= λu para λ > 1,
u ∈ ∂PΩ1.



Proof.

• Step 4: Krasnoselskii conditions.
(H2) Let be Ω2 = {u ∈ P : mı́ny∈[β,γ] u(y) < R}

Ω1 ⊂ Ω2

If u ∈ ∂PΩ2,

R = mı́n
y∈[β,γ]

u(y) ≥ m1p(x)‖u‖ ≥ m1p0‖u‖,

therefore

R ≤ u(x) ≤ R
m1p0

∀ x ∈ [β, γ].

Take e ∈ P such that e(x) = 1, x ∈ [β, γ]. If there exists λ ∈ (0, 1) such
that u = Tu + λe, given x ∈ [β, γ],

u(x) =

∫ +∞

−∞
G(x , s)b(s)f (u(s))ds + λe(x)

≥ mR mı́n
x∈[β,γ]

∫ γ

β

G(x , s)b(s)ds + λ ≥ R + λ > R

where mR = mı́ns∈[R, R
m1p0

] f (s). This contradicts R = mı́ny∈[β,γ] u(y).



Odd homoclinics under symmetry conditions.

−ü + a(x)u = b(x)f (u)

Theorem 2
Under the assumptions of Theorem 1, if:

a(x) = a(−x), b(x) = b(−x) ∀x ,

f (−s) = −f (s) ∀s,

there exists an odd solution u ∈ H1(R), positive in R+ such that
r ≤ ‖u‖ ≤ 1

m1p0
R.



Consequences for models in Nonlinear Optics.

−ü(x) + k2u(x) =
ω2

c2 ε(x , 1
2 u(x)2)u(x)

Nonlinear contribution of the dielectric function is isolated with
the decomposition

εL(x) = ε(x , 0), εNL(x , s) = ε(x , s)− εL(x).

For simplicity, it is assumed εNL(x , s) = B(x)F (s).



Consequences for models in Nonlinear Optics.

− ü(x) + (k2 − ω2

c2 εL(x))u(x) =
ω2

c2 B(x)F ( 1
2 u(x)2)u(x) (2)

Definition
A dielectric function ε(x , s) = εL(x) + B(x)F (s) is called of Kerr
type if F is increasing, B∗ ≥ 0, Supp(B) 6= ∅ and

F (0) = 0, lı́m
s→+∞

F (s) = +∞.



Consequences for models in Nonlinear Optics.

Corollary

Let us assume a dielectric function of Kerr type with
B ∈ L1 ∩ L∞. If k2 > ω2

c2 ‖εL‖, then there exists a positive
solution u ∈ H1(R) of (2). Moreover, if εL(x), B(x) are even
functions, there exists an odd solution ũ ∈ H1(R) of (2).



Consequences for models in Nonlinear Optics.

Proof.

a(x) = k2 − ω2

c2
εL(x), b(x) =

ω2

c2
B(x), f (s) = F ( 1

2 s2)s

[(i)] There exists r > 0 such that

f (u) sup
x∈R

∫ ∞

−∞
G(x , s)b(s)ds ≤ r ∀u ∈ [0, r ]

This amounts to:

F ( 1
2 r 2) sup

x∈R

∫ ∞

−∞
G(x , s)b(s)ds ≤ 1

[(ii)] There exists R > r > 0 such that

f (u) mı́n
x∈[β,γ]

∫ γ

β

G(x , s)b(s)ds ≥ R ∀u ∈ [R,
1

m1p0
R]

This amounts to:

F ( 1
2 R2) mı́n

x∈[β,γ]

∫ γ

β

G(x , s)b(s)ds ≥ 1



Consequences for models in Nonlinear Optics.

An example (Akhmediev):

ε(x , s) =

{
q2 + s si |x | ≥ d ,

q2 + p2 si |x | < d ,

Figura: Propagación de onda
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Consequences for models in Nonlinear Optics.

ε(x , s) =

{
q2 + b(x)s if |x | ≥ d ,

q2 + p2 if |x | < d ,

with b ∈ L∞(R) ∩ L1(R) positive.

The “limit case” ε(x , s) = b(x)s is interesting in the context of
Bose-Einstein condensates.
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{
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Optical media with saturation

Definition
Una dielectric function ε(x , s) = εL(x) + B(x)F (s) is called
saturable if F is increasing, B∗ ≥ 0, Supp(B) 6= ∅ and

F (0) = 0, lı́m
s→+∞

F (s) = F∞ < +∞.

ε(x , s) = εL(x) + B(x)
s

1 + s
,

ε(x , s) = εL(x) + B(x)(1− e−s).

[C.A. Stuart, Guidance properties of nonlinear planar waveguides, Arch. Ra-
tional Mech. Anal., 125 (1993), 145–200.]



Optical media with saturation

Corollary

Let us assume a saturable dielectric function with B ∈ L1 ∩ L∞.
If:

k2 > ω2

c2 ‖εL‖,
∃[β, γ] such that x0 ∈ (β, γ), [β, γ] ∩ Supp(B) 6= ∅ and

ω2F∞ mı́n
x∈[β,γ]

∫ γ

β
G(x , s)B(s)ds > c2,

then there exists a positive solution u ∈ H1(R) of (2). Moreover,
if εL(x), B(x) are even functions, there exists an odd solution
ũ ∈ H1(R) of (2).



Optical media with saturation

As a consequence, it is proved the existence of guided waves

E(x , y , z, t) = u(x)e2 cos(kz − ωt)

in saturable media for high values of ω, k .



Consequences for models in Nonlinear Optics.

Branches of solutions in systems controlled by parameters:

ε(x , s) = εL(x) + λB(x)F (s),

Corollary

Let us assume a dielectric function of Kerr type. If k2 > ω2

c2 ‖εL‖,
then for all λ > 0 there exists a positive solution uλ ∈ H1(R) of
(2). Besides,

lı́m
λ→0+

‖uλ‖ = +∞, lı́m
λ→+∞

‖uλ‖ = 0.

If εL(x), B(x) are even, then there exists a second branch of
odd solutions ũλ ∈ H1(R) with the same behaviour.



Consequences for models in Nonlinear Optics.

Proof. We need rλ, Rλ such that

F (1
2 r2

λ) ≤
(

1
c2 λω2 supx∈R

∫∞
−∞ G(x , s)B(s)ds

)−1
≤

≤
(

1
c2 λω2m1p0 mı́nx∈[β,γ]

∫ γ
β G(x , s)B(s)ds

)−1
≤ F (1

2R2
λ).

By using that the nonlinearity is of Kerr type, rλ < Rλ can be
chosen such that

lı́m
λ→0+

rλ = +∞, lı́m
λ→+∞

Rλ = 0.

We obtain a branch uλ such that rλ ≤ ‖uλ‖ ≤ Rλ
m1p0

.



Consequences for models in Nonlinear Optics.

Corollary

Let us assume a dielectric function is saturable. If k2 > ω2

c2 ‖εL‖,
then there exists λ0 > 0 such that for all λ > λ0 there exists a
positive solution uλ ∈ H1(R) of (2). Besides,

lı́m
λ→+∞

‖uλ‖ = 0.

If εL(x), B(x) are even, then there exists a second branch of
odd solutions ũλ ∈ H1(R) with the same behaviour.



Open directions of research.

Extension to systems:{
−ü + a1(t)u = b1(t)(u + v)u2

−v̈ + a2(t)v = b2(t)(u + v)v2

“Manakov systems”

higher dimensions:

−∆u + a(t)u = b(t)u3

Dark solitons (heteroclinics).
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