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The model

iut + uxx + V (x)u + u(x)

∫ ∞
−∞

K (x , s)|u(s)|2ds = 0 (1)

where the kernel K (x , s) is assumed to be of the form

K (x , s) = γ(x)W (x − s),

being W a function (or distribution) with non-negative values
such that

‖W‖1 =

∫ ∞
−∞

W (s)ds < +∞. (2)

The linear term V (x)u is relevant in Bose-Einstein condensates
as a model of a possible external magnetic trap.



The model

iut + uxx + V (x)u + u(x)

∫ ∞
−∞

K (x , s)|u(s)|2ds = 0 (1)

Possible choices for K (x , s):

Local interactions: γ(x)δ(x − s)

Step-like function: γ(x)θ(a− |x − s|)
Gaussian function: γ(x) exp

(
−(x − s)2),

super-Gaussian :γ(x) exp
(
−(x − s)4)



The model

iut + uxx + V (x)u + u(x)

∫ ∞
−∞

K (x , s)|u(s)|2ds = 0 (1)

Possible choices for K (x , s):

Local interactions:
K (x , s) = γ(x)δ(x − s) =⇒ γ(x)|u(x)|2u(x)

Step-like function:
K (x , s) = γ(x)θ(a−|x−s|) =⇒ u(x)

∫ x+a
x−a K (x , s)|u(s)|2ds

Gaussian function: K (x , s) = γ(x) exp
(
−(x − s)2)

super-Gaussian :K (x , s) = γ(x) exp
(
−(x − s)4)



Separation of variables

By setting u(x , t) = eiδtu(x), the above partial differential
equation can be directly reduced to the second order
integro-differential equation

− u′′(x) + a(x)u(x) = γ(x)u(x)

∫ +∞

−∞
W (x − s)|u(s)|2ds (3)

where a(x) = δ + V (x). We look for an analytical proof of the
existence of two types of solutions:
(i) Periodic waves:

u(x) = u(x + T ), for all x

(ii) Solitary waves:

u(−∞) = 0 = u(+∞).



Main results

Theorem 1
Assume that V (x), γ(x) are T -periodic functions. If γ takes
non-negative values, δ > ‖V‖∞ and W verifies condition (2),
then eq. (3) has at least one positive T -periodic solution
u ∈W 2,∞(0,T ).

Theorem 2
If γ(x) is a non-negative function with non-empty compact
support, δ > ‖V‖∞ and W verifies condition (2), then eq. (3)
has at least one non-negative solution (not identically zero)
such that u(−∞) = 0 = u(+∞). Besides, it has finite energy in
the sense that u ∈ H1(R).



How to attack the problem

Fixed point problem

Krasnoselskii fixed point theorem for compact operators in
cones of a Banach space

Compactness criterion



Krasnoselskii fixed point Theorem

Let B be a Banach space.

Definition
A set P ⊂ B is a cone if it is closed, nonempty, P 6= {0} and
given x , y ∈ P, λ, µ ∈ R+ then λx + µy ∈ P.

A map H : K → K is completely continuous (or compact) if it is
continuous and the image of a bounded set is relatively
compact. Thereafter, we state a version of the well known
Krasnoselskii fixed point Theorem for compact maps.



Krasnoselskii fixed point Theorem

Theorem

Let X be a Banach space, and K ⊂ X be a cone in X . Assume
Ω1,Ω2 are open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2 and let
H : K

⋂
(Ω̄2\Ω1)→ K be a completely continuous operator

such that one of the following conditions holds:
1. ‖Hu‖ ≤ ‖u‖, if u ∈ K

⋂
∂Ω1, and ‖Hu‖ ≥ ‖u‖, if

u ∈ K
⋂
∂Ω2.

2. ‖Hu‖ ≥ ‖u‖, if u ∈ K
⋂
∂Ω1, and ‖Hu‖ ≤ ‖u‖, if

u ∈ K
⋂
∂Ω2.

Then, H has at least one fixed point in K
⋂

(Ω2\Ω1).



Krasnoselskii fixed point Theorem

Figura: Compression-expansion of conical sections in the plane



Periodic waves: Formulation of the fixed point
problem

Denote by XT the Banach space of bounded and T -periodic
solutions endowed with the uniform norm ‖u‖∞.
Consider the equation

− u′′(x) + a(x)u(x) = w(x) (4)

with periodic boundary conditions. Given w ∈ XT , eq. (4)
admits a unique T -periodic solution by Fredholm’s alternative,
and it can be expressed as

u(x) =

∫ T

0
G(x , y)w(y)dy (5)

where G(x , y) is the associated Green’s function.
Recall that a(x) = δ + V (x). When V (x) ≡ 0, the Green’s
function has an explicit expression. In the more general case
under consideration, such explicit expression is not available
anymore, but the condition δ > ‖V‖∞ implies that G(x , y) > 0
for all (x , y) ∈ [0,T ]× [0,T ]).



Periodic waves: Formulation of the fixed point
problem

Now, we can define the operator H : XT →W 2,∞(0,T ) ⊂ XT by

Hu(x) =

∫ T

0
G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy .

(6)
A fixed point of H is a periodic solution of eq. (3). The
compactness of H is a direct consequence of Ascoli-Arzela
Theorem.



Periodic waves:Application of KFPT

Let us define

m = mı́n
x ,y

G(x , y), M = máx
x ,y

G(x , y).

Our cone will be

K = {u ∈ XT : mı́n
x

u ≥ m
M
‖u‖∞}.

Lemma

H(K ) ⊂ K .



Periodic waves:Application of KFPT

Proof: Take u ∈ XT and fix u(x0) = mı́nx∈[0,T ] Hu(x), then,

Hu(x0) =

∫ T

0
G(x0, y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy

≥ m
∫ T

0

máxx G(x , y)

M

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy

=
m
M

∫ T

0
máx

x
G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy

= m
M ‖Hu‖∞ ,

therefore the cone is invariant by H.



Periodic waves:Application of KFPT

Proof of Theorem 1. Define Ω1 = {u ∈ XT : ‖u‖∞ ≤ r}.
Given u ∈ K

⋂
∂Ω1, it is evident that ‖u‖∞ = r . Then,

Hu(x) =

∫ T

0
G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy ≤

≤ M ‖γ‖∞ r3
∫ T

0

∫ +∞

−∞
W (y − s)dsdy =

= M ‖γ‖∞ T ‖W‖1 r3 < r ,

if r is small enough. Therefore ‖Hu‖∞ < ‖u‖∞ for any
u ∈ K

⋂
∂Ω1.



Periodic waves:Application of KFPT

On the other hand, define Ω2 = {u ∈ XT : ‖u‖∞ ≤ R}. Assume
that u ∈ K

⋂
∂Ω2, then by the own definition of the cone

mı́nx u ≥ m
M R. Hence,

Hu(x) =

∫ T

0
G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy ≥

≥
(m

M
R
)3
‖W‖1

∫ T

0
G(x , y)γ(y)dy ≥

≥
(m

M R
)3 ‖W‖1 m

∫ T
0 γ(y)dy .

Note that γ is not identically zero, so
∫ T

0 γ(y)dy > 0 and the
latter inequality holds for any x . In consequence, taking R big
enough we get

‖Hu‖∞ > R = ‖u‖∞ .

Therefore, the assumptions of KFPT are fulfilled, in
consequence H has a fixed point in K

⋂
(Ω̄2\Ω1), which is

equivalent to a positive T -periodic solution of eq. (3).



Solitary waves. Green’s function

Let us denote by BC(R) the Banach space of the bounded and
continuous functions in R with the uniform norm. The following
result is well-known.

Lemma

Assume that there exists a∗ such thath a(x) ≥ a∗ > 0 for a.e. x.
If w ∈ L∞(R), then the linear equation

−u′′(x) + a(x)u(x) = w(x)

admits a unique bounded solution u ∈W 2,∞(R) and it can be
expressed as

u(x) =

∫ +∞

−∞
G(x , y)w(y)dy .

Besides, if w ∈ L1(R), then u ∈ H1(R).



Solitary waves. Green’s function

When V (x) ≡ 0 then a(x) ≡ δ and the Green’s function has the
simple expression

G(x , y) =
1

2
√
δ

e−
√
δ|x−y |.

However, as remarked in the periodic case, the Green’s
function for the general case of a variable a(x) does not have
such an explicit formula and requires a more careful study of its
properties.



Definition and properties of G(x , s).

G(x , s) =

{
u1(x)u2(s), α < x ≤ s < +∞
u1(s)u2(x), α < s ≤ x < +∞

where u1,u2 are solutions of the homogeneous problem such
that u1(−∞) = 0,u2(+∞) = 0. Moreover, u1,u2 are positive
fucntions, u1 increasing and u2 decreasing.



Definition and properties of G(x , s).

u1, u2 intersect in a unique point x0. Let us define

p(x) =


1

u2(x)
, x ≤ x0,

1
u1(x)

, x > x0.

Properties

(P1) G(x , s) > 0 for all (x , s) ∈ R2.

(P2) G(x , s) ≤ G(s, s) for all (x , s) ∈ R2.

(P3) Given a compact P ⊂ R, we define

m1(P) = mı́n{u1(ı́nf P), u2(sup P)}.

Then,
G(x , s) ≥ m1(P)p(s)G(s, s) for all (x , s) ∈ P × R.

(P4) G(s, s)p(s) ≥ G(x , s)p(x) for all (x , s) ∈ R2.



Solitary waves.

To find a solitary wave of eq. (3) is equivalent to find a fixed
point of the operator H : BC(R)→WH1(R) ⊂ BC(R) defined
by

Hu(x) =

∫ +∞

−∞
G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy .

(7)



Compactness

The compactness of H is a consequence of the following
lemma.

Lemma

Let Ω ⊂ BC(R). Let us assume that the functions u ∈ Ω are
equicontinuous in each compact interval of R and that for all
u ∈ Ω we have

|u(x)| ≤ ξ(x), ∀x ∈ R (8)

where ξ ∈ BC(R) satisfies

lı́m
|x |→+∞

ξ(x) = 0. (9)

Then, Ω is relatively compact.



Main result.

Theorem 2
If γ(x) is a non-negative function with non-empty compact
support, δ > ‖V‖∞ and W verifies condition (2), then eq. (3)
has at least one non-negative solution (not identically zero)
such that u(−∞) = 0 = u(+∞). Besides, it has finite energy in
the sense that u ∈ H1(R).



Proof.

• Step 1: Definition of the cone.

K = {u ∈ BC(R) : u(x) ≥ 0 for all x , mı́n
D

u(x) ≥ m1p0 ‖u‖∞}.

Recall that D is the (compact) support of γ.
• Step 2: H(K ) ⊂ K .



Proof.

• Step 3: Krasnoselskii conditions.
(H1) Let be Ω1 = {u ∈ BC(R) : ‖u‖∞ ≤ r}. Given u ∈ K

⋂
∂Ω1,

‖Hu‖∞ = máx
x

∫
D

G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy ≤

≤ r3 máx
x

∫
D

G(x , s)γ(s)

∫ +∞

−∞
W (y − s)dsdy =

= ‖W‖1 r3 máxx
∫

D G(x , y)γ(y)dy .

Note that by definition,
∫

D G(x , y)γ(y)dy is the unique
solution belonging to BC0(R) of the linear problem
−u′′ + a(x)u = γ(x). Of course, such a solution is bounded
and the maximum in the previous inequality makes sense.
In conclusion, if r is small enough,

‖Hu‖∞ ≤ ‖W‖1 r3 máx
x

∫
D

G(x , y)γ(y)dy < r = ‖u‖∞

for every u ∈ K
⋂
∂Ω1.



Proof.

• Step 4: Krasnoselskii conditions.
(H2) Define Ω2 = {u ∈ BC(R) : ‖u‖∞ ≤ R}. Assume that u ∈ K

⋂
∂Ω2,

then by definition of the cone mı́nx∈D u ≥ m1p0R. Hence,

‖Hu‖∞ = máxx

∫
D

G(x , y)

[
γ(y)u(y)

∫ +∞

−∞
W (y − s)u(s)2ds

]
dy ≥

≥ (m1p0R)3
∫

D
G(x , y)

[
γ(y)

∫ +∞

−∞
W (y − s)ds

]
dy

≥ (m1p0R)3 ‖W‖1 máxx
∫

D G(x , y)γ(y)dy .

Note that γ is not identically zero, so máxx
∫

D G(x , y)γ(y)dy > 0. In
consequence, taking R big enough we get

‖Hu‖∞ > R = ‖u‖∞ .


