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We study the existence of modulated amplitude waves with non-trivial phase of a quasi-1D multi-
component Bose-Einstein condensate (BEC) in the presence of a external periodic potential. Mathe-
matically, such coherent structures are doubly periodic solutions, in space and time, of a coupled system
of Gross-Pitaevskii equations. For a binary BEC, the weak interaction regime is tackled by means of
the averaging method and regular perturbation theory. The case of strong particle interaction is covered
by a simple rescalling argument. One of the components is stationary, while the second component has
non-trivial phase, meaning that there is circulation of matter only of the second component. The case of
three components is briefly discussed as well.
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1. Introduction

A Bose-Einstein condensate (BEC) arises when a dilute boson gas is cooled down to temperatures near
the absolute zero. The theoretical prediction of this genuine quantum effect was done by Bose and Ein-
stein in 1924, although the first experimental realizations had to wait until 1995 independently by two
different teams, see Anderson et al. (1995); Davis et al. (1995). From then on, the scientific com-
munity has demonstrated a sustained interest on this field, in particular in the study of coherent states.
The physical relevance of nonlinear waves in Bose-Einstein condensates and the related mathematical
techniques have been reviewed comprehensively by Pitaevskii & Stringari (2003); Carretero-González
et al. (2008).

Nowadays, it is possible to perform Bose-Einstein condensation of mixtures of different atomic
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species, which has recently been the subject of an intensive experimental and theoretical research.
Experimental results have been reported for mixtures of different spin states of 87Rb (Myatt et al.
(1997); Hall et al. (1998)) and different atomic species, such as 41K-87Rb (Modugno et al. (2001)),
7Li-133Cs (Mudrich et al. (2002)). Motivated by the experimental observations, this phenomenon has
been extensively studied also from the theoretical point of view. Without any intention of being exhaus-
tive, we can cite Chui et al. (2000); Deconinck et al. (2003); Esry et al. (1997); Liu (2011); Ho &
Shenoy (1996); Porter et al. (2004); Pu & Bigelow, (1998a,b); Riboli & Modugno (2002); Terracini
& Verzini, (2009); Zhang et al. (2007) and many others.

The governing equations for the interaction of N > 2 condensates are given by a coupled system of
nonlinear Schrödinger equations

ih̄
∂ψ j

∂ t
=− h̄2

2m j
∇2ψ j +Vj(x)ψ j +

N

∑
l=1

u jl |ψl |2ψ j, j = 1,2, · · · ,N, (1.1)

see for instance Tsurumi et al. (2000); Deconinck et al. (2003). Here, the coupling constants u jl are
expressed in terms of the scattering length a jl between the atomic species j and l by

u jl =
2π h̄2a jl(m j +ml)

m jml
,

and m j is the atom mass of the j-th atom species. The sign of the scattering length a jl determines the
nature of the interaction between the different atomic species: a positive value gives rise to a repulsive
interatomic interaction, whereas a negative value causes an attractive interaction. Vj(x) is the external
potential experienced by the j-th condensate. Because of the different properties of constituting atoms of
the different condensates, it is possible for different condensates in the same physical trap to experience
different external potentials.

Mainly motivated by Deconinck et al. (2003); Porter et al. (2004), we consider a quasi-one dimen-
sional cylindrical (“cigar-shaped”) BEC mounted on an optical lattice (OL). Mathematically, this means
that only one spatial variable is considered and the potentials Vj(x) are periodic functions. Concretely,
we take

Vj(x) = Vj0 cos(2
√

kx).

Spatially periodic potentials have been employed in experimental (see Anderson & Kasevich (1998);
Hagley et al. (1999)) and theoretical studies of BECs (see for example Alfimov et al. (2002); Bronski
et al. (2001a,b,c)). Then, our main aim is to identify doubly-periodic solutions of system (1.1), also
called modulated amplitude waves.

We consider uniformly propagating coherent structures with the form

ψ j(x, t) = R j(x)exp[i(θ j(x)−µ jt)], j = 1,2, · · · ,N, (1.2)

where R j(x) is the amplitude of the wave function ψ j(x, t), θ j(x) gives the phase dynamics, and µ j is the
BEC’s chemical potential. When such a (temporally periodic) coherent structure (1.2) is also spatially
periodic, it is called a modulated amplitude wave (MAW). Notice that (1.1) has a phase shift-invariance.
This means that if Ψ(x, t) is a solution of (1.1), then

Ψ(x, t) =
(
ψ1(x, t)exp(iφ1), · · · ,ψN(x, t)exp(iφN)

)
, ∀φ1, · · · ,φN ∈ R

also satisfies equation (1.1). Thus, if the phase variables θ j(x) of a MAW are constant, we call it a
modulated amplitude wave with trivial phase. In particular, if in addition R j(x) are also constant, it
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is called a standing wave. The dynamical behavior of MAWs with trivial phase for single BECs in
lattice and superlattice potentials has been studied extensively by using different approaches, see Porter
& Cvitanović (2004b); Porter & Kevrekidis (2005); Porter et al. (2007); Van Noort et al. (2007). In
contrast, up to our knowledge the only two references for the existence of MAWs with trivial phase in
two-component BECs are Deconinck et al. (2003); Porter et al. (2004).

Physically speaking, a modulated amplitude wave with non-trivial phase implies nonzero circulation
of matter along the space, given by the scalar c j = R j(x)2φ ′j(x). MAWs with non-trivial phase have been
explicitly constructed in a single BEC by a particular choice of the trapping potential as the sine Jacobi
elliptic function, see Bronski et al. (2001b). Moreover, an analytical study of the existence of MAWs
with non-trivial phase in BECs of single particle has been established by the method of averaging, see
Liu & Qian (2012a,b); Jia et al. (2014). On the other hand, using the theory of local continuation
of solutions, the existence of MAWs with non-trivial phases in quasi-1 D inhomogeneous BECs was
proved by Torres (2014).

In this paper, we are concerned with the existence of MAWs with non-trivial phase in the multi-
component BEC described by (1.1), which includes nonlinear couplings and OL potentials. Up to
our knowledge, this problem has not been treated with anteriority in the related literature. Form pure
mathematical point of view, considering MAWs with non-trivial phase leads to a system that includes a
strong singularity, which is a serious obstacle for finding exact solutions and also represents an additional
difficulty for the qualitative study.

In order to illustrate our approach, we first consider the model of a two-component Bose-Einstein
condensate in Section 2. To investigate MAWs, the evolution equations of amplitudes and phases are
derived in Section 2.1. Then, in Section 2.2, we prove the existence of periodic solutions by using some
results from averaging theory (see Theorem A.1 in the Appendix) for amplitude equations, a system of
multiple coupled second order differential equations with singularities (for example, see (2.8) below),
which is regarded as a perturbation of a quasi-periodic system with irrationally related frequencies by
introducing a small parameter. After an analysis of the asymptotic profile of the wave functions given
in Section 2.3 by means of the regular perturbation theory, we establish the existence of infinitely many
MAWs with non-trivial phase in Section 2.4. The main particularity of the obtained solutions is that
one of the components is stationary, while the second component has a non-trivial phase, meaning that
there is circulation of matter only of the second component. Up to our knowledge, the observation of
this type of solutions is new in the literature.

The method used in Section 2 can be applied to a multi-component (N > 2) BEC as well. We
investigate the dynamics of MAWs for a three-component BEC in Section 3, but the method can be
extended to a BEC system with arbitrary components. Finally, Section 4 contains a simple observation
that permit the consideration of strong particle interactions by a simple rescalling. Finally, Section 5
summarizes the main conclusions and highlight some remarks.

2. Modulated amplitude waves in binary Bose-Einstein condensates

Based on a mean-field limit, the state of the BEC can be described by the condensate wave function, that
in the case of a binary BEC is a function with two components. When the temperature is much lower
than the critical temperature, the dynamics of the wave function of a quasi-1D binary BEC irradiated by
an external electromagnetic field is well described by a system of two nonlinear Schrödinger equations,
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known as coupled Gross-Pitaevskii equations,




ih̄
∂ψ1

∂ t
=− h̄2

2m1

∂ 2ψ1

∂x2 +V1(x)ψ1 +u11|ψ1|2ψ1 +u12|ψ2|2ψ1,

ih̄
∂ψ2

∂ t
=− h̄2

2m2

∂ 2ψ2

∂x2 +V2(x)ψ2 +u21|ψ1|2ψ2 +u22|ψ2|2ψ2,

(2.1)

where Vj is the magnetic trapping potential of the j-bosons for state j ( j = 1,2), and the coupling
constants ui j are given in terms of the scattering length ai j for binary collisions of distinguishable bosons
given by Esry et al. (1997)

u11 =
4π h̄2a11

m1
, u22 =

4π h̄2a22

m2

u12 = 2π h̄2a12
m1 +m2

m1m2
= u21.

Here, m j denotes the mass of a gas particle of the j-th component, and |ψ|2j is interpreted as the particle
density of the j-th component ( j = 1,2). If a j j < 0(> 0), the self-interaction is repulsive (attractive);
analogously, if ai j < 0(> 0), i 6= j, the interspecies interaction is repulsive (attractive). For example, for
two different spin states of 87Rb, the scattering lengths are known at the 1% level to be in the proportion
a11 : a12 : a22 = 1.03 : 1 : 0.97 Hall et al. (1998). In the ideal gas regime, ai j ≈ 0 ( j = 1,2) and also
the weak magnetic trapping potential is considered (for example, see Porter et al. (2004); Porter &
Kevrekidis (2005); Porter et al. (2007)). Therefore, it is reasonable to introduce a small parameter
ui j ≡ ε ũi j,Vj ≡ εṼj, i, j = 1,2. For notational convenience, we drop the tildes from ũi j and Ṽj, so that
we obtain the system





ih̄
∂ψ1

∂ t
=− h̄2

2m1

∂ 2ψ1

∂x2 + εV1(x)ψ1 + εu11|ψ1|2ψ1 + εu12|ψ2|2ψ1,

ih̄
∂ψ2

∂ t
=− h̄2

2m2

∂ 2ψ2

∂x2 + εV2(x)ψ2 + εu21|ψ1|2ψ2 + εu22|ψ2|2ψ2.

(2.2)

2.1 Evolution equations of amplitudes and phases

Substituting the ansatz (1.2) into the GP equations (2.2)and equating real and imaginary parts of the
resulting equations, we obtain

R
′′
1−R1(θ

′
1)

2 + k1R1 + εg11R3
1 + εV̄1(x)R1 + εg12R2

2R1 = 0, (2.3)

R
′′
2−R2(θ

′
2)

2 + k2R2 + εg22R3
2 + εV̄2(x)R2 + εg21R2

1R2 = 0, (2.4)

2R
′
1θ

′
1 +R1θ

′′
1 = 0, 2R

′
2θ

′
2 +R2θ

′′
2 = 0, (2.5)

where the prime stands for d/dx, and

ki =
2miµi

h̄
, gi j =−2miui j

h̄2 , V̄i(x) =−2miVi(x)

h̄2 , i, j = 1,2.

Along this paper, we assume ki > 0, corresponding to a positive chemical potential.
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(b) Quasi-periodic case.

FIG. 1. In the projection plane R1OR2 of 4 dimensional phase space, we plot the projection curves of solutions for the unperturbed
system of (2.8) with c1 6= 0 and c2 6= 0. (a) The projection curve of one periodic solution in case of

√
k1/
√

k2 ∈ Q. (b) The
projection curve of one quasi-periodic solution, in case of

√
k1/
√

k2 ∈ R/Q, is dense on the two-dimensional torus.

In view of (2.5) and noticing that

(R2
i θ

′
i )
′
= (2R

′
iθ

′
i +Riθ

′′
i )Ri = 0,

we find that

θ
′
i (x) =

ci

R2
i (x)

, i = 1,2 (2.6)

with arbitrary constants c1 and c2. Thus, phases are written in terms of amplitudes as

θ1(x) = c1

∫ dx′

R2
1(x′)

, θ2(x) = c2

∫ dx′

R2
2(x′)

. (2.7)

Substituting (2.6) into equations (2.3) and (2.4), we obtain the amplitude equations




R
′′
1 + k1R1−

c2
1

R3
1
+ εg11R3

1 + εV̄1(x)R1 + εg12R2
2R1 = 0,

R
′′
2 + k2R2−

c2
2

R3
2
+ εg22R3

2 + εV̄2(x)R2 + εg21R2
1R2 = 0.

(2.8)

Without loss of generality, along this paper we assume that c1,c2 are selected as arbitrarily nonnegative
constants.

In the case
√

k1/
√

k2 = p/q∈Q with coprime positive integers q, p, the unperturbed system (ε = 0)
of (2.8) is an isochronous system with minimal period T = 2pπ/

√
k1 = 2qπ/

√
k2 for c1 = 0 or c2 = 0,

and with period T = pπ/
√

k1 = qπ/
√

k2 for c1 6= 0 and c2 6= 0, see Fig. 1(a). The continuation of peri-
odic solutions of an unperturbed isochronous system has been studied before in different mathematical
contexts, see for instance Liu et al. (2015). In case of the rational ratio, the persistence of periodic
solutions (MAWs with the trivial phase) has been studied by Porter et al. (2004) by taking c1 = 0 and
c2 = 0. The existence of periodic solutions is due to the high order resonance. We also refer to Porter
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& Kevrekidis (2005); Porter & Cvitanović (2004a) for a method based on multiple scale perturbation
theory, and Liu & Qian (2012a); Jia et al. (2014) for the method of averaging.

When
√

k1/
√

k2 ∈ R/Q is an irrational number, every solution of the unperturbed system (ε = 0)
of (2.8) is quasi-periodic with two irrational related frequencies, see Fig. 1(b). Comparing with the
periodic case, the classical theory of averaging for the existence of periodic solutions loses efficacy
since we usually obtain a system of standard form with quasi-periodic coefficients. To overcome this
difficulty, we perform a local averaging procedure due to Buica et al. (2007).

Along this paper we always assume
√

k1/
√

k2 is an irrational number. Roughly speaking, the
assumption with respect to the ratio shall be used to eliminate the linear resonances and to ensure
invertibility of the linear operator. To the best of our knowledge, the qualitative description of periodic
MAWs with non-trivial phase for multi-component BECs form this point of view is completely new.

2.2 Periodic solutions of amplitude equations

In this subsection, we give a pure mathematical result upon the existence of periodic solutions. To seek
periodic solutions with non-trivial phase, in view of (2.7), we take constants of integration c1 = 0 and
c2 6= 0, which means that the phase for the first component is trivial while the second component has
a nontrivial phase. The case that c1 6= 0 and c2 = 0 is analogous, and the case of both c1 = c2 = 0 has
been studied by Porter et al. (2004).

Let usewrite equation (2.8) in the equivalent form




R
′
1 = S1,

S
′
1 =−k1R1 + εF1(x,R1,R2),

R
′
2 = S2,

S
′
2 =−k2R2 +

c2
2

R3
2
+ εF2(x,R1,R2),

(2.9)

where

F1(x,R1,R2) =−(g11R3
1 +V̄1(x)R1 +g12R2

2R1),

F2(x,R1,R2) =−(g22R3
2 +V̄2(x)R2 +g21R2

1R2).

The next theorem is an existence result of periodic solutions for system (2.9).

THEOREM 2.1 Assume that V̄1(x) = V̄10 cos(2
√

k1x) and V̄2(x) is an arbitrary C2 periodic function with
the period T = 2π/

√
k1. Fix c2 > 0 and gi j ∈ R, i, j = 1,2, and take k2 > 0 such that

√
k1/
√

k2 is an
irrational number. Then, for ε 6= 0 sufficiently small, the following statements hold

(a) if g11(2g12β 2
2 +V̄10) < 0 and V̄10 6= 0, where β2 = 4

√
c2

2/k2, system (2.9) has a branch of T -periodic
solutions (R1(x,ε),S1(x,ε),R2(x,ε),S2(x,ε)) such that

(R1(0,ε),S1(0,ε),R2(0,ε),S2(0,ε))→
(√

−2
3g11

(
2g12β 2

2 +V̄10
)
,0,β2,0

)

as ε → 0.
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(b) if g11(V̄10−2g12β 2
2 ) > 0 and V̄10 6= 0, where β2 = 4

√
c2

2/k2, system (2.9) has a branch of T -periodic
solutions (R1(x,ε),S1(x,ε),R2(x,ε),S2(x,ε)) such that

(R1(0,ε),S1(0,ε),R2(0,ε),S2(0,ε))→
(

0,

√
2

3g11

(
k1V̄10−2g12k1β 2

2

)
,β2,0

)

as ε → 0.

Proof. The proof follows from Theorem A.1 in the Appendix, which is based on the Lyapunov-
Schmidt reduction and the implicit function theorem. To apply Theorem A.1, we reset some notations.
If we define

R =




R1
S1
R2
S2


 ,G0(x,R) =




S1
−k1R1

S2

−k2R2 +
c2

2

R3
2




,G1(x,R) =




0
F1(x,R1,R2)

0
F2(x,R1,R2)


 ,

then (2.9) becomes
R′(x) = G0(x,R)+ εG1(x,R). (2.10)

Let r1 > 0 be arbitrarily small and r2 > 0 be arbitrarily large and define the open and bounded subset
V on the projection plane R1OS1 given by

V =
{

α ∈ R2 : α = (R10,S10) and r1 <
√

R2
10 +S2

10 < r2

}
.

Let β2 = 4
√

c2
2/k2, and the function β : V → R2 (see Theorem A.1 in the Appendix) is taken by β (α)≡

(β2,0). Consequently, we define the set Z by

Z =
{

zα = (α,β (α)) : α ∈V
}

=
{

(R10,S10,β2,0) ∈ R4 : r1 6
√

R2
10 +S2

10 6 r2

}
.

Obviously, for each zα ∈Z and ε = 0, the solution Rα(x;zα) of (2.10) with the initial value Rα(0;zα) =
zα is T -periodic with respect to x with the least period T = 2π/

√
k1. In fact, every solution of (2.10) with

ε = 0 starting from Z can be written by coordinates as Rα(x;zα) = (Rα1(x;zα),Sα1(x;zα),Rα2(x;zα),
Sα2(x;zα)), where

Rα1(x) = R10 cos(
√

k1x)+
1√
k1

S10 sin(
√

k1x), Rα2(x) = β2,

Sα1(x) = S10 cos(
√

k1x)−
√

k1R10 sin(
√

k1x), Sα2(x) = 0.

The variational equation of the unperturbed system along the periodic solution Rα(x;zα) is given by

Y ′ = DRG0(t,Rα(x;zα))Y =




0 1 0 0
−k1 0 0 0

0 0 0 1
0 0 −4k2 0


Y, (2.11)
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where Y is a 4× 4 matrix. The fundamental matrix Mzα (x) of the differential system (2.11) such that
Mzα (0) is the identity matrix of R4 adopts the simple form




cos(
√

k1x) 1√
k1

sin(
√

k1x) 0 0
−√k1 sin(

√
k1x) cos(

√
k1x) 0 0

0 0 cos(2
√

k2x) 1
2
√

k2
sin(2

√
k2x)

0 0 −2
√

k2 sin(2
√

k2x) cos(2
√

k2x)


 .

Note that the fundamental matrix Mzα (x) does not depend on the initial value zα of the periodic solu-
tion R(x,zα), so for simplicity we can drop the subscript zα and reset M(x) = Mzα (x). By an easy
computation, we obtain that the matrix M−1(0)−M−1(T ) is given by




0 0 0 0
0 0 0 0

0 0 1− cos

(
4π
√

k2√
k1

)
1

2
√

k1
sin

(
4π
√

k2√
k1

)

0 0 −2
√

k1 sin

(
4π
√

k2√
k1

)
1− cos

(
4π
√

k2√
k1

)




.

We observe that the matrix M−1(0)−M−1(T ) has in the upper right corner the 2×2 zero matrix, while
in the lower right corner a 2×2 matrix ∆α satisfies

det(∆α) =

∣∣∣∣∣∣∣∣∣∣

1− cos

(
4π
√

k2√
k1

)
1

2
√

k1
sin

(
4π
√

k2√
k1

)

−2
√

k1 sin

(
4π
√

k2√
k1

)
1− cos

(
4π
√

k2√
k1

)

∣∣∣∣∣∣∣∣∣∣

= 4sin2
(

2π
√

k2√
k1

)
6= 0,

since
√

k1/
√

k2 is an irrational number. Consequently, the assumptions (i) and (ii) of Theorem A.1 are
satisfied.

Following the notation of Theorem A.1, P(R1,S1,R2,S2) = (R1,S1). A straightforward computation
leads to

G (α) = G (R10,S10) = P
(∫ T

0
M−1

Zα
(x)G1(x,Rα(x;Zα))dx

)

=



−

∫ T

0

sin(
√

k1x)√
k1

F1(x,Rα1,Sα1,β2,0)dx

∫ T

0
cos(

√
k1x)F1(x,Rα1,Sα1,β2,0)dx




=




πS10

4k5/2
1

[
3g11

(
k1R2

10 +S2
10

)−2k1
(
V̄10−2g12β 2

2
)]

−πR10

4k3/2
1

[
3g11

(
k1R2

10 +S2
10

)
+2k1

(
V̄10 +2g12β 2

2
)]


 .
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Now, we shall compute the simple zeroes of the function G (α) in the open and bounded subset V ⊂R2.
The roots of the algebraic equation G (α) = 0 in V can be found as

α1 =(0,0), α2,3 =

(
±

√
−2

3g11

(
2g12β 2

2 +V̄10
)
,0

)
, (2.12)

α4,5 =

(
0,±

√
2k1

3g11

(
V̄10−2g12β 2

2

)
)

,

whenever the radical expressions of (2.12) are well defined. Notice that α2,3 are well defined provided
g11(2g12β 2

2 + V̄10) < 0; while α4,5 are well defined provided g11(V̄10 − 2g12β 2
2 ) > 0. The Jacobian

determinant are given by

det(G ′
α(α2,3)) =

π2V̄10
(
V̄10 +2g12β 2

2
)

k2
1

,

det(G ′
α(α4,5)) =

π2V̄10
(
V̄10−2g12β 2

2
)

k2
1

.

By assumption, this means that det(G ′
α(αi)) 6= 0(i = 2, · · · ,5). Therefore, αi, (i = 2, · · · ,5) are simple

zeroes of the function G (α). Now the proof is done by applying Theorem A.1 to α2,α4. ¤
REMARK 2.1 Note that, starting from α3,α5, we can construct two new branches in the same way,
but such branches do not provide additional information since they can be obtained directly from the
existing ones by means of the symmetry transformation (R1,S1,R2,S2) → (−R1,−S1,R2,S2). In the
same way, the branch starting from α1 correspond to a “semitrivial” solution (0,0,R2(x,ε),S2(x,ε)).
In the original system, this means that ψ1 ≡ 0 so it does not corresponds to a genuine two-component
BEC.

REMARK 2.2 The method used to prove Theorem 2.1 is not suitable for the remaining case that both c1
and c2 are not zero, since the solutions of the unperturbed system are not concise, leading to a complex
computation. We have even tried a symbolic computation approach, but failed. This problem is left for
the further study.

2.3 Asymptotic profiles of amplitude variables

Theorem 2.1 has shown that there exist at least two 2π/
√

k1-periodic solutions zi(x,ε), i = 1,2 of system
(2.9) with the initial values

z1(0,ε) =

(√
−2

3g11

(
2g12β 2

2 +V̄10
)
+O(ε),O(ε),β2 +O(ε),O(ε)

)

and

z2(0,ε) =

(
O(ε),

√
2

3g11

(
k1V̄10−2g12k1β 2

2

)
+O(ε),β2 +O(ε),O(ε)

)
.

as ε → 0, where we have used the notation zi(x,ε) = (Ri(x,ε),Si(x,ε), Ri(x,ε),Si(x,ε)).
Consider a system of one order z′(x) = f (x,z,ε), where f :R×Rn×(−ε0,ε0)→Rn is a continuous

function. The continuous dependence theorem of solutions with respect to parameters (see for instance
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Theorem 5 of Sect. 1 in You (1981) or Sect. 8 in Arnold (1973)) states that, if the function f has a
continuous partial derivative of m-th order with respect to both the variable z and the parameter ε on a
domain Gε of Rn, then the solution z(x,ε) with x ∈ I has continuous partial derivatives up to m order
with respect to the parameter ε . Here, the interval I denotes the maximal interval where the solution
z(x,ε) remain in Gε .

By compactness, we can find a domain Gε of (R+×R)2×(−ε0,ε0) containing the periodic solutions
zi(x,ε), i = 1,2 of system (2.9) for all x ∈ R. Moreover, the nonlinearity of system (2.9) is of class C∞

with respect to both the variables Ri,Si and the parameter ε on Gε . By the continuous dependence
theorem of solutions, we know that the periodic solutions zi(x,ε), i = 1,2 have derivatives of any order
with respect to the parameter ε . Now we can rewrite the periodic solutions zi(x,ε), i = 1,2 of system
(2.9) into Taylor expansions zi(x,ε) = z(0)

i (x)+ z(1)
i (x)ε +O(ε2) as ε → 0.

In the following, we shall present an analysis of the asymptotic behavior of the amplitude variables
for small ε by a regular perturbation theory. This method was introduced to find a finite order asymptotic
approximation of a solution of a differential equation, see Holmes (1999).

According to Theorem 2.1, we distinguish two cases.

2.3.1 Case I: g11(2g12β 2
2 + V̄10) < 0 and V̄10 6= 0 By Theorem 2.1, if g11(2g12β 2

2 + V̄10) < 0 and
V̄10 6= 0, there exists a T -periodic solution (R1(x,ε),S1(x,ε), R2(x,ε),S2(x,ε)) of system (2.9) with
period T = 2π/

√
k1 such that

(R1(0,ε),S1(0,ε),R2(0,ε),S2(0,ε))→



√
−2

(
V̄10 +2g12β 2

2

)

3g11
,0,β2,0




as ε → 0.
In the following, we will use the regular perturbation theory to identify the first order approximation

of the amplitude components Ri(x,ε), i = 1,2. Regular perturbation theory assumes an expansion of the
form

Ri(x,ε) = R(0)
i (x)+ εR(1)

i (x)+ ε2R(2)
i (x)+ · · · , (2.13)

where R( j)
i (x), j = 1,2, . . . are all unknown T -periodic functions. Inserting (2.13) with i = 2 into (2.9)

and equating powers of ε , we have

O(1) : R(0)
2
′′(x)+k2R(0)

2 (x)− c2
2(

R(0)
2 (x)

)3 = 0, R(0)
2 (0) = β2, R(0)

2
′(0) = 0, (2.14)

O(ε) : R(1)
2
′′(x)+

(
k2 +

3c2
2(

R(0)
2 (x)

)4

)
R(1)

2 (x)+g22
(
R(0)

2 (x)
)3+ (2.15)

V2(x)
(
R(0)

2 (x)
)
+g21

(
R(0)

1 (x)
)2(R(0)

2 (x)
)

= 0.

Here, R(0)
1 (x) is the solution of the zero-order equation for R1(x,ε)

R(0)
1
′′(x)+ k1R(0)

1 (x) = 0, R(0)
1 (0) =

√
−2

(
V̄10 +2g12β 2

2

)

3g11
, R(0)

1
′(0) = 0.
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Obviously,

R(0)
1 (x) =

√
−2

(
V̄10 +2g12β 2

2

)

3g11
cos(

√
k1x).

Inserting this expression and the solution R(0)
2 (x) = β2 of (2.14) into (2.15), it comes down to

R(1)
2
′′(x)+4k2R(1)

2 (x)+g22β 3
2 −

2cos2
(√

k1x
)

g21β2
(
V10 +2g12β 2

2
)

3g11
(2.16)

+β2V̄2(x) = 0.

Taking V̄2(x) = V̄20 cos(
√

k1x), we know that (2.16) has a unique T -periodic solution with explicit
expression

R(1)
2 (x) =

−3g11g22β 3
2 +g21β2

(
V̄10 +2g12β 2

2
)

12g11k2

− cos
(
2
√

k1x
)

β2
(−3g11V̄20 +g21

(
V̄10 +2g12β 2

2
))

12g11 (k1− k2)
.

Finally, by direct inspection the solution of (2.14) is simply R(0)
2 (x) = β2.

In conclusion, we have obtained the asymptotic expansion of R1(x,ε) and R2(x,ε) as

R1(x,ε) =±
√
−2

(
V̄10 +2g12β 2

2

)

3g11
cos(

√
k1x)+O(ε), (2.17)

R2(x,ε) = β2 + ε

(
−3g11g22β 3

2 +g21β2
(
V̄10 +2g12β 2

2
)

12g11k2
− (2.18)

cos
(
2
√

k1x
)

β2
(−3g11V̄20 +g21

(
V̄10 +2g12β 2

2
))

12g11 (k1− k2)

)
+O(ε2).

REMARK 2.3 Since equation (2.16) is 2π/
√

k1-periodic, and the period is irrational related to 2π/
√

4k2,
we know that there is a unique 2π/

√
4k2-periodic solution for equation (2.16). However, while com-

puting R(1)
1 (x), the uniqueness of periodic solutions has been lost, since the considered equation has the

same period 2π/
√

4k2. Therefore, R(1)
1 (x) is unascertained. Fortunately, in our subsequent proof of our

main results (see Theorem 2.2 to Theorem 2.5), we only need the first order expansion of R2(x).

2.3.2 Case II: g11
(
V̄10− 2g12β 2

2
)

> 0 and V̄10 6= 0 In this case, Theorem 2.1 provides a T -periodic
solution (R1(x,ε),S1(x,ε), R2(x,ε),S2(x,ε)) with period T = 2π/

√
k1 such that

(R1(0,ε),S1(0,ε),R2(0,ε),S2(0,ε))→
(

0,

√
2k1

3g11

(
V̄10−2g12β 2

2

)
,β2,0

)

as ε → 0.
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Using again the regular perturbation theory, we obtain the asymptotic expansion of R1(x,ε) and
R2(x,ε) as

R1(x,ε) =±
√

2
(
V̄10−2g12β 2

2

)

3g11
sin(

√
k1x)+O(ε), (2.19)

R2(x,ε) = β2 + ε
(

(2g12g21−3g11g22)β 3
2 −g21β2V̄10

12g11k2
(2.20)

+
cos

(
2
√

k1x
)

β2
(
g21

(
2g12β 2

2 −V̄10
)
+3g11V̄20

)

12g11 (k1− k2)

)
+O(ε2).

Since the computations are similar, we omit further details for the sake of brevity.

2.4 Modulated amplitude waves with non-trivial phase

In this subsection, we are going to present the main theorems for the binary BEC by taking advantage
of the study performed in the last subsection. The first result is as follows.

THEOREM 2.2 Assume that V1(x) = V10 cos(2
√

k1x), V2(x) = V20 cos(2
√

k1x). Let k2 be a positive
constant such that

√
k1/k2 is an irrational number. Fix µ1 = k1h̄/(2m1) and µ2 = k2h̄/(2m2). If u11V10 <

0, then for each c2 ∈ (0,c∗) with

c∗ :=
|V10|

√
k2

2|u12| ,

there exists ε(c2) > 0 such that system (2.2) has a modulated amplitude wave (ψ1,ψ2) of the form

ψ j(x, t,ε) = R j(x,ε)exp[i(θ j(x,ε)−µ jt)], j = 1,2

for almost every for |ε| ∈ (0,ε(c2)), where ψ j(x, t,ε) is periodic with respect to x, and such that

R1(x,ε) =

√
−4 c2u12 +2V10

√
k2

3u11
√

k2
cos

(√
k1x

)
+O(ε),

θ1(x,ε)≡ θ10 = 0,

R2(x,ε) =
(

c2
2

k2

)1/4

+ ε
(
−

√
c2m2

6h̄2u11 (k2)7/4

[
c2 (2u12u21−3u11u22)+u21V10

√
k2

]

−
√

c2m2
(
u21

(
2c2 u12 +V10

√
k2

)−3u11V20
√

k2
)

6h̄2 (k1− k2)u11 (k2)3/4
cos

(
2
√

k1x
))

+O(ε2),

θ2(x,ε) =
ε sin

(
2
√

k1x
)

m2
(
u21

(
2c2 u12 +

√
k2V10

)−3
√

k2u11V20
)

6h̄2√k1 (−k1 + k2)u11

+ rot(R2)(c2,ε)x+O(ε2)

with

rot(R2)(c2,ε) =
√

k2 +
εm2

(
c2 (−2u12u21 +3u11u22)−u21V10

√
k2

)

3h̄2k2u11
+O(ε)2.
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Proof. Note that

g11
(
V̄10 +2g12β 2

2
)

=
4m2

1u11

h̄4√k2

(
2c2u12 +V10

√
k2

)
.

If u11V10 < 0, we select c2 from the interval (0,c∗) with

c∗ :=
|V10|

√
k2

2|u12| ,

so that g11
(
V̄10 +2g12β 2

2
)

< 0. Moreover, it is obvious that V̄10 6= 0. Therefore, by applying Theorem
2.1 (a), for every c2 ∈ (0,c∗), there exists ε(c2) > 0 such that for |ε| < ε(c2), system (2.9) has at
least one T -periodic solution (R1(x,ε),S1(x,ε),R2(x,ε),S2(x,ε)), with T = 2π√

k1
. Moreover, the regular

perturbation analysis done in Subsection 2.3.1 gives an approximation of R1(x,ε) and R2(x,ε) as

R1(x,ε) =

√
−4 c2u12 +2V10

√
k2

3u11
√

k2
cos

(√
k1x

)
+O(ε),

R2(x,ε) =
(

c2
2

k2

)1/4

+ ε

(
−
√

c2m2
(
c2 (2u12u21−3u11u22)+u21V10

√
k2

)

6h̄2u11 (k2)7/4

−cos
(
2
√

k1x
) √

c2m2
(
u21

(
2c2 u12 +V10

√
k2

)−3u11V20
√

k2
)

6h̄2 (k1− k2)u11 (k2)3/4

)

+O(ε2).

Then, by a straightforward computation we have

rot(R2)(c2,ε) =
c2

β 2
2
−

(
c2

(−3g11g22β 2
2 +g21

(
V̄10 +2g12β 2

2
)))

ε
6
(
g11k2β 2

2

) +O(ε)2 (2.21)

=
√

k2 +
εm2

(
c2 (−2u12u21 +3u11u22)−u21V10

√
k2

)

3h̄2k2u11
+O(ε)2.

Let

θ̃2(x,ε) =
∫ x

0

(
c2

R2(x,ε)
− rot(R2)

)
dx

=
sin

(
2
√

k1x
)

c2
(−3g11V̄20 +g21

(
V̄10 +2g12β 2

2
))

ε
12g11

√
k1 (k1− k2)β 2

2
+O(ε)2

=
ε sin

(
2
√

k1x
)

m2
(
u21

(
2c2 u12 +

√
k2V10

)−3
√

k2u11V20
)

6h̄2√k1 (−k1 + k2)u11
+O(ε)2,

then we can verify that θ̃2(x,ε) is a T -periodic function with respect to x. The coherent structure given
by (1.2) can be written as

ψ1(x, t) = R1(x)exp[−iµ2t)],

ψ2(x, t) = R2(x)exp[i(θ̃2(x)+ rot(R2)x−µ2t)].
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FIG. 2. An example of evolution of a MAW for (2.2) in a two-component BEC, where the parameters are k1 = 1,k2 = 2,c2 =√
2,u11 = 0.97,u12 = u21 = 1,u22 = 1.03,V10 = −4,V20 = −1,ε = 0.01, h̄ = 1,m1 = m2 = 1. (Recall that the sign of ε can be

chosen arbitrarily.) (a) The left subplot shows the spatio-temporal evolution of Re(ψ1) by mens of contour plots. The middle
subplot and the right subplot displays the evolution of phase and amplitude, respectively. (b) The same as in (a) for ψ2. We restate
that the phase of the first component ψ1 is trivial while the phase of the second component ψ2 is non-trivial.

If rot(R2)(c2,ε) = m
√

k1/n, ε ∈ (0,ε(c2)) and c2 ∈ (0,c∗) for some m,n ∈ N such that (m,n) = 1, that
is,

2π
rot(R2)

=
n
m

T,

then ψ2(x, t) is mT -periodic with respect to x. Therefore, Ψ(x, t) = (ψ1(x, t), ψ2(x, t)) is a MAW with
the period mT . By the density of real numbers, for each c2 ∈ (0,c∗), the existence of MAWs for system
(2.2) holds almost everywhere for ε ∈ (0,ε(c2)). ¤

As an example, the evolution of a MAW for (2.2) is constructed with the parameters: k1 = 1,k2 =
2,c2 =

√
2,u11 = 0.97,u12 = u21 = 1,u22 = 1.03,V10 =−4,V20 =−1,ε = 0.01, h̄ = 1,m1 = m2 = 1, see

FIG. 2.

THEOREM 2.3 Assume that V1(x) = V̄10 cos(2
√

k1x), V2(x) = V̄20 cos(2
√

k1x). Let k2 be a positive
constant such that

√
k1/k2 is an irrational number, and fix µ1 = k1h̄/(2m1) and µ2 = k2h̄/(2m2). If

u11u12 < 0 and V10 6= 0, then for each c2 ∈ (c∗,+∞) with

c∗ :=
|V10|

√
k2

2|u12| ,
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the conclusion of Theorem 2.2 holds.

Proof. Since

g11
(
V̄10 +2g12β 2

2
)

=
4m2

1u11

h̄4√k2

(
2c2u12 +V10

√
k2

)
,

and u11u12 < 0, it is easy to check that c2 > c∗ implies the inequality g11(V̄10 +2g12β 2
2 ) < 0. Therefore,

Theorem 2.1 (a) can be applied again, and the rest of the proof continues as in Theorem 2.2. ¤
In the latter results, we have used the first branch of solutions identified in Theorem 2.1 (a). By

using the second branch found in Theorem 2.1 (b), we have two parallel results.

THEOREM 2.4 Assume that V1(x) = V10 cos(2
√

k1x), V2(x) = V20 cos(2
√

k1x). Let k2 be a positive
constant such that

√
k1/k2 is an irrational number, and fix µ1 = k1h̄/(2m1) and µ2 = k2h̄/(2m2). If

u11V10 > 0, then for each c2 ∈ (0,c∗) with

c∗ :=
|V10|

√
k2

2|u12| ,

there exists ε(c2) > 0 such that system (2.2) has a modulated amplitude wave (ψ1,ψ2) of the form

ψ j(x, t,ε) = R j(x,ε)exp[i(θ j(x,ε)−µ jt)], i = 1,2

for almost every |ε| ∈ (0,ε(c2)), where ψi(x, t,ε) is periodic with respect to x, and

R1(x,ε) =

√
2V10

√
k2−4c2u12

3u11
√

k2
sin

(√
k1x

)
+O(ε),

θ1(x,ε)≡ θ10 = 0,

R2(x,ε) =
(

c2
2

k2

)
1/4 + ε




(
c2

2
k2

)
1/4m2

(
−2

√
c2

2
k2

u12u21 +3

√
c2

2
k2

u11u22 +u21V10

)

6h̄2k2u11

+

cos
(
2
√

k1x
)(

c2
2

k2

)
1/4m2

(
u21

(
−2

√
c2

2
k2

u12 +V10

)
−3u11V20

)

6h̄2 (k1− k2)u11




+O(ε2)

θ2(x,ε) =
ε sin

(
2
√

k1x
)

m2
(
u21

(
V10
√

k2−2c2u12
)−3u11V20

√
k2

)

6h̄2√k1 (−k1 + k2)u11
+

+ rot(R2)(c2,ε)x+O(ε2)

with

rot(R2)(c2,ε) =
√

k2 +
m2

(
c2 (2u12u21−3u11u22)−u21V10

√
k2

)
ε

3h̄2k2u11
+O(ε2).
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Proof. In this case,

g11
(
V̄10−2g12β 2

2
)

=
4m2

1u11

h̄4√k2

(
−2c2 u12 +V10

√
k2

)
.

If u11V10 > 0, we select the constant c2 of integration from the interval (0,c∗) with

c∗ :=
|V10|

√
k2

2|u12| ,

so that g11
(
V̄10− 2g12β 2

2
)

> 0. Therefore, by applying Theorem 2.1 (b), for every c2 ∈ (0,c∗), there
exists ε(c2) > 0 such that for |ε| < ε(c2), system (2.9) has a T -periodic solution with the assymptotic
approximation shown in Subsection 2.3.2. The rest of proof is analogous to the proof of Theorem 2.2.
¤
THEOREM 2.5 Assume that V1(x) = V10 cos(2

√
k1x), V2(x) = V20 cos(2

√
k1x). Let k2 be a positive

constant such that
√

k1/k2 is an irrational number ,and fix µ1 = k1h̄/(2m1) and µ2 = k2h̄/(2m2). If
u11u12 < 0 and V10 6= 0, then for each c2 ∈ (c∗,+∞) with

c∗ :=
|V10|

√
k2

2|u12| ,

the conclusion of Theorem 2.4 holds.

Proof. If u11u12 < 0 and V10 6= 0, taking c2 > c∗, one has g11
(
V̄10− 2g12β 2

2
)

> 0 and the remaining
proof is the same. ¤

3. Extension to three–component Bose-Einstein condensates

To evince the generality of the above approach, we briefly consider its extension to a BEC model of
three hyperfine states coupled by two different microwave fields, which is also a physically relevant
situation. The system under study is





ih̄
∂ψ1

∂ t
=− h̄2

2m1
∇2ψ1 + εV1(x)ψ1 + εu11|ψ1|2ψ1 + εu12|ψ2|2ψ1 + εu13|ψ3|2ψ1,

ih̄
∂ψ2

∂ t
=− h̄2

2m2
∇2ψ2 + εV2(x)ψ2 + εu21|ψ2|2ψ2 + εu22|ψ1|2ψ2 + εu23|ψ3|2ψ2,

ih̄
∂ψ3

∂ t
=− h̄2

2m3
∇2ψ3 + εV3(x)ψ1 + εu31|ψ1|2ψ3 + εu32|ψ2|2ψ3 + εu33|ψ3|2ψ3,

(3.1)

where Vi(x) = Ṽi0 cos(2
√

k1x)(i = 1,2,3) are the sinusoidal OL potentials considered before.
Given a solution Ψ = (ψ1,ψ2,ψ3), if one of the components is identically zero then the remaining

components are solutions of a binary BEC. Therefore, to avoid trivialities and cases yet studied in
Section 2, we look for solutions with every component different from zero. As in the two-component
case, we start with the general ansantz

ψ j(x, t) = R j(x)exp[i(θ j(x)−µ jt)], j = 1,2,3

for solutions of coupled GP equation (3.1), where µ1 = 2k1h̄/(2m1), µ2 and µ3 are arbitrary constants,
and

θi(x) =
∫ x

0

ci

R2
i (x′)

dx′, i = 1,2,3
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with arbitrary constants c1,c2 and c3. Without loss of generality, we assume that ci > 0 for i = 1,2,3.
Then we arrive at the following equations





R′1 = S1,

S′1 =−k1R1 +
c2

1

R3
1
+ εF1(R1,R2,R3),

R′2 = S2,

S′2 =−k2R2 +
c2

2

R3
2
+ εF2(R1,R2,R3),

R′3 = S3,

S′3 =−k3R3 +
c2

3

R3
3
+ εF3(R1,R2,R3),

(3.2)

where

Fi(x,R1,R2,R3) =−(Vi0 cos(2
√

k1x)Ri +
3

∑
j=1

gi jR2
jRi);

gi j =−2miui j

h̄2 , ki =
2miµi

h̄
, Vi0 =−2miṼi0

h̄2 , i, j = 1,2,3.

Along this section, we assume as standing hypothesis that c1 = 0, c2,c3 > 0 and
√

k1/k2,
√

k1/k3 ∈ R\Q.

Let r1 > 0 be arbitrarily small and r2 > 0 be arbitrarily large. Define an open and bounded subset V
on the projection subspace R1OS1 by

V =
{

α ∈ R2 : α = (R10,S10) and r1 < R2
10 +S2

10 < r2
}

.

Let β2 = 4
√

c2
2/k2 and β3 = 4

√
c2

3/k3. The function β : V →R4 is taken by β (α)≡ (β2,0,β3,0),α ∈V .
Consequently, we define the set Z by

Z =
{

zα = (α,β (α)) : α ∈V
}

=
{
(R10,S10,β2,0,β3,0) ∈ R6 : r1 < R2

10 +S2
10 < r2

}
.

Obviously, for each zα ∈Z and ε = 0, the solution Rα(x;zα) of (3.2) with the initial value Rα(0;zα) =
zα is T -periodic with respect to x with the least period T = 2π/

√
k1. In fact, every solution of (3.2) with

ε = 0 starting from Z can be obtained as an explicit formulation Rα(x;zα) = (Rα1(x;zα),Sα1(x;zα),
Rα2(x;zα),Sα2(x;zα), Rα3(x;zα),Sα3(x;zα)), where

Rα1(x) =R10 cos(
√

k1x)+
1√
k1

S10 sin(
√

k1x),

Sα1(x) =S10 cos(
√

k1x)−
√

k1R10 sin(
√

k1x),
Rα2(x) =β2, Sα2(x) = 0,

Rα3(x) =β3, Sα3(x) = 0.
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The variational equation of the unperturbed system along the periodic solution Rα(x;zα) is given by

Y ′ = DRG0(t,Rα(x;zα))Y =




0 1 0 0 0 0
−k1 0 0 0 0 0

0 0 0 1 0 0
0 0 −4k2 0 0 0
0 0 0 0 0 1
0 0 0 0 −4k3 0




Y, (3.3)

where Y is a 6× 6 matrix. The fundamental matrix MZα (x) of the differential system (3.3) such that
MZα (0) is the identity matrix of R6 takes the simple form

MZα (x) =




A1 0 0
0 A2 0
0 0 A3


 ,

where

A1 =


 cos(

√
k1x)

1√
k1

sin(
√

k1x)

−√k1 sin(
√

k1x) cos(
√

k1x)


 ,

Ai =


 cos(2

√
kix)

1
2
√

ki
sin(2

√
kix)

−2
√

ki sin(2
√

kix) cos(2
√

kix)


 , i = 2,3.

Note that the fundamental matrix Mzα (x) does not depend on the initial value zα of the periodic solu-
tion R(x,zα). Therefore, we drop the subscript zα and reset M(x) = MZα (x). With an easy computation,
we obtain that the matrix M−1(0)−M−1(T ) is given by

M−1(0)−M−1(T ) =




0 0 0
0 B1 0
0 0 B2


 ,

where

Bi−1 =




1− cos

(
4π
√

ki√
k1

)
1

2
√

k1
sin

(
4π
√

ki√
k1

)

−2
√

k1 sin

(
4π
√

ki√
k1

)
1− cos

(
4π
√

ki√
k1

)




, i = 2,3.

We observe that the matrix M−1(0)−M−1(T ) has in the upper right corner the 2×2 zero matrix, while
in the lower right corner a 4×4 matrix ∆α satisfies

det(∆α) = 16sin2
(

2π
√

k2√
k1

)
sin2

(
2π
√

k3√
k1

)
6= 0,

since
√

k1/
√

k2,
√

k1/
√

k3 are all irrational. Consequently, the assumptions (i) and (ii) of Theorem A.1
are satisfied.
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In the notation of Theorem A.1, let us define P(R1,S1,R2,S2,R3,S3) = (R1,S1). By a straightforward
computation, we obtain that

G (α) = G (R10,S10) = P
(∫ T

0
M−1

Zα
(x)G1(x,Rα(x;Zα))dx

)

=




πS10

4k5/2
1

[
3S2

10g11 + k1
(−2V10 +3R2

10g11 +4β 2
2 g12 +4β 2

3 g13
)]

−πR10

4k3/2
1

[
3S2

10g11 + k1
(
2V10 +3R2

10g11 +4β 2
2 g12 +4β 2

3 g13
)]


 .

It is easy to compute the simple zeroes of the function G (α) in the open and bounded subset V ⊂ R2.
Besides the trivial zero α1 = (0,0), we have

(i) α2,3 =
(
±

√
2V10 +4

(
g12β 2

2 +g13β 2
3

)/
(−3g11),0

)
, if (V10 +2(g12β 2

2 +g13β 2
3 ))g11 < 0. More-

over, if V10 6= 0, the corresponding Jacobian determinant is

Det(G ′(α2,3)) =
π2V10

(
V10 +2

(
g12β 2

2 +g13β 2
3
))

k2
1

6= 0.

(ii) (iii) α4,5 =
(

0,±
√

2k1
(
V10−2

(
g12β 2

2 +g13β 2
3

))
/(3g11)

)
, if (V10−2(g12β 2

2 +g13β 2
3 ))g11 > 0.

Moreover, if V10 6= 0, the corresponding Jacobian determinant is

Det(G ′(α4,5)) =
π2V10

(
V10−2

(
g12β 2

2 +g13β 2
3
))

k2
1

6= 0.

By application of Theorem A.1, we find a branch of periodic solutions starting from α2, and by
means of an asymptotic analysis like that of Subsection 2.3, we can formulate the following result.
The proof is done by mimicking the arguments used in Section 2, we skip detailed computations for
conciseness.

THEOREM 3.1 Assume that Vi(x) = Ṽi0 cos(2
√

k1x), i = 1,2,3 and fix positive constants k2,k3 such that√
k1/k2,

√
k1/k3 ∈ R\Q. Let

µi =
kih̄
2mi

, βi = 4

√
c2

i
ki

, gi j =−2miui j

h̄2 , Vi0 =−2miṼi0

h̄2 , i, j = 1,2,3.

Assume that
(
V10 +2

(
g12β 2

2 +g13β 2
3
))

g11 < 0 and V10 6= 0. Then, for each c2,c3 ∈ (0,+∞), there exists
ε(c2,c3) > 0 such that system (3.1) has one modulated amplitude wave

ψ j(x, t,ε) = R j(x,ε)exp[i(θ j(x,ε)−µ jt)], j = 1,2,3
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for almost every |ε| ∈ (0,ε(c2,c3)), where ψ j(x, t,ε) is periodic with respect to x, and

R1(x,ε) =

√
2V10 +4

(
g12β 2

2 +g13β 2
3

)

−3g11
cos

(√
k1x

)
+O(ε)

θ1(x,ε)≡ θ0 = 0,

R2(x,ε) = β2 + ε
β2

12

(
g21

(
V10 +2g12β 2

2 +2g13β 2
3
)−3g11

(
g22β 2

2 +g23β 2
3
)

g11k2

+
3g11V30−g21

(
V10 +2g12β 2

2 +2g13β 2
3
)

g11 (k1− k2)
cos

(
2

√
k1x

))
+O(ε2),

θ2(x,ε) =
sin

(
2
√

k1x
)

c2
(−3g11V30 +g21

(
V10 +2g12β 2

2 +2g13β 2
3
))

ε
12g11

√
k1 (k1− k2)β 2

2

+ rot(R2)(c2,c3,ε)x+O(ε2),

R3(x,ε) = β3 + ε
β3

12

(
g31

(
V10 +2g12β 2

2 +2g13β 2
3
)−3g11

(
g32β 2

2 +g33β 2
3
)

g11k3

+
3g11V30−g31

(
V10 +2g12β 2

2 +2g13β 2
3
)

g11 (k1− k3)
cos

(
2
√

k1x
))

+O(ε2),

θ3(x,ε) =
sin

(
2
√

k1x
)

c3
(−3g11V30 +g31

(
V10 +2g12β 2

2 +2g13β 2
3
))

ε
12g11

√
k1 (k1− k3)β 2

3

+ rot(R3)(c2,c3,ε)x+O(ε2),

with

rot(R2)(c2,c3,ε) =
√

k2−
(
c2

(
g21

(
V10 +2g12β 2

2 +2g13β 2
3
)−3g11

(
g22β 2

2 +g23β 2
3
)))

ε
6
(
g11k2β 2

2

)

+O(ε2),

rot(R3)(c2,c3,ε) =
√

k3−
(
c3

(
g31

(
V10 +2g12β 2

2 +2g13β 2
3
)−3g11

(
g32β 2

2 +g33β 2
3
)))

ε
6
(
g11k3β 2

3

)

+O(ε2).

A second result is obtained by using now α4.

THEOREM 3.2 Assume that Vi(x) = Ṽi0 cos(2
√

k1x), i = 1,2,3 and fix positive constants k2,k3 such that√
k1/k2,

√
k1/k3 ∈ R\Q. Let

µi =
kih̄
2mi

, βi = 4

√
c2

i
ki

, gi j =−2miui j

h̄2 , Vi0 =−2miṼi0

h̄2 , i, j = 1,2,3.

Assume that (V10−2(g12β 2
2 +g13β 2

3 ))g11 > 0 and V10 6= 0. Then, for each c2,c3 ∈ (0,+∞), there exists
ε(c2,c3) > 0 such that system (3.1) has one modulated amplitude wave

ψ j(x, t,ε) = R j(x,ε)exp[i(θ j(x,ε)−µ jt)], j = 1,2,3
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for almost every |ε| ∈ (0,ε(c2,c3)), where ψi(x, t,ε) is periodic with respect to x, and

R1(x,ε) =

√
2
(
V10−2

(
g12β 2

2 +g13β 2
3

))

3g11
sin

(√
k1x

)
+O(ε)

θ1(x,ε)≡ θ0 = 0,

R2(x,ε) = β2 + ε
β2

12

(
g21

(−V10 +2g12β 2
2 +2g13β 2

3
)−3g11

(
g22β 2

2 +g23β 2
3
)

g11k2

+
3g11V30 +g21

(−V10 +2g12β 2
2 +2g13β 2

3
)

g11 (k1− k2)
cos

(
2
√

k1x
))

+O(ε2),

θ2(x,ε) = ε
c2

(−3g11V30 +g21
(
V10−2

(
g12β 2

2 +g13β 2
3
)))

12g11
√

k1 (k1− k2)β 2
2

sin
(

2
√

k1x
)

+ rot(R2)(c2,ε)x+O(ε2),

R3(x,ε) = β3 + ε
β3

12

(
g31

(−V10 +2g12β 2
2 +2g13β 2

3
)−3g11

(
g32β 2

2 +g33β 2
3
)

g11k3

+
3g11V30 +g31

(−V10 +2g12β 2
2 +2g13β 2

3
)

g11 (k1− k3)
cos

(
2
√

k1x
))

+O(ε2),

θ3(x,ε) =
sin

(
2
√

k1x
)

c3
(−3g11V30 +g31

(
V10−2

(
g12β 2

2 +g13β 2
3
)))

ε
12g11

√
k1 (k1− k3)β 2

3

+ rot(R3)(c3,ε)x+O(ε2),

with

rot(R2)(c2,ε) =
√

k2 +
c2

(
3g11

(
g22β 2

2 +g23β 2
3
)
+g21

(
V10−2

(
g12β 2

2 +g13β 2
3
)))

ε
6g11k2β 2

2

+O(ε2),

rot(R3)(c3,ε) =
√

k3 +
c3

(
3g11

(
g32β 2

2 +g33β 2
3
)
+g31

(
V10−2

(
g12β 2

2 +g13β 2
3
)))

ε
6g11k3β 2

3

+O(ε2).

4. Strong interactions

Due to the presence of the small parameter on the cubic terms, system (2.2) models a binary BEC with
weak atomic interactions. However, note that if (ψ1,ψ2) is a solution of (2.2), then

(ψ̃1, ψ̃2) =
(

ψ1exp[−i
V01

h̄
t]/
√

ε,ψ2exp[−i
V02

h̄
t]/
√

ε
)



22 of 25 Q. LIU, P. J. TORRES, M. XING

solves the system with strong interactions




ih̄
∂ψ̃1

∂ t
=− h̄2

2m1
∇2ψ̃1 +[V01 + εV1(x)]ψ̃1 +u11|ψ̃1|2ψ̃1 +u12|ψ̃2|2ψ̃1,

ih̄
∂ψ̃2

∂ t
=− h̄2

2m2
∇2ψ̃2 +[V02 + εV2(x)]ψ̃2 +u21|ψ̃1|2ψ̃2 +u22|ψ̃2|2ψ̃2.

(4.1)

Therefore, the main results of Section 2 have a direct interpretation for BECs with strong particle inter-
actions and general OL potentials. Obviously, the asymptotic profiles of the solutions remain valid just
dividing the radial coordinates by

√
ε . The rescalling argument is valid for a general multi-component

BEC.

5. Conclusions and further remarks

In this paper, we investigate the existence of modulated amplitude waves in quasi-one-dimensional
condensate mixtures in the presence of a external periodic potential. Mathematically, such coherent
structures are doubly periodic solutions, in space and time, of a coupled system of Gross-Pitaevskii
equations. For a binary BEC, the weak interaction regime is tackled by means of the averaging method
and regular perturbation theory. The case of strong particle interaction is covered by a simple rescalling
argument. The key feature that distinguish our results from earlier ones is that one of the wave functions
is stationary, while the second component has non-trivial phase, meaning that there is circulation of
matter only of the second component. A second novelty with respect to similar works (see for instance
Porter et al. (2004)) is that the chemical potentials µ j of each component may be different. Analogous
results for the three-component BEC are presented as well.

In future works, we would like to find a rigourous way to identify modulated amplitude waves with
non-trivial phases in all the components. As it is pointed out in Remark 2.2, some technical issues must
be solved. Also, it would be desirable to perform a stability analysis of the coherent structures obtained
in our results, as it is done for instance in (Deconinck et al. , 2003, Section 4). Such study is difficult by
the fact that an exact formulation of the solutions is not available, only asymptotic profiles, but specially
by the presence of non-trivial phases.
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A. Some results from averaging theory

We present a result from the averaging theory which we shall need for proving our main results of this
paper.

We consider the problem of the bifurcation of T−periodic solutions from differential systems of the
form

Ẋ(t) = G0(t,X)+ εG1(t,X)+ ε2G2(t,X ,ε), (A.1)

with ε 6= 0 sufficiently small, where G0,G1 : R×Ω → Rn and G2 : R×Ω × (−ε0,ε0) → Rn are C2

functions with T -periodic dependence in the first variable, and Ω is an open subset of Rn.The main
assumption is that the unperturbed system with ε = 0

Ẋ(t) = G0(t,X) (A.2)
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has a submanifold of periodic solutions.
We denote the linearization of the unperturbed system (A.2) by

ẏ(t) = U(t,z)y, (A.3)

where
U(t,z) = DX G0(t,X(t,z)), (A.4)

and X(t,z) is the solution of the system (A.2) such that X(0,z) = z. In what follows, we denote by Mz(t)
the fundamental matrix of the linear differential system (A.3), and denote by P : Rk×Rn−k → Rk the
projection of Rn onto its first k coordinates; i.e., P(x1, · · ·,xn) = (x1, · · ·,xk).

We assume that there exists a k−dimensional submanifold Z of Ω filled with T -periodic solutions
of (A.2). Then an answer to the problem of bifurcation of T -periodic solutions from the periodic
solutions contained in Z for system (A.1) is given in the following result.

THEOREM A.1 Let β : V →Rn−k be a C2 function, where V be an open and bounded subset of Rk. We
assume that

(i) Z = {zα = (α,β (α)),α ∈V} ⊂ Ω and that for each zα ∈ Z the solution X(t,zα) of (A.2) is
T-periodic;

(ii) for each zα ∈ Z , there is a fundamental matrix Mzα (t) of (A.3) such that the matrix M−1
zα (0)−

M−1
zα (T ) has in the upper right corner the k× (n− k) zero matrix, while in the lower right corner

a (n− k)× (n− k) matrix ∆α with det(∆α) 6= 0.

We consider the function G : V → Rk

G (α) = P
(∫ T

0
M−1

zα (t)G1(t,X(t,zα))dt
)

. (A.5)

If there exists a ∈V with G (a) = 0 and det(dG (a)/dα) 6= 0, then there is a T -periodic solution X(t,ε)
of system (A.1) such that X(0,ε)→ za as ε → 0.

For a proof of Theorem A.1 one can consult Malkin (1959) and Roseau (1966), or Buica et al.
(2007) for a more recent and shorter proof.
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