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1 Introduction

One of the main sections of the modern theory of partial differential equations is the
theory of mixed type equations. Historically, the study of equations of mixed type
was initiated by the pioneering works of F. Tricomi and S. Gellerstedt. Later, the
works of M.A.Lavrent’ev, A.V.Bitsadze, M.S.Salakhitdinov, F.I.Frankl, M.Protter
and J.M.Rassias had a considerable impact in this theory. In applications, equations
of mixed type appear in a natural way in fluid mechanics and gas dynamics. For a
detailed account of the classical theory and applications, the interested reader can
consult the survey papers and monographies [1] - [5],[23] and the references therein.

The analysis of the third and higher order mixed and mixed-composite type
equations with elliptic-hyperbolic or parabolic-hyperbolic operators began in the
early seventies by A.V.Bitsadze, M.S.Salakhitdinov, T.D.Djuraev and others. In
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particular, The works of M.S.Salakhitdinov and T.D.Djuraev, in 1971, investigate
boundary-value problems for the third order equation with parabolic-hyperbolic
operator in the form

∂

∂x
Lku = 0, (k = 1, 2),

where

L1u ≡ uxx −
1− sgny

2
uyy −

1 + sgny

2
uy,

L2u ≡ uxx −
1 + sgny + (1− sgny)y

2
uyy −

1− sgny
2

uyy −
1 + sgny

2
uy.

Also, the monographs of M.S.Salakhitdinov [6] and T.D.Djuraev, A.Sopuyev and
M.Mamazhanov [7] investigated a number of well-posed local and nonlocal boundary-
value problems for this model equation and for other equations with lower terms of
the parabolic-hyperbolic and elliptic-hyperbolic type of the third order.

In the cited literature, the typical method to study boundary-value problems for
the third-order equation is the representation of a general solution in the form of a
sum of functions. This approach is efficient when equations are composed by prod-
ucts of permutating differential operators. In the present paper we use a different
idea, i.e. reduction to second-order equations with unknown right-hand sides, which
make it possible to solve boundary-value problems for generalized equations com-
posed by a product of non-commuting differential operators [8], which are of actual
interest for solving inverse problems of mechanics and physics. This observation is
the basis for the study presented in this work.

The recent interest showed by the mathematical community in the study of frac-
tional differential equations is due to their wide application in problems of physics,
mechanics, control theory and other applied sciences [10]- [16]. A classical fam-
ily of differential equations of fractional order is formed by the loaded equations
[28]. The field of partial differential equations of fractional order is experiencing
a sustained growing interest in the recent years, see for instance [17]- [22]. From
the available bibliography, it is observed that the boundary-value problems for a
third-order loaded differential equations containing mixed parabolic-hyperbolic and
elliptic-parabolic operators in the principal part have been scarcely investigated [9].
On the other hand, it is well known that in connection with the important prob-
lems of partial differential equations of mixed type and gas dynamics of transonic
currents, the construction of mathematical models describing various processes de-
veloped in media with a fractal structure leads to differential equations of fractional
order.

Gellerstedt problems in the classical statement were studied in the monograph
[23, p. 186]. The recent works [24]- [27] investigated the Gellerstedt problem for
a mixed type equations. As far as we know, the Gellerstedt problem for a loaded
mixed type equation of the third order has not been investigated before. The present
paper is devoted to the formulation and investigation of an analogue problem to that
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of Gellerstedt, for a third-order equation with a loaded integro-differential operator
in the form

0 =
∂

∂x


uxx − uy − λ1u− µ1

n∑
i=1

Dαi
rxu(t, 0), if y ≥ 0,

uxx − uyy − λku− µk
n∑
i=1

Dβi

rξu(t, 0), if y < 0,
(1)

where ξ = x + y, λ1, µ1, λk, µk are given real parameters, and λ1 > 0. The domain
and boundary conditions will be explicited in Section 2. Dγi

rx stands for the Riemann-
Liouville fractional integral operator of order γi given by

Dγi
rxf(t) =

sgn(x− r)
Γ(−γi)

x∫
r

f(t)dt

(x− t)1+γi
, γi < 0,

where Γ is the Euler’s Gamma function. This operator is often denoted by I−γi
r+ , if

x > r and I−γi
r− , if x < r, called left-side and right-side Riemann-Liouville operator

respectively [10]. From the basic theory of fractional derivatives [10], if f ∈ L1[a, b]
and γi < 0, then the integral exists almost everywhere and the function Dγi

rxf belongs
to C[a, b].

The rest of the paper is organized as follows. In Section 2, we formulate the
Gellerstedt problem under consideration and state the main result. Section 3 is
devoted to derive some relevant functional relations. Finally, the proof of the main
result is developed in Section 4.

2 Formulating the Gellerstedt problem.

Let us fix the points A = (0, 0), B = (1, 0), A0 = (0, h), B0 = (1, h) in the plane of
independent variables x and y. Let Ω be a simply connected domain bounded by

1) the segments BB0, B0A0 and A0A of the straight lines x = 1, y = h > 0 and
x = 0 respectively,

2) two segments of the characteristics of eq. (1) given by

x− y = r, x+ y = r,

where 0 ≤ r ≤ 1 is fixed, starting at point E = (r, 0) to the points C1 = ( r
2
,− r

2
), C2 =

( r+1
2
,− r+1

2
) respectively, and

3) the segments AC1, C2B, belonging to the two characteristics x+y = 0, x−y =
1 respectively.

See Figure 1.
Let us introduce the following notation:

Ω1 = Ω ∩ (y > 0), Ω2 = Ω ∩ {(x, y) : 0 < x < r, y < 0} ,

3



A

A0h

B

x
1

B0

E(r, 0)

C1

C2

Ω1

Ω2
Ω3

Figure 1: The domain Ω
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Ω3 = Ω ∩ {(x, y) : r < x < 1, y < 0} ,
γ1 = {(x, y) : 0 < x < r, y = 0} , γ2 = {(x, y) : r < x < 1, y = 0} ,
γ′1 = {(x, y) : x = 0, 0 < y < h} , γ′2 = {(x, y) : x = 1, 0 < y < h} ,

γ11 =
{

(x, y) : y = x− r, r
2
< x < r

}
,

γ12 =

{
(x, y) : y = r − x, r < x <

r + 1

2

}
,

γ13 =

{
(x, y) : y = x− 1,

r + 1

2
< x < 1

}
,

We consider an analog of the Gellerstedt problem for the loaded differential equation
(1).

Problem G1. Find a function u(x, y) possessing the following properties:

1. u(x, y) ∈ C
(
Ω
)
;

2. ux (resp. uy ) is continuous up to γ′1 ∪ γj ∪ γ1j (resp. γj ∪ γ1j );

3. u(x, y) is a regular solution of equation (1) in the domains Ω1\{x = r}, Ω2

and Ω3;

4. the gluing conditions
uy(x,−0) = uy(x,+0) (2)

are satisfied on γj;

5. u(x, y) satisfies the boundary-value conditions

u(x, y)|γ̄′1 = ϕ1(y), (3)

ux(x, y)|γ̄′1 = ϕ2(y), (4)

u(x, y)|γ̄′2 = ϕ3(y) (5)

u(x, y)|γ̄1j
= ψj(x), (6j)

∂u(x, y)

∂n

∣∣∣∣
γ̄1j

= ψ2+j(x), (7j)

where ϕj(y), ϕ3(y), ψj(x) and ψ2+j(x) are given real-valued functions such that
ψ1(r) = ψ2(r) and

ϕ1(y) ∈ C1 (γ̄′1) , ϕ2(y) = C (γ̄′1) ∩ C1 (γ′1) , ϕ3(y) ∈ C1 (γ̄′2) (8)

ψj(x) ∈ C1
(
γ̄1j

)
∩ C3

(
γ1j

)
, ψj(r) = 0, (9j)

ψ2+j(x) ∈ C
(
γ̄1j

)
∩ C2

(
γ1j

)
, (j = 1, 2). (10j).
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Now, we are in disposition to state our main result.

Theorem 2.1. If conditions (8), (91), (92), (101) and (102) hold, then there exists
a unique solution to problem G1.

3 The main functional relations

Bearing in mind [9], after integration of the equation (1), with respect to x, we have
the following form

uxx − uy − λ1u− µ1

n∑
i=1

Dαi
rxu(t, 0) = w1(y) in Ω1 (11)

uxx − uyy − λju− µk
n∑
i=1

Dβi

rξu(t, 0) = wj(y) in Ωj (j = 2, 3), (12j)

where wk(y) are arbitrary continuous functions, and λk > 0 (k = 1, 3).
The solution of the Cauchy problem for the equation (12j), in Ωj, with the

conditions
u(x,−0) = τ(x), (x, 0) ∈ γ1 ∪ γ2, (13)

uy(x,−0) = ν(x), (x, 0) ∈ γ1 ∪ γ2, (14)

can be represented in the form

u(x, y) =
1

2
[τ(x+ y) + τ(x− y)]+

λjy

2

x−y∫
x+y

τ (ξ) Ī1

[√
λj(ξ − x− y) (x− y − ξ)

]
dξ−

−1

2

x−y∫
x+y

ν(ξ)I0

[√
λj (ξ − x− y) (x− y − ξ)

]
dξ− (15j)

−1

4

x−y∫
x+y

dξ

x−y∫
ξ

I0

[√
λj (ξ − x− y) (η − x+ y)

] (
wj

(
ξ − η

2

)
+ µj

n∑
i=1

Dβi

rξu(t, 0)

)
dη,

(j = 2, 3), where I0(z), I1(z) are the modified Bessel function (Bessel function of
the first kind with imaginary argument), Ī1(z) = I1(z)/z. This result relies on the
properties of Riemann functions [29, Chapter II, §5].

From (61) with respect to (152), we get

τ(2x− r)− λ2(x− r)
∫ r

2x−r
τ (ξ) Ī1

[√
λ2 (ξ − 2x+ r) (r − ξ)

]
dξ−

−
∫ r

2x−r
ν (ξ) Ī0

[√
λ2 (ξ − 2x+ r) (r − ξ)

]
dξ = 2ψ1(x)− ψ1(r)+

6



+
1

2

∫ r

2x−r
dξ

∫ r

ξ

I0

[√
λ2 (ξ − 2x+ r) (η − r)

] (
w2

(
ξ − η

2

)
+ µ2

n∑
i=1

Dβi

rξτ(t)

)
dη.

By replacing 2x − r = z and changing z for x in the next formula, we find the
main functional relation between the functions τ(x) and ν(x) on γ1 in the domain
Ω2, that is,

τ(x)−
r∫

x

K(x, t)τ(t)dt−
r∫

x

I0

[√
λ2 (t− x) (r − t)

]
ν(t)dt = (16)

= 2ψ1

(
x+ r

2

)
+

0∫
x−r
2

w2 (t) dt

t+r∫
x−t

I0

[√
λ2 (ξ + t− x) (ξ − t− r)

]
dξ − ψ1(r),

where

K(x, t) =
λ2(x− r)

2
Ī1

[√
λ2(t− x)(r − t)

]
+

+
µ2

2

n∑
i=1

1

Γ(−βi)

t∫
x

dξ

(ξ − t)1+βi

r∫
ξ

I0

[√
λ2 (ξ + r) (η − x)

]
dη. (17)

Similarly,introducing (153) into (62), we get the following functional relation between
τ(x) and ν(x), transferred from the domain Ω3 to γ2

τ(x) +

x∫
r

K̄(x, t)τ(t)dt−
x∫
r

I0

[√
λ3 (t− r) (x− t)

]
ν(t)dt =

= 2ψ2

(
x+ r

2

)
− ψ2(r) +

0∫
r−x
2

w3 (t) dt

2t+x∫
r

I0

[√
λ3 (ξ − r) (ξ − 2t− x)

]
dξ, (18)

where

K̄(x, t) =
λ3(x− r)

2
Ī1

[√
λ3(t− r)(x− t)

]
+

+
µ3

2

n∑
i=1

1

Γ(−βi)

t∫
x

dξ

(ξ − t)1+βi

r∫
ξ

I0

[√
λ3 (ξ − r) (η − x)

]
dη. (19)

Further, from (11) and considering (2), (13) and (14), passing through the limit
y → +0 we obtain a second functional relation between τ(x) and ν(x), transferred
from the domain Ω1 to γ1 ∪ γ2 as

τ ′′(x)− ν(x)− λ1τ(x)− µ1

n∑
i=1

Dαi
rxτ(t) = w1(0), (20)

where w1(0) is an unknown constant to be defined.
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4 Proof of Theorem 2.1.

Substituting

ν(x) = τ ′′(x)− λ1τ(x)− µ1

n∑
i=1

1

Γ(−αi)

r∫
x

τ(t)dt

(x− t)1+αi
− w1(0),

into the main functional relation (16), and considering the agreement conditions
(9j),

τ(r) = ψ1(r), τ(x) = ψ1(r)−
r∫

x

τ ′(t)dt

and after some transformations, we have the following integro-differential relation

τ ′(x)−
r∫

x

K1(x, t)τ ′(t)dt = f1(x) + τ ′(r − 0)−w1 (0)

r∫
x

I0

[√
λ2 (t− x) (r − t)

]
dt+

+

0∫
x−r
2

w2 (t) dt

t+r∫
x−t

I0

[√
λ2 (ξ + t− x) (ξ − t− r)

]
dξ, (21)

where

K1(x, t) = 1− ∂

∂t
I0

[√
λ2(t− x)(r − t)

]
−

t∫
x

(K(x, ξ) + µ1k1(x, ξ)+

+λ1I0

[√
λ2(ξ − x)(r − ξ)

])
dξ, (22)

k1(x, t) =
n∑
i=1

1

Γ(−αi)

t∫
x

I0

[√
λ2(ξ − x)(r − ξ)

]
(ξ − t)αi+1

dξ,

f1(x) = 2ψ1

(
x+ r

2

)
, (23)

τ ′(r − 0), w1(0) are unknown parameters.
Thus, by considering (91) we conclude that f1(x) ∈ C2(γ1). By virtue of (91),

(17), (22), we can conclude that K1(x, t) ∈ C (γ1 × γ1) , as then

|K1(x, t)| ≤ const. (24)
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Thus, taking into account of the theory of Volterra integral equations [30, p. 10],
equation (21) has a unique solution, which is representable in the form

τ(x) = H1(x)+τ ′(r−0)H2(x)+w1(0)H3(x)−
0∫

x−r
2

H(x, t)w2(t)dt, 0 ≤ x ≤ r, (25)

where

H(x, t) =

2t+r∫
x

H∗(s, t)− 2t+r∫
s

R1(s, ξ)H∗(ξ, t)dξ

 ds, (26)

H1(x) = −
r∫

x

f1(t)

1−
t∫

x

R1(s, t)ds

 dt, (271)

H2(x) = x− r +

r∫
x

dt

r∫
t

R1(t, s)ds, (272)

H3(x) =

r∫
x

dt

r∫
t

I0

[√
λ2(s− t)(r − s)

]
−

s∫
t

R1(t, s)I0

[√
λ2(s− ξ)(r − s)

]
dξ

ds,
(273)

H∗(x, t) =

t+r∫
x−t

I0

[√
λ2 (ξ + t− x) (ξ − t− r)

]
dξ,

where R1(x, t) is the resolvent of the kernel K1(x, t). Such solution belongs to the
class of τ(x) ∈ C1(γ1\E) ∩ C3(γ1).

Further, by using (72) from (152), and taking into account (16), (20), (25) we
have the integral equation

w2(y)−
0∫
y

H1(2y + r, t)w2(t)dt−
0∫

y/2

H2(2y + r, t)w2(t)dt =

= H11(2y + r) + τ ′(r − 0)H12(2y + r) + w1(0)H13(2y + r), (28)

where

H1(y, t) = −H(y, t)H̄(y, y) + λ2

2t+r∫
y

H(ξ, t)H̄ ′(y, ξ)dξ+

+λ2

2t+r∫
y

(
H ′′(ξ, t)Ī1

[√
λ2(ξ − y)(r − ξ)

]
+ Ī1

[√
λ2(ξ − y)(ξ − 2t− r)

])
dξ+

(291)
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+
λ2

2

2t+r∫
y

(
H ′′(ξ, t)I2

[√
λ2(ξ − y)(r − ξ)

]
+ I2

[√
λ2(ξ − y)(ξ − 2t− r)

])
dξ,

H2(y, t) = µ2H

(
y + r

2
, t

)
, (292)

H11(y) = λ2H1(y)H̄(y, y)− µ2H1

(
y − r

2

)
− λ2

r∫
y

[
H̄
′

y (y, ξ)H1(ξ)+

+

(
Ī1

[√
λ2 (ξ − y) (r − ξ)

]
+

1

2
I2

[√
λ2 (ξ − y) (r − ξ)

])
H ′′1 (ξ)

]
dξ−

−
√

2ψ
′

3

(
y + r

2

)
, (301)

H12(y) = λ2H2(y)H̄(y, y)− µ2H2

(
y − r

2

)
− λ2

r∫
y

[
H̄
′

y (y, ξ)H2(ξ)+

+

(
Ī1

[√
λ2 (ξ − y) (r − ξ)

]
+

1

2
I2

[√
λ2 (ξ − y) (r − ξ)

])
H ′′2 (ξ)

]
dξ, (302)

H13(y) = λ2H3(y)H̄(y, y)− µ2H3

(
y − r

2

)
− λ2

r∫
y

[
H̄
′

y (y, ξ)H3(ξ)+

+

(
Ī1

[√
λ2 (ξ − y) (r − ξ)

]
+

1

2
I2

[√
λ2 (ξ − y) (r − ξ)

])
H ′′3 (ξ)

]
dξ+

+λ2

r∫
y

(
Ī1

[√
λ2(ξ − y) (r − ξ)

]
+

1

2
I2

[√
λ2(ξ − y) (r − ξ)

])
dξ, (303)

where H̄(y, t), S̄1(y, t) are continuous function.
By virtue of (91), (101), (26), (271), (272), and (273), we conclude that the func-

tions H1(2y + r, t), H1j (y) (j = 1, 3) are bounded,

|H1(2y + r, t)| ≤ const, |H1j(y)| ≤ const (j = 1, 3). (31)

By setting

F (y) = H11(2y + r) + τ ′(r − 0)H12(2y + r) + w1(0)H13(2y + r)+

+

0∫
y/2

H2(2y + r, t)w2(t)dt, (32)
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equation (28) is written as

w2(y) +

0∫
y

H1(2y + r, t)w2(t)dt = F (y), −r
2
≤ y ≤ 0. (33)

Assuming that the right-hand side is known, the kernel H1(2y+r, t) and the function
F (y) with regards 1)-3) conditions of the problem G1 belong to the class L2, has one
and essentially only one solution in the same class L2 (respectively in C). This
solution is given by the formula

w2(y) = F (y) +

0∫
y

R11(y, t)F (t)dt, (34)

where the ”resolvent kernel”R11(y, t) is given by the series of iterated kernelsH1(2y+
r, t) [30, p. 11].

Using (32) into (34), some transformations lead to

w2(y)−
0∫

y/2

H3(y, t)w2(t)dt = F̄ (y), (35)

where

H3(y, t) = H2(2y + r, t) +

2t∫
y

R11(y, ξ)H2(2ξ + r, t)dξ, (36)

F̄ (y) = H11(2y + r) +

0∫
y

R11(y, t)H11(2t+ r)dt+

+τ ′(r − 0)(H12(2y + r) +

0∫
y

R11(y, t)H12(2t+ r)dt) + w1(0)(H13(2y + r)+

+

0∫
y

R11(y, t)H13(2t+ r)dt). (37)

Note that by (31), (36), (37), and also (91), (101) , we have that that

|H3(y, t)| ≤ const,
∣∣F̄ (y)

∣∣ ≤ const. (38)
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To solve equation (35), we use the method successive approximations. Let us
construct the following sequence

w20(y) = F̄ (y),

w21(y) = F̄ (y) +
0∫

y/2

H3(y, t)F̄ (t)dt,

w22(y) = F̄ (y) +
0∫

y/2

H3(y, t)w21(t)dt, .....

w2n(y) = F̄ (y) +
0∫

y/2

H3(y, t)w2n−1(t)dt, ....

(39)

To prove the absolute and uniform convergence of {w2n(y)}∞n=1 is equivalent to the
convergence of the series

w20(y) +
∞∑
n=1

[w2n(y)− w2n−1(y)]. (40)

By naming
max |H3(y, t)| = M, max

∣∣F̄ (y)
∣∣ = m1, (41)

we can estimate

|w20(y)| ≤ m1,

|w21(y)− w20(y)| ≤

∣∣∣∣∣∣∣
0∫

y/2

H3(y, t)w20(t)dt

∣∣∣∣∣∣∣ ≤ m1M
y

2
,

|w22(y)− w21(y)| ≤

∣∣∣∣∣∣∣
0∫

y/2

H3(y, t) [w21(t)− w20(t)] dt

∣∣∣∣∣∣∣ ≤ m1M
2 y2

2! 23
,

......................................................................................

|w2n(y)− w2n−1(y)| ≤

∣∣∣∣∣∣∣
0∫

y/2

H3(y, t) [w2n−1(t)− w2n−2(t)] dt

∣∣∣∣∣∣∣ ≤
∣∣∣∣m1M

n (−1)nyn

n!2
n2+n

2

∣∣∣∣ .
From the last estimate one concludes that (40) converge absolutely and uni-

formly. Hence, we conclude that (35) has a solution w2(y) in [−r/2, 0]. For proving
uniqueness to the solution of (35), we proceed as in [9], that is, we prove that the
corresponding homogeneous equation has only a the trivial solution.

Let R12(y, t) be the resolvent of the kernel H3(y, t) [30, p. 11]. Then, the solution
of equation (35) is

w2(y) = H̃11(y) + τ ′(r − 0)H̃12(y) + w1(0)H̃13(y), −r
2
< y < 0, (42)
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where

H̃1j(y) = H1j(2y + r) +

0∫
y

R11(y, t)H1j(2t+ r)dt+

+

0∫
y/2

H1j(2t+ r)

R12(y, t) +

t∫
y/2

R12 (y, s)R11 (s, t) ds

 dt, j = 1, 3.

Analogously as (21), from the main functional relations (18) and (20) with regard
to the agreement condition ψ1(r) = ψ2(r) = 0 we arrive to the following Volterra
integral equation

τ ′(x)−
r∫

x

K̄1(x, t)τ ′(t)dt = g1(x)−

−
0∫

r−x
2

w3(t)dt

2t+x∫
r

I0

[√
λ3 (ξ − r) (ξ − 2t− x)

]
dξ + τ ′(r + 0) + w1(0)×

×
x∫
r

I0

[√
λ3 (t− r) (x− t)

]
dt, (43)

where

K̄1(x, t) = 1 +
∂

∂t
I0

[√
λ3(t− x)(x− t)

]
+

x∫
t

λ1I0

[√
λ3(ξ − r)(x− ξ)

]
dξ+

+

x∫
t

K̄(x, ξ) + µ1

n∑
i=1

x∫
ξ

I0

[√
λ3(s− r)(x− s)

]
Γ(−αi)(s− ξ)αi+1

ds

 dξ, (44)

g1(x) = −2ψ2

(
x+ r

2

)
, (45)

where τ ′(r + 0), w1(0) are unknown constants.
We investigate the right side of the integral equation (43)

g∗1(x) = g1(x)−
0∫

r−x
2

w3(t)dt

2t+x∫
r

I0

[√
λ3(ξ − r)(ξ − 2t− x)

]
dξ+

+

τ ′(r + 0) + w1(0)

x∫
r

I0

[√
λ3(t− r)(x− t)

]
dt

 . (46)
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From (44) and considering (62), (19) we conclude that K̄1(x, t) ∈ C (γ2 × γ2)
and consequently, ∣∣K̄1(x, t)

∣∣ ≤ const. (47)

Thus from (43) and with regards (92) we have

τ(x) = Q1(x) + τ(r+ 0)Q2(x) +w1(0)Q3(x)−
0∫

r−x
2

Q(x, t)w3(t)dt, r ≤ x ≤ 1, (48)

where

Q(x, t) =

x∫
r−2t

Q∗(t, s)− s∫
r−2t

Q∗(t, s)R̄1(s, ξ)dξ

 ds, (49)

Q1(x) = ψ2(r) +

x∫
r

g1(t)

1 +

x∫
t

R̄1(s, t)ds

 dt, (491)

Q2(x) =

x∫
r

1 +

s∫
r

R̄1(s, t)dt

 ds, (492)

Q3(x) =

x∫
r

s∫
r

I0

[√
λ3 (ξ − r) (s− ξ)

]
+

s∫
ξ

R̄1 (s, t) I0

[√
λ3 (ξ − r) (t− ξ)

]
dt

 dξds,

(493)

Q∗(x, t) =

2x+t∫
r

I0

[√
λ3 (ξ − r) (ξ − 2x− t)

]
dξ,

and R̄1(x, t) is the resolvent of the kernel K̄1(x, t).
On the other hand, conducting an analogous reasoning to that of w2(y), from

(153) and (72), with regards of (20), (48), we find the relation

w3(y) = Q̃11(y) + τ ′(r + 0)Q̃12(y) + w1(0)Q̃13(y),
r − 1

2
< y < 0, (50)

where Q̃1j(y),(j = 1, 3) are continuous functions.
In conclusion, by using the relations (25), (48) and considering (42), (50) and

the agreement conditions

τ(0) = ϕ1(0), τ ′(0) = ϕ2(0), τ(1) = ϕ3(0), (51)

we uniquely define the unknown constants τ ′(r − 0), τ ′(r + 0) and w1(0).
Now, from the function τ(x) and using relation (20), we uniquely define the

function ν(x).
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Consequently, problem G1 is identically solvable by the equivalence for Volterra
integral equations of the second kind with shift in Ωj (j = 2, 3).

Hence, by virtue of the (20), (25), (48), with considering (42), (50), (51), we
uniquely define functions τ(x) and ν(x).

Thus, the solution u(x, y) of the problem G1 in Ω2 and Ω3 dis efined by the
formula (15j) respectively j = 2, 3. For the determination of u(x, y) in the domain
Ω1, we arrive to the non loaded equation

∂

∂x

(
uxx − uy − λ1u

)
= Φ̃(x, y), (52)

with boundary conditions (3-5) and

u(x,+0) = τ(x),

where Φ̃(x, y) = µ1
∂
∂x

n∑
i=1

Dαi
rxτ(x) is a known function. The unique solution of this

problem is restored as the solution of problem T0 in [31].
In a similar way, we can investigate the following analogue of Gellerstedt problem,

when the boundary-value conditions are given on parallel characteristics [26].

Problem G2. Find a function that satisfies all the conditions of the problem G1,
except (62) and (72) for which the following conditions must be satisfied: ux(uy) is
continuous up to γ13 and satisfies the boundary-value conditions

u(x, y)|γ13 = ψ̃2(x), (x, 0) ∈ γ̄13; (53)

∂u(x, y)

∂n

∣∣∣∣
γ13

= ψ̃4(x), (x, 0) ∈ γ13, (54)

where ψ̃2(x) and ψ̃4(x) are given real-valued functions, moreover ψ̃2(r) = ϕ3(0),

ψ̃2(x) ∈ C1 (γ̄13) ∩ C3 (γ13) , ψ̃2(r) = 0, (55)

ψ̃4(x) ∈ C (γ̄13) ∩ C2 (γ13) . (56).

Theorem 4.1. If conditions (8), (91), (101), (55) and (56) are satisfied, then there
exists a unique solution of problem G2.

Theorem 4.1 is proved in the same way as Theorem 2.1. The main functional
relations (16) and (20), from the domains Ω2 and Ω1 is correctly. On the other side,
using the solution of the Cauchy problem (153), taking into account (53),

τ(1) = ψ̃2(1), τ(x) = ψ̃2(1)−
1∫

x

τ ′(t)dt

15



and (20) we obtain the Volterra integral equation of the second kind with respect
to τ ′(x) from the domain Ω3 to γ3. Further, conducting an analogous reasoning to
that of w3(y), from (153) and (54), with regards of (20) and τ(x) on r+1

2
< x < 1, we

can to find the w3(y) on r−1
2
< y < 0. The subsequent investigations are performed

by analogy with problem G1.
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