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Abstract

We perform an analytical study of the dynamics of a multi-solute model for water
transport across a cell membrane under periodic fluctuations of the extracellular solute
molalities. The presence or not of non-permeating solute in the cell influences the dy-
namical behavior of the water volume oscillations in a notable way. The proofs are based
on classical tools from the qualitative theory of diffirential equations, namely Brouwer
degree, upper and lower solutions and comparison arguments.
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1 Introduction

Cells may experience volume changes as a result of water transport across the cell membrane
by osmosis. Living organisms count on homeostatic processes for regulation of cell volume, but
this equilibrium can be altered by changing extracellular conditions. A good understanding
of the dynamics of cell volume is critical in the study of the physiology of biological tissues,
in particular in evolving areas like pharmacokinetics or cryobiology.

In a realistic situation, there are a large number of chemical species that can permeate
across the cell membrane. In the recent paper [3], the authors propose a general model capable
to describe the basic aspects of the dynamics of cell volume produced by active and passive
transport of water and an arbitrary number of solute species across the cell membrane. The
proposed model is the following system of ordinary differential equations

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

ẇk = bk

(
Mk(t)−

wk
w1

)
, k = 2, . . . , n.

(1)

Here, w1(t) is the water volume and wk(t), k = 2, . . . , n are the amount of non-negative solute
species inside the cell. The parameter xnp ≥ 0 represents the amount of non-permeating intra-
cellular solute species (salts) and bk > 0 are the relative decrease rates of permeating solutes.
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Finally, M1 : R → [0,+∞) models the extracellular concentration of non–permeating solute
and Mk : R → [0,+∞) k = 2, . . . , n represent variations of the extracellular concentrations
of permeating solute species.

System (1) is the natural extension of a previous model by Hernández [8] that considered
only the interplay between water volume and one permeating solute. As discussed in [8],
the model unifies a variety of relevant examples of solute–solvent transmembrane flux models
presented in the literature, see for instance [2, 3, 10, 11, 12] and the references therein.

As pointed out in [3], for the case of constant molalities Mk, k = 1, . . . , n, system (1) is
autonomous and its study can be reduced to an equivalent linear system, just multiplying by
w1 all the components of the vector field. This operation is equivalent to a time rescalling
and does not modify the geometry of the orbits. By using this reduction, the authors in [3,
Section 2] prove that system (1) has a unique equilibrium which is globally assymptotically
stable. The reparametrization to a linear system is also useful when the functions Mk(t) are
piece–wise constant and was used in [3, Section 3] to implement an optimal control scheme.
Nevertheless, this argument is not valid for more general cases on variable functions Mk(t).

In spite of the variety of homeostatic processes in living organims, biological parameters
are not static. As a matter of fact, there is extensive evidence of the existence of a circa-
dian rithm in plasma ion concentration in animals [1, 6, 9, 15]. Periodic water intake or
pharmacological treatements may influence on such periodic fluctuations as well. On the
other hand, the interaction of circadian clocks and solute concentration plays an important
role in the physiology of plants [7]. In this paper, we are interested in the case when the
extracellular environment experiences periodic fluctuations. From now on, we assume that
Mk : R → [0,+∞) are continuous and T -periodic functions, that is, there exists T > 0 such
that

Mk(t+ T ) = Mk(t), k = 2, . . . , n

for every T . In this context, it is natural to look for T -periodic solutions and their properties.
We distinguish two situations depending if non-permeating solute is present (xnp > 0) or

not (xnp = 0) in the cell. The first case is studied in Section 2, whereas Section 3 is devoted
to the second case. Finally, Section 4 presents some conclusions and further remarks.

In the rest of the paper, CT is the space of continuous and T -periodic functions. For a
given h ∈ CT , we denote ‖h‖∞ = max

[0,T ]
h(t). The mean value of a given h ∈ CT is denoted by

h =
1

T

∫ T

0
h(t)dt.

Throughout the paper, T -periodic solutions of (1) are understood in the classical sense, that
is, a set w1, . . . , wn of T -periodic functions with continuous derivatives satisfying (1) for all
t. We only consider T -periodic solutions in the range of physically consistent values, that is,
w1(t) > 0 and wk(t) ≥ 0 k = 2, . . . , n for all t.

2 The case xnp > 0 .

In the model under consideration, xnp > 0 accounts for the presence of non–permeating solute
species in the cell. Our main result is as follows.

Theorem 2.1 Assume that xnp > 0. Then, system (1) has a T -periodic solution if and only
if M1 > 0.
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The following lemma, which has interest by itself, plays a key role in the proof of Theorem
2.1. For simplicity, let us define the function

γ(t) =
n∑
i=1

Mi(t).

Lemma 2.1 Assume that xnp > 0 and M1 > 0. Any eventual T -periodic solution w =
(w1, . . . , wn) of system (1) satisfies the following bounds

xnp
‖γ‖∞

≤ w1(t) <
xnp

M1
+ Tγ,

xnp
‖γ‖∞

min
[0,T ]

Mk(t) ≤ wk(t) <
(
xnp

M1
+ Tγ

)
‖Mk‖∞ , k = 2, . . . , n

for every t ∈ [0, T ].

Proof. Let w = (w1, . . . , wn) be a T -periodic solution of system (1). We divide the proof
into several steps

Step 1: w1(t) > 0 for every t. Write the system as

ẇ1 =
xnp
w1

+
n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)−

wk
w1
, k = 2, . . . , n.

Adding all the equations, we get

ϕ̇ =
xnp
w1
−M1(t)

where ϕ = w1 +
∑n

k=2
wk
bk

is T -periodic. Therefore, integrating over [0, T ],

xnp

∫ T

0

1

w1(t)
dt = M1T > 0. (2)

By the integral mean value theorem, there exists t0 such that w1(t0) > 0. Besides, due
to the singular term

xnp

w1
, a solution w1 must have a constant sign. In conclusion, w1(t)

is always positive.

Step 2 wk(t) > 0 for all t, k = 2, . . . , n. For a given k, let t0 ∈ [0, T ] be such that wk(t0) =
min
[0,T ]

wk(t). Obviously, ẇk(t0) = 0. Hence, the k-th equation reads

0 = Mk(t0)−
wk(t0)

w1(t0)
,

that is,
wk(t0) = Mk(t0)w1(t0) ≥ 0. (3)
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Step 3 w1(t) ≥
xnp
‖γ‖∞

for every t. Take t0 ∈ [0, T ] such that w1(t0) = min
[0,T ]

w1(t). Evaluating in

the first equation

0 =
xnp
w1(t0)

+
n∑
j=2

wj(t0)

w1(t0)
− γ(t0).

Then, by using Step 2,

xnp
w1(t0)

= γ(t0)−
n∑
j=2

wj(t0)

w1(t0)
≤ ‖γ‖∞ ,

and the conclusion follows.

Step 4 wk(t) ≥
xnp
‖γ‖∞

min
[0,T ]

Mk(t) for all t, k = 2, . . . , n. Trivial from (2) and Step 3.

Step 5 min
[0,T ]

w1(t) ≤
xnp

M1

. Coming back to (2), by the integral mean value theorem, there exists

t0 such that
xnp
w1(t0)

= M1.

Then, min
[0,T ]

w1(t) ≤ w1(t0) =
xnp

M1

.

Step 6 w1(t) <
xnp

M1

+ Tγ for every t. By periodicity, we can take t1 < t2 < t1 + T such that

w1(t1) = max
[0,T ]

w1(t), w1(t2) = min
[0,T ]

w1(t). From the first equation of the system,

ẇ1(t) > −γ(t).

Integrating on [t1, t2] we get

w(t2)− w(t1) >

∫ t2

t1

γ(t)dt > −Tγ.

Therefore,
max
[0,T ]

w1(t) = w1(t1) < w1(t2) + Tγ,

and the conclusion follows directly from Step 5.

Step 7 wk(t) <
(
xnp

M1
+ Tγ

)
‖Mk‖∞ for all t, k = 2, . . . , n. For a given k, take t1 ∈ [0, T ] such

that wk(t1) = max
[0,T ]

wk(t). Evaluating on the kth equation,

0 = Mk(t1)−
wk(t1)

w1(t1)
.

Thus,
wk(t1) = w1(t1)Mk(t1) ≤ w1(t1) ‖Mk‖∞ ,

and the proof is finished by Step 6.
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To prove Theorem 2.1, we use a well-known continuation theorem by Capietto-Mawhin-

Zanolin, which is stated below for the reader’s convenience.

Proposition 1 ([4]) Let Ω be a domain contained in Rn. Let us consider a continuous
homotopy f = f(t, x;λ) : [0, T ] × Ω × [0, 1] → Rn such that F (t, x) = f(t, x; 1) and f0(x) =
f(t, x; 0), where f0 : Ω→ Rn is a given continuous function. Assume that there is a compact
set K ⊂ Ω containing all the T -periodic solutions of the homotopic system

x′ = f(t, x;λ)

and suppose that {z ∈ Rn : f0(z) = 0} ⊂ K. Assume that

dB(f0, G, 0) 6= 0

where G ⊂ Rn is an open subset containing K. Then, system x′ = F (t, x) has at least one
T -periodic solution with values in K.

Here, dB(f0, G, 0) is the Brouwer topological degree of the vector field f0 (one can consult
for intance [5, 13] for the formal definition and main properties). To apply Proposition 1,
first we have to embed system (1) into a suitable homotopic system. To this aim, we define
the functions

Mk,λ(t) = λMk(t) + (1− λ)Mk, k = 1, . . . , n

with λ ∈ [0, 1]. Then, the homotopic system

ẇ1 =
xnp
w1

+
n∑
j=2

wj
w1
−

n∑
i=1

Mi,λ(t),

ẇk = bk

(
Mk,λ(t)− wk

w1

)
, k = 2, . . . , n.

(4)

defines a continuous deformation from the original system (1) for λ = 1 into the autonomous
system

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

M i,

ẇk = bk

(
Mk −

wk
w1

)
, k = 2, . . . , n

(5)

for λ = 0. Moreover, note that

Mk,λ = Mk,

min
[0,T ]

Mk(t) ≤ min
[0,T ]

Mk,λ(t) ≤ ‖Mk,λ‖∞ ≤ ‖Mk‖∞

for all λ ∈ [0, T ], k = 1, . . . , n. This fact implies that the uniform bounds given by Lemma
2.1 remain valid for the T -periodic solutions of the whole homotopic system (4). Therefore,
to conclude the proof it remains to check that the Brouwer degree of the vector field f0(w)
given by system (5) is different from zero.

5



In our case, Ω = R+×Rn−1 and K is the closed box in Ω defined by the lower and upper
bounds given in Lemma 2.1. The vector field f0 : Ω→ Rn is defined by

f0(w) =

xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

M i, b2

(
M2 −

w2

w1

)
, . . . , bn

(
Mn −

wn
w1

) .

For regular vector fields, the simplest way to compute the degree is the following linearization
principle: if f is of class C1 and has a finite number of zeroes in G, say f−1(0) = {ξ1, . . . , ξm},
then the Brouwer degree is explicitly given by the formula

dB(f,G, 0) =

m∑
i=1

sgn (det Jf(ξi)) , (6)

where Jf is the Jacobian matrix of f . In our case, f0 ∈ C1(Ω) and the unique point such
that f(ξ) = 0 is

ξ =
xnp

M1

(
1,M2, . . . ,Mn

)
.

Computing the Jacobian matrix of f0 and evaluating in ξ, after simple row manipulation on
the determinant, we get

det Jf(ξ) =
(
M1
xnp

)n
b2 · · · bn det


−
∑n

k=1Mk 1 1 · · · · · · 1

M2 −1 0 · · · · · · 0

M3 0 −1 0 · · · 0
... 0

Mn 0 0 · · · 0 −1



=
(
M1
xnp

)n
b2 · · · bn det


−M1 0 0 · · · · · · 0

M2 −1 0 · · · · · · 0

M3 0 −1 0 · · · 0
... 0

Mn 0 0 · · · 0 −1


= (−1)nM1

(
M1
xnp

)n
b2 · · · bn.

In consequence, dB(f0, G, 0) = (−1)n 6= 0, where G is an open and bounded set such that
K ⊂ G ⊂ G ⊂ Ω. Thus, the sufficient part of Theorem 2.1 is proved.

To complete the proof of Theorem 2.1, it remains the “only if” part, that is, if system (1)
has a T -periodic solution then M1 > 0. To prove it, we write system (1) as

ẇ1 =
xnp
w1

+

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)−

wk
w1
, k = 2, . . . , n.

Then, if there exists a T -periodic solution, adding alll the equations and integrating over a
period, we get

M1 =
1

T

∫ T

0

xnp
w1(t)

dt > 0,

and the proof is done.
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3 The case xnp = 0.

In this section, we analyze the dynamics of system (1) when xnp = 0, that is, when the cell
does not contain non-permeating solute species. In this case, the system can be written as

ẇ1 =

n∑
j=2

wj
w1
−

n∑
i=1

Mi(t),

1

bk
ẇk = Mk(t)−

wk
w1
, k = 2, . . . , n.

Adding all the equations,
ϕ̇ = −M1(t),

where ϕ = w1 +
n∑
k=2

wk
bk

. Remember that M1 : R→ [0,+∞) is the extracellular concentration

of non–permeating solute. Therefore,

ϕ(t) = ϕ(0)−
∫ t

0
M1(s)ds.

In consequence, if M1 > 0 then

w1(t) ≤ ϕ(t) = ϕ(0)−
∫ t

0
M1(s)ds→ −∞ as t→ +∞.

But remember that w1(t) is the water volume inside the cell, so physically if M1 > 0 the
water volume is zero at a finite time, regardless the initial conditions. Therefore, a necessary
condition for the existence of periodic states is M1(t) ≡ 0. The next result considers a
particular case where such condition is also sufficient.

Theorem 3.1 Assume that xnp = 0, M1(t) ≡ 0 and

(H1) there exists b > 0 such that b = bk for every k = 2, . . . , n.

Then, system (1) has infinitely many T -periodic solutions.

In the proof, we will need the following basic result for a first order scalar equation with
a singular nonlinearity.

Lemma 3.1 For any h ∈ CT with hm := min
[0,T ]

h(t) > 0 and a > 0, the first order equation

ẇ1 =
a

w1
− h(t) (7)

has a unique T -periodic solution w1(t). Moreover, w1 satisfies the explicit bounds

a

‖h‖∞
≤ w1(t) ≤

a

hm
for all t. (8)
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Proof. To prove the existence, we make use of the classical method of upper and lower
solutions (see for instance [14]). According to the definition in [14], α = a

‖h‖∞
is an upper

solution and β = a
hm

is a lower solution for eq. (7). By [14, Theorem 2.2], (7) has a T -periodic
solution with values between α and β.

To prove the uniqueness, let us assume by contradiction that there exist two different
solutions w1, ŵ1 of eq. (7). For a first order equation with regular nonlinearity on its domain
of definition, the flux is ordered, that is, two solutions do not cross each other, as a consequence
of the uniqueness of solution for the initial value problem. Hence, we can assume w1(t) > ŵ1(t)
for all t. If d(t) = w1(t)− ŵ1(t), by subtracting the respective equations,

ḋ =
a

w1
− a

ŵ1
< 0, for all t.

Now, an integration on [0, T ] leads to contradiction. �

Proof of Theorem 3.1. By repeating the argument at the beginning of this section, we have

that ϕ̇ = 0, where ϕ(t) = w1(t) +
1

b

n∑
k=2

wk(t). In consequence, ϕ(t) is a conserved quantity

of the system, that is, there exists C > 0 such that ϕ(t) = C for all t.
Now, we will use the conserved quantity to decouple the first equation. From ϕ(t) = C

we get
n∑
k=2

wk(t) = b(C − w1(t)) for all t. (9)

Inserting this summation into the first equation of system (1), one gets the decoupled equation

ẇ1 =
bC

w1
− b−

n∑
i=2

Mi(t). (10)

Now, we apply Lemma 3.1 with a = bC and h(t) = b +
∑n

i=2Mi(t). For any C > 0, there
exists a unique T -periodic solution w1,C of (10), such that

bC

b+ ‖
∑n

i=2Mi(t)‖∞
≤ w1,C(t) ≤ bC

b+ min
[0,T ]

n∑
i=2

Mi(t)

for all t. (11)

Once w1,C is fixed, the rest of equations of the system are written as

ẇk +
b

w1,C(t)
wk = bMk(t), k = 2, . . . , n, (12)

and can be solved as linear equations. In effect, By Fredholm’s alternative, eq. (12) has a
unique T -periodic solution wk,C , k = 2, . . . , n.

In conclusion, we have demonstrated the existence of a uniparametric family wC =
(w1,C , . . . , wn,C) of T -periodic solutions with C > 0. �

In the previous result, the first component w1,C(t) of the uniparametric family T -periodic
solutions of system (1) represents periodic oscillations of the water volume. In the final result
of this section, it is proved that the water volume determined by arbitrary initial conditions
of the system tends asymptotically to one of these periodic oscillations.
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Theorem 3.2 Assume the conditions of Theorem 3.1. Let w(t, w0) = (w1(t, w0), . . . , wn(t, w0))
the unique solution of system (1) with initial condition w(0) = w0 = (w0

1, . . . , w
0
n). Then,

lim
t→+∞

|w1(t, w0)− w1,C0(t)| = 0,

where C0 = w0
1 +

1

b

n∑
k=2

w0
k.

For the proof, repeating the arguments at the beginning of the proof of Theorem 3.2, it is
shown that w1(t, w0) verifies eq. (10) with C = C0. On the other hand, w1,C0(t) is the unique
T -periodic solution of (10) with C = C0, by Lemma 3.1. Then the proof is finished once the
following lemma is proved.

Lemma 3.2 Let be h ∈ CT with hm := min
[0,T ]

h(t) > 0 and a > 0. Then, the unique T -periodic

solution of eq. (7) given by Lemma 3.1 is globally asymptotically stable.

Proof. The argument is similar to that used to prove the uniqueness. Let w1 be the unique
T -periodic solution and ŵ1 any other solution of eq. (7). We have to prove that d(t) =
w1(t)− ŵ1(t) tends to zero as t→ +∞.

Again by the order of the flux, we can assume w1(t) > ŵ1(t) for all t (the reciprocate
inequality is handled analogously). By subtracting the respective equations,

ḋ =
a

w1
− a

ŵ1
< 0, for all t. (13)

Therefore, d(t) is a positive and strictly decreasing function, so in consequence it tends to a
constant and ḋ(t)→ 0 as t→ +∞. For (13), we can write

d(t) = −1

a
w1(t)ŵ1(t)ḋ(t),

and passing to the limit, the proof is concluded. �

4 Conclusions and final remarks.

We have studied the dynamical behavior of a general model recently proposed in the literature
for the evolution of water transport accross a cell membrane under the influence of an arbitrary
number of permeating solutes, when the extracellular solute molalities change periodically. We
have shown that the situation is different depending if the cell contains non-permeating solute
species (salts) or not. In the first case (xnp > 0), the system has at least one periodic solution
if and only if the extracellular molality of non-permeant solute (M1) is positive (Theorem
2.1). Moreover, we have provided explicit bounds of the oscillations of water volume and
solute concentrations (see Lemma 2.1). For constant extracellular molalities, such periodic
solution corresponds to the unique asymptotically stable equilibrium found in [3]. Our main
result only guarantees the existence of periodic solution, thus the question of uniqueness and
stability (even in the case n = 2) remains as an interesting open problem.

On the other hand, in the absence of non-permeating solute (xnp = 0, M1(t) ≡ 0), we have
proved the existence of an infinite number of T -periodic solutions when the rate constants bk
are the same for all the permeating solutes (hypothesis (H1)). Furthermore, for any initial

9



condition the water volume variation is asymptotically periodic (Theorem 3.2), and we have
explicit bounds on the asymptotic periodic profile depending on the initial conditions, see
(11). Note that by means of (11), w1,C(t) tends uniformly to +∞ (resp. 0) if C → +∞ (resp.
0). Therefore, we can modulate the asymptotic periodic profile of water volume attending to
the initial conditions. Of course, for the case n = 2, (H1) is always valid. In the general case
of an arbitrary number of solutes with different rates bk, it is not clear if results analogous to
those of Section 3 can be proved.

As a final remark, we have chosen the extracellular concentrations Mk(t) as continu-
ous functions for simplicity, but exactly the same arguments can be developed with minor
modifications for piece–wise continous functions, by considering the solutions of (1) in the
Carathéodory sense (that is, in the space W 1,1

loc ).
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