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Physical background

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of
weakly interacting bosons confined in an external potential and cooled to
temperatures very near absolute zero (0 K or -273.15 -C). Under such
conditions, a large fraction of the bosons occupy the lowest quantum state
of the external potential, at which point quantum effects become
apparent on a macroscopic scale.



Physical background

A Bose-Einstein condensate (BEC) is a state of matter of a dilute gas of
weakly interacting bosons confined in an external potential and cooled to
temperatures very near absolute zero (0 K or -273.15 -C). Under such
conditions, a large fraction of the bosons occupy the lowest quantum state
of the external potential, at which point quantum effects become
apparent on a macroscopic scale.

Theoretically predicted by Satyendra Nath Bose and Albert Einstein in
1924-25. First experiment performed in 1995 by Eric Cornell and Carl
Wieman (Nobel Prize in Physics 2001).



Physical background

Vortices can be created on a BEC.
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Physical background

The dynamical evolution of such vortices
is a natural question



The model for n vortices

ẋk = −c(rk, t)Skyk − b
∑

j 6=k

Sj
yk − yj

r2
jk

,

ẏk = +c(rk, t)Skxk + b
∑

j 6=k

Sj
xk − xj

r2
jk

, k = 1 . . . n,

where
(xk, yk) ≡ coordinate of vortex k
Sk = ±1 charge of vortex k
rjk =

√

(xj − xk)2 + (yj − yk)2 ≡ separation between vortex j and vortex k

rk =
√

x2
k + y2

k ≡ distance of vortex k to the center.
c(rk, t) ≡ trap coefficient, positive and T - periodic in time.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

Fix n = 2, S1 = S2 = 1.

ẋ1 = −c(t) y1 − b
y1 − y2

r2
, ẋ2 = −c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 + b
x1 − x2

r2
, ẏ2 = +c(t)x2 + b

x2 − x1

r2
,



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

Fix n = 2, S1 = S2 = 1.

ẋ1 = −c(t) y1 − b
y1 − y2

r2
, ẋ2 = −c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 + b
x1 − x2

r2
, ẏ2 = +c(t)x2 + b

x2 − x1

r2
,

Change:

s1 = x1 + x2 d1 = x1 − x2

s2 = y1 + y2 d2 = y1 − y2.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

Fix n = 2, S1 = S2 = 1.

ẋ1 = −c(t) y1 − b
y1 − y2

r2
, ẋ2 = −c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 + b
x1 − x2

r2
, ẏ2 = +c(t)x2 + b

x2 − x1

r2
,

Gives:

s′1 = −c(t)s2

s′2 = c(t)s1



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

Fix n = 2, S1 = S2 = 1.

ẋ1 = −c(t) y1 − b
y1 − y2

r2
, ẋ2 = −c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 + b
x1 − x2

r2
, ẏ2 = +c(t)x2 + b

x2 − x1

r2
,

Solution:

s1 = A cos (C(t) + B)

s2 = A sin (C(t) + B) ,

with C(t) =
∫ t

0
c(s)ds.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

ḋ1 = −c(t) d2 −
2bd2

(d2
1 + d2

2)
,

ḋ2 = +c(t) d1 +
2bd1

(d2
1 + d2

2)
.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.
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2bd2

(d2
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,

ḋ2 = +c(t) d1 +
2bd1

(d2
1 + d2

2)
.

Change to polar coordinates:

d1 = r cos ϕ, d2 = r sin ϕ,

From r2 = d2
1 + d2

2, we get

rṙ = d1ḋ1 + d2ḋ2 = 0.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

ḋ1 = −c(t) d2 −
2bd2

(d2
1 + d2

2)
,

ḋ2 = +c(t) d1 +
2bd1

(d2
1 + d2

2)
.

Change to polar coordinates:

d1 = r cos ϕ, d2 = r sin ϕ,

From r2 = d2
1 + d2

2, we get

rṙ = d1ḋ1 + d2ḋ2 = 0.

Hence, r is a constant of motion.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

The angular component ϕ = arctan (d2/d1) yields

ϕ̇ =
d1ḋ2 − d2ḋ1

r2
=

2b

r
+ c(t).

Since r is constant,

ϕ(t) =
2b

r
t + C(t) + D,

where D is an arbitrary constant.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.

The angular component ϕ = arctan (d2/d1) yields

ϕ̇ =
d1ḋ2 − d2ḋ1

r2
=

2b

r
+ c(t).

Since r is constant,

ϕ(t) =
2b

r
t + C(t) + D,

where D is an arbitrary constant.
The general solution reads

d1 = R cos

(

2b

R
t + C(t) + D

)

,

d2 = R sin

(

2b

R
t + C(t) + D

)

,

where D and R are arbitrary constants.
Hence, the case of two corotating vortices is explicitly solvable. Generically,
one finds quasi-periodic solutions and there is a sequence of periodic solutions
that can be obtained by fine-tuning R.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.
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Figure: Periodic orbit corresponding to two vortices with constant trapping
coefficient c(t) = 0.1, vortex-vortex interaction coefficient b = 1. The vortices are
initially placed at (x1(0), y1(0)) = (2, 0) (see [blue] square) and (x2(0), y2(0)) = (4, 0)
(see [green] circle).



The case c(ri, t) ≡ c(t). Two co-rotating vortices.
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Figure: Same as before but for a quasi-periodic orbit for a constant trapping
coefficient c(t) = π/20.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.
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Figure: A quasi-periodic orbit for c(t) = 0.1(1 + ǫ sin(ωt)) and b = 1 with ǫ = 0.25
and ω = π/30.



The case c(ri, t) ≡ c(t). Two co-rotating vortices.
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Figure: Same as in Fig. 3 but for a larger perturbation strength of ǫ = 2.5. The
apparent complex motion displayed in the top-left panel (in original coordinates) is
nothing but a quasi-periodic orbit that is better elucidated in transformed
coordinates in the bottom panel.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

Fix n = 2, S1 = 1, S2 = −1.

ẋ1 = −c(t) y1 + b
y1 − y2

r2
, ẋ2 = c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 − b
x1 − x2

r2
, ẏ2 = −c(t)x2 + b

x2 − x1

r2
,



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

Fix n = 2, S1 = 1, S2 = −1.

ẋ1 = −c(t) y1 + b
y1 − y2

r2
, ẋ2 = c(t) y2 − b

y2 − y1

r2

ẏ1 = +c(t)x1 − b
x1 − x2

r2
, ẏ2 = −c(t)x2 + b

x2 − x1

r2
,

ṡ1 = +2b
d2

r2
− c(t) d2,

ṡ2 = −2b
d1

r2
+ c(t) d1,

and
ḋ1 = −c(t) s2,

ḋ2 = +c(t) s1.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

Changing time τ = C(t) ≡
∫ t

0
c(s)ds yields the equivalent system

ṡ1 = +f(τ)
d2

r2
− d2,

ṡ2 = −f(τ)
d1

r2
+ d1,

ḋ1 = −s2,

ḋ2 = +s1,

(1)

where f(τ) ≡ 2b/c(t(τ)).



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

d̈1 + d1 = f(τ)
d1

r2
,

d̈2 + d2 = f(τ)
d2

r2
.

(2)

Recalling that r =
√

d2
1 + d2

2, one notes that this Newtonian system has a
radial symmetry. This type of systems plays a central role in Celestial
Mechanics.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

d̈1 + d1 = f(τ)
d1

r2
,

d̈2 + d2 = f(τ)
d2

r2
.

(2)

Recalling that r =
√

d2
1 + d2

2, one notes that this Newtonian system has a
radial symmetry. This type of systems plays a central role in Celestial
Mechanics.
Change to polar coordinates: d1 = r cos(ϕ), d2 = r sin(ϕ), leads to

r̈ + r =
ℓ2

r3
+

f(τ)

r
, (3)

ϕ̇ =
ℓ

r2
, (4)

where ℓ ≡ r2ϕ̇ = d1ḋ2 − d2ḋ1 = r2
1 − r2

2 = const. is the angular momentum of
the solution (d1, d2).



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

Equation (3) is decoupled and can be studied separately. If r(t + T ) = r(t):

ϕ(τ) =

∫ τ

0

ℓ

r2
ds

and
r(t + T ) = r(t) ϕ(t + T ) = ϕ(t) + θ,

where θ ≡ ϕ(T ) =
∫ T

0
ℓ/r2ds is the rotation number. Coming back to the

Cartesian coordinates d = (d1, d2) and using the more convenient complex
notation,

d(t + T ) = eiθ
d(t).

Therefore, from a T -periodic solution of (3) we get a quasi-periodic solution of
the original system. If θ = 0 (stationary case) the solution d is T -periodic,
whereas if θ = 2π/k then d is kT -periodic (subharmonic of order k).



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

r̈ + r =
ℓ2

r3
+

f(τ)

r

For simplicity, take c(t) = 1 + ǫ sin(ωt).

Theorem

Assume that ω > 2. Then, for any ℓ ≥ 0, (3) has a T -periodic solution such
that

r(t) > r∗ =

√

2b

1 + ǫ
cos

(π

ω

)

.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

r̈ + r =
ℓ2

r3
+

f(τ)

r

For simplicity, take c(t) = 1 + ǫ sin(ωt).

Theorem

Assume that ω > 2. Then, for any ℓ ≥ 0, (3) has a T -periodic solution such
that

r(t) > r∗ =

√

2b

1 + ǫ
cos

(π

ω

)

.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

Sketch of the proof.

We summarize the technique employed in [Torres, JDE, 2003].

ω > 2 implies that the linear operator Lr := r̈ + r has a positive Green’s
function G(t, s) such that

m := cot
(π

ω

)

≤ G(t, s) ≤ M := 1/ sin
(π

ω

)

.

A T -periodic solution of Eq. (3) is a fixed point of the operator

Ar =

∫ T

0

G(τ, s)

[

ℓ2

r3
+

f(τ)

r

]

ds.

Apply Krasnoselskii’s fixed point Theorem for cone
compression-expansion with the cone

P =
{

u ∈ X : min
x

u ≥ m

M
‖u‖

}

,

where X the Banach space of the continuous and T -periodic functions
with the norm of the supremum.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

In consequence, there is a continuous branch of T -periodic solutions (ℓ, rℓ) of
Eq. (3). Now we analyze the stability of such solutions.

Theorem

Take ℓ ≥ 0. Then, there exists an explicitly computable ωℓ such that if ω > ωℓ

then rℓ is linearly stable as a T -periodic solution of Eq. (3).

Proof. The linearized equation around rℓ is ÿ + a(τ)y = 0 with

a(τ) = 1 +
3ℓ2

r4
ℓ

+
f(τ)

r2
ℓ

.

Now, use r(t) > r∗ and apply Lyapunov’s stability criterion.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

It is possible to prove analytically the presence of KAM dynamics in Eq. (3),
by using a Ortega’s third order approximation method as in
[Torres,Adv.Nonlinear Stud.,2002].

Theorem

Let us assume ℓ = 0, ω >
√

2, ω 6= {3
√

2, 4
√

2}. Then the T -periodic solution
r0 of Eq. (3) is of twist type except possibly for a finite number of values of ǫ.



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.
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Figure: Opposite charge vortices S1 = 1 (see solid [blue] line) and S2 = −1 (see
dashed [green] line) with constant trapping coefficient c(t) = 0.1, vortex-vortex
interaction coefficient b = 1. The vortices are initially placed at (x1(0), y1(0)) = (2, 0)
(see [blue] square) and (x2(0), y2(0)) = (4, 0) (see [green] circle) .



The case c(ri, t) ≡ c(t). Two counter-rotating vortices.

−10 0 10
−10

−5

0

5

10

x
i

y i

−10 0 10

−10

0

10

s
1
, d

1

s 2, d
2

−10

−5

0

5

10

x i, y
i

0 200 400 600 800 1000

−10

0

10

t

s i, d
i

Figure: An irregular orbit corresponding to c(t) = 0.1(1 + ǫ sin(ωt)) and b = 1 with
ǫ = 1 and ω = 0.12.



The Fetter case.

In a more realistic situation, the precession frequency depends also on r.
Fetter [2001] proposed

c(r, t) ≡ Ω(r) =
2~ω2

r

8µ(1 − r2/R2
⊥)

(

3 +
ω2

r

5ω2
z

)

ln

(

2µ

~ωr

)

,

where ωr (ωz) is the radial (axial) trap frequency, R⊥ is the Thomas-Fermi
radial extent of the condensate (can be normalized to 1), and µ is the chemical
potential.



The Fetter case.

In a more realistic situation, the precession frequency depends also on r.
Fetter [2001] proposed

c(r, t) ≡ Ω(r) =
2~ω2

r

8µ(1 − r2/R2
⊥)

(

3 +
ω2

r

5ω2
z

)

ln

(

2µ

~ωr

)

,

where ωr (ωz) is the radial (axial) trap frequency, R⊥ is the Thomas-Fermi
radial extent of the condensate (can be normalized to 1), and µ is the chemical
potential.
From now on,

Ω(r) =
Ω0

1 − r2
.



The Fetter case.

The model is

ẋk = −SkΩ(rk)yk − b

2

n
∑

j 6=k

Sj
yk − yj

r2
jk

,

ẏk = SkΩ(rk)xk +
b

2

n
∑

j 6=k

Sj
xk − xj

r2
jk

.

or in complex variables

iżk = −SkΩ(rk)zk +
b

2

n
∑

j 6=k

Sj
zk − zj

r2
jk



Conserved quantities and integrabitlity.

The system is hamiltonian. Define

H(z1, . . . , zn) = −Ω0

2

n
∑

k=1

ln(1 − r2
k) +

b

4

n
∑

k=1

n
∑

j 6=k

SjSk ln(r2
jk)

where Ω0 ≡ Ω(0). Then,

Skẋk = − ∂H
∂yk

,

Skẏk = ∂H
∂xk

for every k = 1, . . . , n.

H is a the first integral, i.e., a first conserved quantity along the orbits of the
system.
A second integral of motion is

V =
n

∑

k=1

Skr2
k,

which is a form of inertial momentum.



Conserved quantities and integrabitlity.

The presence of two conserved quantities or dynamical invariants guarantees
integrability in the classical Liouville sense for the case n = 2. This implies
that the energy level sets are compact and the phase space is foliated by
invariant tori. On each of these, the motion is quasi-periodic with two
frequencies.



The Fetter case with n = 2, S1 = 1, S2 = −1.

Theorem

The two vortices never collide, i.e., they are separated by a computable
minimal distance.



The Fetter case with n = 2, S1 = 1, S2 = −1.

Theorem

The two vortices never collide, i.e., they are separated by a computable
minimal distance.

Taking exponentials on the hamiltonian, we have

(1 − r2
1)

Ω0(1 − r2
2)

Ω0r
b/2

12 = C2 > 0 ∀t,

where C2 = (1 − r1(0)2)Ω0(1 − r2(0)2)Ω0r12(0)b/2. Note that 0 < C2 < 2b/2

because 0 ≤ ri(0)2 < 1 (i = 1, 2) and 0 < r12(0) < 2. Then,

r12(t) > C4/b ∀t,



The Fetter case with n = 2, S1 = 1, S2 = −1.

Theorem

There is an equilibrium, which is unique up to rotations, given by

(x0
1, y

0
1) = (

√

b

4Ω0 + b
, 0), (x0

2, y
0
2) = (−

√

b

4Ω0 + b
, 0)



The Fetter case with n = 2, S1 = 1, S2 = −1.

To emphasize the rotational invariance of our system, it is convenient to work
on the polar coordinates (r1, r2, θ). The (unique) equilibrium is

(r0
1, r

0
2, θ0) = (

√

b
4Ω0+b ,

√

b
4Ω0+b , π).

Theorem

The equilibrium (r0
1, r

0
2, θ0) is stable (in the sense of Lyapunov).



The Fetter case with n = 2, S1 = 1, S2 = −1.

The hamiltonian H is still a conserved quantity which in the new variables
reads

H(r1, r2, θ) = −1

2

[

Ω0 ln(1 − r2
1) + Ω0 ln(1 − r2

2) +
b

2
ln(r2

1 + r2
2 − 2r1r2 cos θ)

]

.

The equilibrium (r0
1, r

0
2, θ0) is a critical point of H. The hessian matrix

evaluated on (r0
1, r

0
2, θ0) is

1

8







7b + 12Ω0 + b2

Ω0

b + 4Ω0 0

b + 4Ω0 7b + 12Ω0 + b2

Ω0

0

0 0 b






.

One can prove easily that this matrix is positive-definite by Sylvester’s
criterion. Hence H attains a minimum at (r0

1, r
0
2, θ0), H is a Lyapunov

function and the equilibrium is, in fact, stable.



The Fetter case with n = 2, S1 = 1, S2 = −1.
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The Fetter case with n = 2, S1 = 1, S2 = −1.
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Guiding Center Equilibria and their Stability

We are looking for “guiding centers” about which the vortices oscillate. These
guiding centers might themselves be precessing around at some frequency ω.
For the case of symmetric guiding centers this precession frequency will be
zero.



Guiding Center Equilibria and their Stability

We are looking for “guiding centers” about which the vortices oscillate. These
guiding centers might themselves be precessing around at some frequency ω.
For the case of symmetric guiding centers this precession frequency will be
zero.

We adopt a trial solution of the form

z1(t) = r1 exp(iωt) and z2(t) = r2 exp(iωt + iπ) = −r2 exp(iωt). (5)

where r1 and r2 are now constant, as is ω, the precession frequency of the
guiding center.
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where s = r12 = r1 + r2 is the separation distance between the two guiding
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Note that if r2 = r1, then α = β and ω = 0, as we expect.
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Note that if r2 = r1, then α = β and ω = 0, as we expect.
On the other hand, once the position of r2 is fixed, the location of the first
vortex r ≡ r1 can be found from the third order polynomial

Ω0βr3 +
b

2r2

r2 − Ω0 (1 + β) r − b

r2

= 0. (8)

The stability of the guiding centers can be done as in the case of the
equilibrium by passing to a rotational frame.



Open problems.

The Fetter case with two corotating vortices (n = 2, S1 = S2 = 1) can be
handled in a similar way.

Dynamics of many vortices, both in the Fetter and non-Fetter case.

Collisions.

Effect of a more complicated precession frequency (for instance non
symmetric).



Thank you for your attention!!!


