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Abstract

The existence of stationary radial solutions to a partial differential equation
arising in the theory of epitaxial growth is studied. It turns out that the existence
or not of such solutions depends on the size of a parameter that plays the role of
the velocity at which mass is introduced into the system. For small values of this
parameter we prove existence of solutions to this boundary value problem. For large
values of the same parameter we prove nonexistence of solutions. We also provide
rigorous bounds for the values of this parameter which separate existence from
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nonexistence. The proofs come as a combination of several differential inequalities
and the method of upper and lower functions applied to an associated two-point
boundary value problem.

1 Introduction

Epitaxial growth is a technique used in the semiconductor industry for the growth of thin
films [1]. It is employed for growing crystal structures by means of the deposition of a
given material under high vacuum conditions. In epitaxial growth it is quite usual finding
a mounded structure generated along the surface evolution rather than a flat surface [7].
A number of models has been considered in order to explain this phenomenology. These
models have been usually introduced either as a discrete probabilistic system or as a
differential equation [1]. In this work we are interested in this second type of modeling
approach.

Here we will focus on the rigorous mathematical analysis of ordinary differential equa-
tions related to models which have been introduced in the context of epitaxial growth.
The mathematical description of epitaxial growth uses the function

φ : Ω ⊂ R2 × R+ → R, (1.1)

which describes the height of the growing interface in the spatial point x ∈ Ω ⊂ R2

at time t ∈ R+. Although this theoretical framework can be extended to any spatial
dimension N , we will concentrate here on the physical situation N = 2. A basic modeling
assumption is of course that φ is a well defined function, a fact that holds in a reasonably
large number of cases [1]. The macroscopic description of the growing interface is given by
a partial differential equation for φ which is usually postulated using phenomenological
and symmetry arguments [1, 8]. There are many such equations in the theory of non-
equilibrium surface growth. We will focus on the following one

∂tφ = κ1 det
(
D2φ

)
− κ2 ∆2φ+ ξ(x, t). (1.2)

This partial differential equation has been considered in the physical literature as a pos-
sible continuum description of epitaxial growth [3, 4]. At the mathematical level we can
consider it a parabolic problem whose evolution is dictated by a Monge-Ampère term
stabilized by a fourth order viscosity.

In this work we are concerned with the stationary version of (1.2), which reads{
∆2φ = det (D2φ) + λF, on Ω ⊂ R2,

boundary conditions,
(1.3)

after getting rid of the equation constant parameters by means of a trivial re-scaling of field
and coordinates. Our last assumption is that the forcing term F (x) is time independent.
The constant λ is a measure of the speed at which new particles are deposited, and for
physical reasons we assume λ ≥ 0 and F (x) ≥ 0. We will devote our efforts to rigorously
clarify the existence and nonexistence of solutions to this elliptic problem when set on a
radially symmetric domain.
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2 Radial Solutions

As already outlined in the previous section, our goal will be determining the existence
of radially symmetric solutions of boundary value problem (1.3). We set the problem on
the unit disk. In a previous work we have numerically found, for a constant forcing term
F (x) ≡ 1, the existence of two solutions for small values of λ and nonexistence of any
solution for sufficiently large values of λ [5]. In this paper we will still assume the forcing
term is constant, and we will find rigorous bounds for the values of λ separating existence
from nonexistence. We note that we could also build the existence/nonexistence theory
for arbitrary forcing terms F (x) with radial symmetry employing the same methods.
However, in this case, of course, we would loose accuracy on the estimates of the bounds
of λ.

In more precise terms, we look for solutions of the form φ(x) = φ̃(|x|) on Ω. If r = |x|,
by means of a direct substitution we find

1

r

{
r

[
1

r

(
rφ̃′
)′]′}′

=
1

r
φ̃′φ̃′′ + λF (r), (2.1)

where ′ = d
dr

. In the first case we consider homogeneous Dirichlet boundary conditions

for problem (1.3). This translates to the conditions φ̃′(0) = 0, φ̃(1) = 0, φ̃′(1) = 0, and
limr→0 rφ̃

′′′(r) = 0; the first one imposes the existence of an extremum at the origin and the
second and third ones are the actual boundary conditions. The fourth boundary condition
is technical and imposes higher regularity at the origin. If this condition were removed
this would open the possibility of constructing functions φ̃(r) whose second derivative had
a peak at the origin. This would in turn imply the presence of a measure at the origin
when calculating the fourth derivative of such an φ̃(r), so this type of function cannot be
considered as an acceptable solution of (2.1) whenever F (r) is a function. Throughout
this work we will assume F ≡ 1 as already mentioned.

Integrating once equation (2.1) against the measure r dr and using boundary condition
limr→0 rφ̃

′′′(r) = 0 yields

r

[
1

r

(
rφ̃′
)′]′

=
1

2
(φ̃′)2 +

1

2
λr2. (2.2)

By changing variables w = rφ̃′ we find the equation

w′′ − 1

r
w′ =

1

2

w2

r2
+

1

2
λ r2, (2.3)

subject to the conditions w′(0) = 0 and w(1) = 0. This is the equation that has been
numerically integrated in [5]; now we proceed to summarize these results. We observed
that for λ = 0 there are one trivial and one non-trivial solution. For 0 < λ < λ0 there
are two non-trivial solutions which approach each other for increasing λ. For λ > λ0 no
more solutions were numerically found. The critical value of λ was numerically estimated
to be λ0 ≈ 169. These results suggest no solutions exist for large enough λ.
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In the second case we reconsider problem (1.3) but this time subject to homogeneous
Navier boundary conditions. For the radial case we start as above, with equation (2.3),
but now with the condition w(1) = w′(1) arbitrary instead of w(1) = 0, what corre-
sponds to homogeneous Navier boundary conditions. The results for this second case
were qualitatively similar to those of the first case but quantitatively rather different [5].
In particular, we numerically observed that for λ = 0 there are one trivial and one non-
trivial solutions. For 0 < λ < λ0 there are two non-trivial solutions which approach each
other for increasing λ. For λ > λ0 no more solutions were numerically found. The critical
value of λ was numerically estimated to be λ0 ≈ 11.34.

3 Statement of the Boundary Value Problem

The rest of this work is devoted to rigorously justify the numerical facts summarized
in the previous section. We will show how to prove the existence of solutions for small
λ and nonexistence for large λ, as well as provide rigorous bounds for the values of
this bifurcation parameter which separate existence from nonexistence. Our first step
will be recasting the differential equation under study into a form more suitable for its
mathematical analysis.

Let us consider again equation (2.3), which we write now in the following form

r2w′′ − rw′ = λ

2
r4 +

w2

2
for r ∈ (0, 1] (3.1)

with λ ≥ 0, together with the boundary conditions

w′(0) = 0, (3.2)

w(1) = 0, (3.3)

corresponding to Dirichlet boundary conditions, respectively the conditions (3.2) and

w(1) = w′(1), (3.4)

corresponding to Navier boundary conditions. The transformation

t =
r2

2
, u(t) = w(r) (3.5)

leads to the equation

u′′ =
u2

8t2
+
λ

2
for t ∈ (0, 1/2] (3.6)

with the conditions

lim
t→0+

√
t u′(t) = 0, (3.7)

u(1/2) = 0, (3.8)
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and respectively
u(1/2) = u′(1/2). (3.9)

Obviously, using the transformation (3.5) one can easily check that problems (3.1)–(3.3)
(resp. (3.1), (3.2), (3.4)) and (3.6)–(3.8) (resp. (3.6), (3.7), (3.9)) are equivalent. By
a solution to (3.6) we understand a function u belonging to the space C2

loc

(
(0, 1/2]; R

)
of functions u : (0, 1/2] → R such that u ∈ C2

(
[a, b]; R

)
for every compact interval

[a, b] ⊂ (0, 1/2], and satisfying (3.6).

4 Main Results

We start with the case of the Dirichlet conditions.

Theorem 4.1. There exists a real number λ0 > 0 such that problem (3.1)–(3.3) is solv-
able for every λ ∈ [0, λ0) and there is no solution to problem (3.1)–(3.3) if λ > λ0.
Furthermore, every solution w to (3.1)–(3.3) satisfies

w(r) ≤ 0 for r ∈ (0, 1], lim
r→0+

w(r) = 0. (4.1)

The information contained in this Theorem is complementary to the existence and
multiplicity results obtained in section 2 by means of variational arguments. On the
other hand, the following Proposition gives us a localization of the critical value of λ for
problem (3.1)–(3.3).

Proposition 4.1. The number λ0 from Theorem 4.1 admits the estimates

144 ≤ λ0 ≤ 307.

The situation is analogous for the Navier conditions.

Theorem 4.2. There exists a real number λ0 > 0 such that problem (3.1), (3.2), (3.4)
is solvable for every λ ∈ [0, λ0) and there is no solution to problem (3.1), (3.2), (3.4) if
λ > λ0. Furthermore, every solution w to (3.1), (3.2), (3.4) satisfies (4.1).

The following Proposition gives us a localization of the critical value of λ for problem
(3.1), (3.2), (3.4).

Proposition 4.2. The number λ0 from Theorem 4.2 admits the estimates

9 ≤ λ0 ≤
128

11
= 11.63.

By comparing these estimates with the numerical results, one observes that in both
cases the rigorous bounds capture the order of magnitude of the critical value of the
parameter. Estimates for the Navier problem are more accurate, and in this case the
upper bound is rather precise.

The rest of the paper is devoted to prove the latter results by means of a combination
of techniques for differential inequalities and the method of upper and lower functions.
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5 Auxiliary Propositions

In what follows, we establish some basic properties of a function u ∈ C2
loc

(
(0, 1/2]; R

)
satisfying the inequality

u′′(t) ≥ u2(t)

8t2
+
λ

2
for t ∈ (0, 1/2]. (5.1)

Lemma 5.1. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.7) and (5.1). Then

lim
t→0+

u(t) = 0. (5.2)

Proof. From (5.1) it follows that u′ is a non-decreasing function. Therefore, there exists
t0 ∈ (0, 1/2] such that either

u′(t) ≥ 0 for t ∈ (0, t0]

or
u′(t) < 0 for t ∈ (0, t0].

In both cases, the function u is monotone on the interval (0, t0]. Therefore, there exists
the (finite or infinite) limit u(0+). Assume that (5.2) does not hold. Then there exist
t1 ∈ (0, 1/2] and δ > 0 such that

u2(t) ≥ δ for t ∈ (0, t1].

Thus the integration of (5.1) from t to t1 yields

u′(t1)− u′(t) ≥
δ

8

(
1

t
− 1

t1

)
for t ∈ (0, t1]. (5.3)

Multiplying both sides of (5.3) by
√
t and applying a limit as t tends to zero we obtain

− lim
t→0+

√
t u′(t) ≥ δ

8
lim
t→0+

1√
t

= +∞,

which contradicts (3.7).

Remark 5.1. Note that every function u ∈ C2
loc

(
(0, 1/2]; R

)
satisfying (3.7) and (5.1)

satisfies also

lim
t→0+

u(t)√
t

= 0. (5.4)

Indeed, the equality (5.4) follows from Lemma 5.1 and de l’Hospital’s rule. On the other
hand, if (5.4) holds then (5.2) is fulfilled.

6



Lemma 5.2. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.8), (5.2), and

u′′(t) ≥ 0 for t ∈ (0, 1/2]. (5.5)

Then
u(t) ≤ 0 for t ∈ (0, 1/2]. (5.6)

Proof. It is enough to observe that a convex function defined on a compact interval always
attains its global maximum in one of the extremes.

Lemma 5.3. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.9), (5.2), and (5.5). Then (5.6) holds.

Proof. First we will show that
u(1/2) ≤ 0. (5.7)

Assume on the contrary that (5.7) does not hold. Then, according to (5.2), there exists
t0 ∈ (0, 1/2) such that

u(t0) < u(1/2)(1/2 + t0). (5.8)

Obviously, (5.5) yields

u′(1/2) ≥ u(1/2)− u(t0)

1/2− t0
,

whence, in view of (3.9), we obtain

u(1/2) ≥ u(1/2)− u(t0)

1/2− t0
,

However, the latter inequality contradicts (5.8). Therefore, the inequality (5.7) holds.
Finally, (3.9), (5.5), and (5.7) imply

u′(t) ≤ 0 for t ∈ (0, 1/2],

which together with (5.2) results in (5.6).

Lemma 5.4. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (5.4)–(5.6). Then (3.7) is fulfilled.

Proof. In view of Remark 5.1 the equality (5.2) holds. Therefore we have

u(t) =

∫ t

0

u′(s)ds for t ∈ (0, 1/2]. (5.9)

According to (5.5), from (5.9) it follows that

u(t) ≤ tu′(t) for t ∈ (0, 1/2]. (5.10)

Moreover, (5.2), (5.5), and (5.6) imply the existence of t0 ∈ (0, 1/2] such that u′(t) ≤ 0
for t ∈ (0, t0] which, together with (5.10), results in

u(t)√
t
≤
√
t u′(t) ≤ 0 for t ∈ (0, t0]. (5.11)

Now we get (3.7) from (5.11) using (5.4).
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Lemma 5.5. The problems (3.6)–(3.8) (resp. (3.6), (3.7), (3.9)) and (3.6), (3.8), (5.4)
(resp. (3.6), (3.9), (5.4)) are equivalent.

Proof. Let u be a solution to (3.6)–(3.8) (resp. (3.6), (3.7), (3.9)). Then, according to
Remark 5.1, u is also a solution to (3.6), (3.8), (5.4) (resp. (3.6), (3.9), (5.4)).

On the other hand, let u be a solution to (3.6), (3.8), (5.4) (resp. (3.6), (3.9), (5.4)).
Then, in view of (3.6), Remark 5.1 and Lemma 5.2 (resp. Lemma 5.3), the inequalities
(5.5) and (5.6) hold. Thus we get that (3.7) is fulfilled from Lemma 5.4.

Remark 5.2. It follows from Lemmas 5.1–5.3 that every solution u to (3.6)–(3.8) (resp.
(3.6), (3.7), (3.9)) satisfies (5.2) and (5.6).

Lemma 5.6. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (5.4). Then for every µ ∈ [0, 1) we have

lim
t→0+

t1−µ
∫ 1/2

t

u2(s)

s2
ds = 0. (5.12)

Proof. Put

f(t) =
u2(t)

t
for t ∈ (0, 1/2], g(t) =

1

tµ
for t ∈ (0, 1/2].

Then, obviously, g ∈ L
(
[0, 1/2]; R

)
and in view of (5.4), f ∈ L+∞([0, 1/2]; R

)
. Conse-

quently, fg ∈ L
(
[0, 1/2]; R

)
. Therefore, for every n ∈ N there exists tn ∈ (0, 1/2] such

that ∫ tn

0

u2(s)

s1+µ
ds ≤ 1

n
. (5.13)

On the other hand, for any n ∈ N, we have

0 ≤ t1−µ
∫ 1/2

t

u2(s)

s2
ds ≤ t1−µ

∫ 1/2

tn

u2(s)

s2
ds+ t1−µ

∫ tn

t

u2(s)

s2
ds ≤

≤ t1−µ
∫ 1/2

tn

u2(s)

s2
ds+

∫ tn

t

s1−µu2(s)

s2
ds ≤

≤ t1−µ
∫ 1/2

tn

u2(s)

s2
ds+

∫ tn

t

u2(s)

s1+µ
ds for t ∈ (0, tn], (5.14)

and so, in view of (5.13),

0 ≤ lim sup
t→0+

t1−µ
∫ 1/2

t

u2(s)

s2
ds ≤

∫ tn

0

u2(s)

s1+µ
ds ≤ 1

n
for n ∈ N.

Consequently, (5.12) holds.
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Lemma 5.7. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.6) and (5.4). Then

u(t) = −

[
(1/2− t)

∫ t

0

u2(s)

4s
ds+ t

∫ 1/2

t

u2(s)

4s2
(1/2− s)ds

+
λ

4
t(1/2− t)− 2tu(1/2)

]
for t ∈ (0, 1/2], (5.15)

lim
t→0+

u(t)

tµ
= 0 for µ ∈ [0, 1), (5.16)

and there exists the finite limit

lim
t→0+

|u(t)|
t

< +∞. (5.17)

Proof. For any τ ∈ (0, 1/2) we have a representation

u(t) = − 1

1/2− τ

[
(1/2− t)

∫ t

τ

u2(s)

8s2
(s− τ)ds+ (t− τ)

∫ 1/2

t

u2(s)

8s2
(1/2− s)ds

+
λ

4
(t− τ)(1/2− t)(1/2− τ)− u(τ)(1/2− t)− u(1/2)(t− τ)

]
for t ∈ [τ, 1/2]. (5.18)

According to (5.4) and Lemma 5.6 we have

lim
τ→0+

∫ t

τ

u2(s)

s2
(s− τ)ds = lim

τ→0+

∫ t

τ

u2(s)

s
ds− lim

τ→0+

τ

∫ t

τ

u2(s)

s2
ds =

∫ t

0

u2(s)

s
ds (5.19)

and, in view of Remark 5.1, (5.2) holds. Thus, on account of (5.19) and (5.2), from (5.18)
it follows that (5.15) holds.

Now if we multiply both sides of (5.15) by t−µ and apply the limit as t tends to zero,
with respect to Lemma 5.6 and (5.4), we obtain that (5.16) holds true.

Finally, put

f(t) =
u2(t)

t1+µ
for t ∈ (0, 1/2], g(t) =

1

t1−µ
for t ∈ (0, 1/2].

Then, in view of (5.16), we have f ∈ L+∞([0, 1/2]; R
)

and g ∈ L
(
[0, 1/2]; R

)
provided

µ ∈ (0, 1). Consequently, fg ∈ L
(
[0, 1/2]; R

)
, i.e.,∫ 1/2

0

u2(s)

s2
ds < +∞. (5.20)

Now from (5.15), in view of (5.4) and (5.20), we get

lim
t→0+

|u(t)|
t

=

∣∣∣∣∣
∫ 1/2

0

u2(s)

4s2
(1/2− s)ds+

λ

8
− 2u(1/2)

∣∣∣∣∣ ,
i.e., (5.17) holds.
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6 Upper and Lower Functions

First we will recall the notion of lower and upper functions to the general equation

u′′ = h(t, u, u′), (6.1)

where h ∈ Car
(
[a, b]× R2; R

)
is a Carathéodory function.

Definition 6.1. A continuous function γ : [a, b]→ R is said to be a lower (upper) function
to (6.1) if γ ∈ AC1

loc

(
[a, b] \ {t1, . . . , tn}; R

)
, where a < t1 < · · · < tn < b, there exist finite

limits γ′(ti+), γ′(ti−) (i = 1, . . . , n),

γ′(ti−) < γ′(ti+)

(
γ′(ti−) > γ′(ti+)

)
(i = 1, . . . , n),

and the inequality

γ′′(t) ≥ h(t, γ(t), γ′(t))

(
γ′′(t) ≤ h(t, γ(t), γ′(t))

)
for a. e. t ∈ [a, b]

holds.

The following two lemmas deal with the existence of a solution to (6.1) satisfying the
boundary conditions

u(a) = c1, u(b) = c2, (6.2)

and
u(a) = c1, u(b) = u′(b). (6.3)

The first one is a simple modification of the Scorza Dragoni theorem and its proof can be
found in [6] (see also the more recent monograph [2]).

Lemma 6.1. Let α and β be, respectively, lower and upper functions to (6.1) such that

α(t) ≤ β(t) for t ∈ [a, b] (6.4)

and
|h(t, x, y)| ≤ q(t) for a. e. t ∈ [a, b], α(t) ≤ x ≤ β(t), y ∈ R, (6.5)

where q ∈ L
(
[a, b]; R+

)
. Then, for every c1 ∈ [α(a), β(a)] and c2 ∈ [α(b), β(b)], the

problem (6.1), (6.2) has a solution u ∈ AC1
(
[a, b]; R

)
satisfying the condition

α(t) ≤ u(t) ≤ β(t) for t ∈ [a, b]. (6.6)

Lemma 6.2. Let α and β be, respectively, lower and upper functions to (6.1) satisfying
(6.4) and

α(b) ≥ α′(b), β(b) ≤ β′(b). (6.7)

Let, moreover, (6.5) is fulfilled where q ∈ L
(
[a, b]; R+

)
. Then, for every c1 ∈ [α(a), β(a)],

the problem (6.1), (6.3) has a solution u ∈ AC1
(
[a, b]; R

)
satisfying (6.6).
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Proof. Let c1 ∈ [α(a), β(a)] be arbitrary but fixed. According to Lemma 6.1 there exists
a solution u1 to the equation (6.1) satisfying

u1(a) = c1, u1(b) = α(b), (6.8)

α(t) ≤ u1(t) ≤ β(t) for t ∈ [a, b]. (6.9)

On account of (6.7)–(6.9) we have

u1(b) ≥ α(b) ≥ α′(b) ≥ u′1(b).

Furthermore, u1 can be considered as a lower function to (6.1) and so, according to
Lemma 6.1, there exists a solution v1 to the equation (6.1) satisfying

v1(a) = c1, v1(b) = β(b), (6.10)

u1(t) ≤ v1(t) ≤ β(t) for t ∈ [a, b]. (6.11)

On account of (6.7), (6.10), and (6.11) we have

v1(b) ≤ β(b)β′(b) ≤ v′1(b).

Now we will construct a sequences of solutions to (6.1) (un)+∞
n=1 and (vn)+∞

n=1 in the following
way: Having defined solutions un and vn for some n ∈ N with

un(a) = c1, vn(a) = c1, un(b) ≥ u′n(b), vn(b) ≤ v′n(b), (6.12)

α(t) ≤ un(t) ≤ vn(t) ≤ β(t) for t ∈ [a, b], (6.13)

we can consider them as a lower and an upper function, respectively, to (6.1). According
to Lemma 6.1, there exists a solution u to (6.1) satisfying

u(a) = c1, u(b) =
un(b) + vn(b)

2
, (6.14)

un(t) ≤ u(t) ≤ vn(t) for t ∈ [a, b]. (6.15)

Obviously, either
u(b) ≤ u′(b) (6.16)

or
u(b) > u′(b). (6.17)

If (6.16) holds we put

un+1(t) = un(t) for t ∈ [a, b], vn+1(t) = u(t) for t ∈ [a, b]. (6.18)

If (6.17) holds we put

un+1(t) = u(t) for t ∈ [a, b], vn+1(t) = vn(t) for t ∈ [a, b]. (6.19)
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Consequently, in view of (6.12)–(6.19), un+1 and vn+1 are solutions to (6.1) satisfying

un+1(a) = c1, vn+1(a) = c1, un+1(b) ≥ u′n+1(b), vn+1(b) ≤ v′n+1(b),

α(t) ≤ un(t) ≤ un+1(t) ≤ vn+1(t) ≤ vn(t) ≤ β(t) for t ∈ [a, b]. (6.20)

Obviously, in view of (6.14) and (6.18), resp. (6.19), and (6.20)

lim
n→+∞

un(b) = lim
n→+∞

vn(b). (6.21)

Moreover, in view of (6.12), for any n ∈ N, there exist tn ∈ [a, b] and sn ∈ [a, b] such that

u′n(tn) =
un(b)− c1
b− a

, v′n(sn) =
vn(b)− c1
b− a

.

Consequently, on account of (6.20), we have

|u′n(tn)| ≤M, |v′n(sn)| ≤M for n ∈ N, (6.22)

where

M =
|α(b)|+ |β(b)|+ |c1|

b− a
.

Since un and vn are solutions to (6.1), with respect to (6.5), (6.20), and (6.22) we obtain

|u′n(t)| ≤M +

∫ b

a

q(s)ds for t ∈ [a, b], n ∈ N, (6.23)

|v′n(t)| ≤M +

∫ b

a

q(s)ds for t ∈ [a, b], n ∈ N. (6.24)

Thus, on account of (6.1), (6.20), (6.23), and (6.24), it follows that the sequences (un)+∞
n=1,

(u′n)+∞
n=1 and (vn)+∞

n=1, (v′n)+∞
n=1 are uniformly bounded and equicontinuous. Therefore, with-

out loss of generality we can assume that there exists functions u0, v0 ∈ C2
(
[a, b]; R

)
such

that

u
(j)
0 (t) = lim

n→+∞
u(j)
n (t), v

(j)
0 (t) = lim

n→+∞
v(j)
n (t) uniformly on [a, b] (j = 0, 1).

By a standard way it can be shown that u0, v0 ∈ AC1
(
[a, b]; R

)
, and they are also solutions

to (6.1). Moreover, from (6.12), (6.20), and (6.21) we have

α(t) ≤ u0(t) ≤ v0(t) ≤ β(t) for t ∈ [a, b], (6.25)

u0(a) = c1, v0(a) = c1, u0(b) ≥ u′0(b), v0(b) ≤ v′0(b), (6.26)

u0(b) = v0(b). (6.27)

On the other hand, from (6.25) and (6.27) it follows that

u′0(b) ≥ v′0(b). (6.28)

Now (6.25)–(6.28) imply that u
def
≡ u0 is a solution to (6.1), (6.3) satisfying (6.6).
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Lemma 6.3. Let there exists a function α ∈ C2
loc

(
(0, 1/2]; R

)
such that its restriction to

any closed interval [a, b] ⊂ (0, 1/2] is a lower function to (3.6) on [a, b]. Let, moreover,

α(t) ≤ 0 for t ∈ (0, 1/2], (6.29)

lim
t→0+

|α(t)|
t

< +∞. (6.30)

Then there exists a solution u to (3.6), (3.8), (5.4) with

α(t) ≤ u(t) ≤ 0 for t ∈ (0, 1/2]. (6.31)

Proof. Note that from (6.30) it follows that

lim
t→0+

α(t) = 0, lim
t→0+

α(t)√
t

= 0, (6.32)∫ 1/2

0

α2(s)

s2
ds < +∞. (6.33)

Further, from (6.32) it follows that

α∗ = sup
{
|α(t)| : t ∈ (0, 1/2]

}
< +∞. (6.34)

Let tn ∈ (0, 1/2) for n ∈ N be such that

tn+1 < tn for n ∈ N, lim
n→+∞

tn = 0. (6.35)

Obviously, for every n ∈ N, β ≡ 0 is an upper function to (3.6) on the interval [tn, 1/2]
satisfying

β(tn) = 0, β(1/2) = 0.

Therefore, according to Lemma 6.1, in view of (6.29), for every n ∈ N there exists a
solution un to (3.6) on the interval [tn, 1/2] satisfying

un(tn) = 0, un(1/2) = 0, (6.36)

α(t) ≤ un(t) ≤ 0 for t ∈ [tn, 1/2]. (6.37)

Moreover, for every n ∈ N there exists sn ∈ (tn, 1/2) such that

u′n(sn) = 0. (6.38)

Therefore, integrating (3.6) from sn to t, on account of (6.33), (6.37), and (6.38), we
obtain

|u′n(t)| =
∣∣∣∣∫ t

sn

u2
n(s)

8s2
ds+

λ

2
(t− sn)

∣∣∣∣ ≤ ∫ 1/2

0

α2(s)

8s2
ds+

λ

4
for t ∈ [tn, 1/2],

n ∈ N. (6.39)
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Moreover, from (3.6) and (6.37) we get

|u′′n(t)| ≤ α2(t)

8t2
+
λ

2
for t ∈ [tn, 1/2], n ∈ N. (6.40)

Thus, on account of (6.33)–(6.35), (6.37), (6.39), and (6.40), we have that the sequences
(un)+∞

n=1, (u′n)+∞
n=1 are uniformly bounded and equicontinuous on every compact subinter-

val of (0, 1/2]. Therefore, according to the Arzelà–Ascoli theorem, there exists u0 ∈
C1
loc

(
(0, 1/2]; R

)
such that

lim
n→+∞

u(j)
n (t) = u

(j)
0 (t) uniformly on every compact interval of (0, 1/2] (j = 0, 1).

Moreover, since un are solutions to (3.6), u0 ∈ C2
loc

(
(0, 1/2]; R

)
and it is also a solution to

(3.6). Furthermore, from (6.32), (6.36), and (6.37), it follows that

α(t) ≤ u0(t) ≤ 0 for t ∈ (0, 1/2], u0(1/2) = 0, lim
t→0+

u0(t)√
t

= 0.

Lemma 6.4. Let the assumptions of Lemma 6.3 be fulfilled. Let, moreover,

α(1/2) ≥ α′(1/2). (6.41)

Then there exists a solution u to (3.6), (3.9), (5.4) satisfying (6.31).

The proof of Lemma 6.4 is similar to that of Lemma 6.3, just Lemma 6.2 is used
instead of Lemma 6.1 and the estimate of u′n is produced using the fact that there exists
sn ∈ (tn, 1/2) such that

|u′n(sn)| = |un(1/2)|
1/2− tn

≤ |α(1/2)|
1/2− t1

.

7 Lemmas on Estimation of λ

Lemma 7.1. The set of numbers λ ≥ 0, for which there exists a solution to (3.6) satisfying
(5.4) and (5.6), is nonempty and bounded from above.

Proof. Obviously, for λ = 0 there is a zero solution with the appropriate properties.
Therefore the set is nonempty. If λ = 0 is the only element of the set, then, clearly, the
set is bounded from above. Let, therefore, λ > 0 and let u be a solution to (3.6) satisfying
(5.4) and (5.6). Then, according to Remark 5.1 and Lemma 5.4, we have that (3.7) and
(5.2) hold.

On the other hand, from (3.6) it follows that

(tu′(t)− u(t))′ =
u2(t)

8t
+
λ

2
t for t ∈ (0, 1/2]. (7.1)

14



Integration (7.1) from 0 to t, in view of (3.7), (5.2), and (5.4), yields

tu′(t)− u(t) =

∫ t

0

u2(s)

8s
ds+

λ

4
t2 for t ∈ (0, 1/2]. (7.2)

Put

v(t) = −u(t)

t
for t ∈ (0, 1/2].

Then, on account of (5.6) and (7.2) we have

v′(t) = − 1

8t2

∫ t

0

v2(s)sds− λ

4
for t ∈ (0, 1/2], (7.3)

v(t) ≥ 0 for t ∈ (0, 1/2]. (7.4)

Moreover, from (7.3) it follows that v is a decreasing function and thus (7.3) and (7.4)
result in

v′(t) ≤ −v
2(t) + 4λ

16
for t ∈ (0, 1/2]

whence we get

− v′(t)

v2(t) + 4λ
≥ 1

16
for t ∈ (0, 1/2]. (7.5)

Now the integration of (7.5) from t to 1/2 results in∫ v(t)

v(1/2)

dx

x2 + 4λ
= −

∫ 1/2

t

v′(s)ds

v2(s) + 4λ
≥ 1/2− t

16
.

Hence we get
π

4
√
λ

=

∫ +∞

0

dx

x2 + 4λ
≥ lim

t→0+

∫ v(t)

v(1/2)

dx

x2 + 4λ
≥ 1

32
. (7.6)

Consequently, (7.6) implies λ ≤ 64π2.

Lemma 7.2. If the problem (3.6), (3.8), (5.4) (resp. (3.6), (3.9), (5.4)) is solvable for
some λ0 ≥ 0 then it is solvable also for every λ ∈ [0, λ0].

Proof. Let u be a solution to the problem (3.6), (3.8), (5.4) (resp. (3.6), (3.9), (5.4))
with λ = λ0. Put α(t) = u(t). Then according to Remark 5.1, Lemma 5.2 (resp.
Lemma 5.3), and Lemma 5.7, the function α satisfies the assumptions of Lemma 6.3
(resp. Lemma 6.4), where the equation (3.6) is considered with λ ∈ [0, λ0]. Consequently,
according to Lemma 6.3 (resp. Lemma 6.4), the problem (3.6), (3.8), (5.4) (resp. (3.6),
(3.9), (5.4)) is also solvable.

Lemma 7.3. Let
λ ≤ 144. (7.7)

Then there exists α ∈ C2
loc

(
(0, 1/2]; R

)
satisfying the assumptions of Lemma 6.3.
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Proof. Put

α(t) = −48t
(

1−
√

2t
)

for t ∈ (0, 1/2]. (7.8)

Obviously, (6.29) and (6.30) hold. We will show that

α′′(t) ≥ α2(t)

8t2
+
λ

2
for t ∈ (0, 1/2]. (7.9)

In view of (7.8) we have

α′′(t)− α2(t)

8t2
− 72 =

72√
2t

(
1−
√

2t
)(

1− 2
√

2t
)2

≥ 0 for t ∈ (0, 1/2]

and thus, on account of (7.7), the inequality (7.9) is fulfilled.

Lemma 7.4. Let
λ ≤ 9. (7.10)

Then there exists α ∈ C2
loc

(
(0, 1/2]; R

)
satisfying the assumptions of Lemma 6.4.

Proof. Put

α(t) = −6t
(

2−
√

2t
)

for t ∈ (0, 1/2]. (7.11)

Obviously, (6.29), (6.30), and (6.41) hold. We will show that (7.9) is valid. In view of
(7.11) we have

α′′(t)− α2(t)

8t2
− 9

2
=

9

2
√

2t

(
2−
√

2t
)(

1−
√

2t
)2

≥ 0 for t ∈ (0, 1/2]

and thus, on account of (7.10), the inequality (7.9) is fulfilled.

Lemma 7.5. Let there exist a function v ∈ C2
loc

(
(0, 1/2]; R

)
∩L+∞([0, 1/2]; R

)
satisfying

v′(t) = − 1

8t2

∫ t

0

v2(s)sds− λ

4
for t ∈ (0, 1/2], (7.12)

v(t) ≥ 0 for t ∈ (0, 1/2], (7.13)

v(1/2) = 0. (7.14)

Then
λ ≤ 384 (7.15)

and

v(t) ≥ 192

(
1−

√
1− λ

384

)
(1/2− t) for t ∈ (0, 1/2]. (7.16)
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Proof. From (7.12) it follows that

v′(t) ≤ 0 for t ∈ (0, 1/2]. (7.17)

Furthermore, v′ ∈ C2
loc

(
(0, 1/2]; R

)
and

v′′(t) =
1

4t3

∫ t

0

v2(s)sds− v2(t)

8t
for t ∈ (0, 1/2]. (7.18)

From (7.18), on account of (7.13) and (7.17) we obtain

v′′(t) ≥ 0 for t ∈ (0, 1/2]. (7.19)

Therefore, (7.12) and (7.19) yield

v′(t) ≤ v′(1/2) = −1

2

∫ 1/2

0

v2(s)sds− λ

4
≤ −λ

4
for t ∈ (0, 1/2]. (7.20)

Now the integration of (7.20) from t to 1/2, with respect to (7.14), results in

v(t) ≥ λ

4
(1/2− t) for t ∈ (0, 1/2]. (7.21)

Put

c1 =
λ

4
, cn+1 =

c2n
384

+
λ

4
for n ∈ N. (7.22)

We will show that for every n ∈ N the inequality

v(t) ≥ cn(1/2− t) for t ∈ (0, 1/2] (7.23)

holds. Obviously, (7.21) and (7.22) yield the validity of (7.23) for n = 1. Assume therefore
that (7.23) holds for some n ∈ N. Then from (7.20) we obtain

v′(t) ≤ −1

2

∫ 1/2

0

v2(s)sds− λ

4
≤ −

(
c2n
2

∫ 1/2

0

(1/2− s)2sds+
λ

4

)
= −cn+1

for t ∈ (0, 1/2]. (7.24)

The integration of (7.24) from t to 1/2, with respect to (7.14), results in

v(t) ≥ cn+1(1/2− t) for t ∈ (0, 1/2].

Thus (7.23) holds for every n ∈ N. Moreover,

c2 =
c21

384
+
λ

4
≥ λ

4
= c1 ≥ 0,
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and, assuming cn ≥ cn−1 ≥ 0 for some n ∈ N, we get

cn+1 =
c2n

384
+
λ

4
≥
c2n−1

384
+
λ

4
= cn.

Thus (cn)+∞
n=1 is a non-decreasing sequence of numbers which are, on account of (7.23),

bounded from above. Therefore, there exists c0 ∈ R such that

c0 = lim
n→+∞

cn,

and from (7.22) and (7.23) we obtain

c0 =
c20

384
+
λ

4
, (7.25)

v(t) ≥ c0(1/2− t) for t ∈ (0, 1/2]. (7.26)

Now (7.25) implies (7.15) and

c0 ≥ 192

(
1−

√
1− λ

384

)

and, consequently, from (7.26) we get (7.16).

Lemma 7.6. Let there exist a function v ∈ C2
loc

(
(0, 1/2]; R

)
∩L+∞([0, 1/2]; R

)
satisfying

(7.12), (7.13), and
v(1/2) = −v′(1/2). (7.27)

Then

λ ≤ 128

11
. (7.28)

Proof. From (7.12) it follows that (7.17) is fulfilled. Further, v′ ∈ C2
loc

(
(0, 1/2]; R

)
and

(7.18) holds. From (7.18), on account of (7.13) and (7.17) we obtain (7.19). Therefore,
(7.12) and (7.19) yield

v′(t) ≤ v′(1/2) = −c (7.29)

where

c =
1

2

∫ 1/2

0

v2(s)sds+
λ

4
. (7.30)

Now the integration of (7.29) from t to 1/2, results in

v(1/2)− v(t) ≤ −c(1/2− t) for t ∈ (0, 1/2],

whence, with respect to (7.27) and (7.29), we get

v(t) ≥ c(3/2− t) for t ∈ (0, 1/2]. (7.31)

18



Now using (7.31) in (7.30) we obtain

c ≥ c2

2

∫ 1/2

0

(3/2− s)2sds+
λ

4
,

i.e.,
11

128
c2 − c+

λ

4
≤ 0. (7.32)

However, (7.32) implies (7.28).

Lemma 7.7. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.6), (3.8), and (5.4). Then

λ < 307.

Proof. Assume that there exists u ∈ C2
loc

(
(0, 1/2]; R

)
satisfying (3.6), (3.8), (5.4). Accord-

ing to Remark 5.1 and Lemma 5.2, u satisfies (5.6). Moreover, according to Lemma 5.7,
u satisfies (5.15) and (5.17). Put

v(t) = −u(t)

t
for t ∈ (0, 1/2]. (7.33)

Then, in view of (3.8), (5.6), (5.15), and (5.17) we have that v satisfies all the assumptions
of Lemma 7.5. Consequently, (7.15) and (7.16) hold.

On the other hand, (3.8), (5.15), and (7.33) yield

v(t) =

[
(1/2− t)

4t

∫ t

0

v2(s)sds+

∫ 1/2

t

v2(s)

4
(1/2− s)ds+

λ

4
(1/2− t)

]
for t ∈ (0, 1/2]. (7.34)

Obviously, (7.12) results in (7.17), and thus, in view of (7.13), we have∫ t

0

v2(s)sds ≥ v2(t)
t2

2
for t ∈ (0, 1/2]. (7.35)

Now using (7.16) and (7.35) in (7.34) we obtain

v(t) ≥ (1/2− t)t
8

v2(t) +
c2

4

∫ 1/2

t

(1/2− s)3ds+
λ

4
(1/2− t) for t ∈ (0, 1/2], (7.36)

where

c = 192

(
1−

√
1− λ

384

)
. (7.37)

The inequality (7.36) means that for every fixed t ∈ (0, 1/2], the value of the function v
at the point t is a solution to the quadratic inequality

(1/2− t)t
8

x2 − x+
(1/2− t)

4

[
c2(1/2− t)3

4
+ λ

]
≤ 0. (7.38)
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Thus (7.38) results in

f(λ, t)
def
=

(1/2− t)2t

8

[
c2(1/2− t)3

4
+ λ

]
≤ 1 for t ∈ (0, 1/2],

with c given by (7.37). However, it can be verified by a direct calculation that

f(307, 1/8) > 1.

Therefore, if λ = 307, there is no solution to (3.6), (3.8), (5.4), and, according to
Lemma 7.2, there is no solution to (3.6), (3.8), (5.4) for λ ≥ 307 either.

Lemma 7.8. Let u ∈ C2
loc

(
(0, 1/2]; R

)
satisfy (3.6), (3.9), and (5.4). Then (7.28) is

fulfilled.

Proof. Assume that there exists u ∈ C2
loc

(
(0, 1/2]; R

)
satisfying (3.6), (3.9), (5.4). Accord-

ing to Remark 5.1 and Lemma 5.3, u satisfies (5.6). Moreover, according to Lemma 5.7,
u satisfies (5.15) and (5.17). Define v by (7.33). Then, in view of (3.9), (5.6), (5.15), and
(5.17) we have that v satisfies all the assumptions of Lemma 7.6. Consequently, (7.28)
holds.

8 Proofs of the Main Results

Theorem 4.1 (resp. 4.2) follows from Remark 5.1, Lemmas 5.2 (resp. 5.3), 5.5, 7.1,
7.2, and transformation (3.5). Proposition 4.1 follows from Lemmas 5.5, 6.3, 7.3, 7.7,
and transformation (3.5). Proposition 4.2 follows from Lemmas 5.5, 6.4, 7.4, 7.8, and
transformation (3.5).
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