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Abstract. It is proved the existence of an infinite number of periodic solutions of a infinite lattice
of particles with a periodic perturbation and nearest neighbor interaction between particles, by
using a priori bounds and topological degree together with a limiting argument. We consider a
Toda lattice and a singular repulsive lattice as main situations. The question of order between
particles is also discussed.
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1. Introduction

We are concerned with the existence of T -periodic solutions of the infinite system
of non-autonomous differential equations

x′′i + cx′i = gi−1(xi − xi−1)− gi(xi+1 − xi) + hi(t), i ∈ Z (1)

where c ≥ 0 and hi are continuous T -periodic functions.
This system describes the motion of a 1-dimensional lattice of particles of

unitary mass periodically perturbed and each interacting with its neighbors by
restoring forces depending on the distance between particles and a possible vis-
cous friction. If hi denote the mean value of hi, our aim is to prove existence and
multiplicity of T -periodic solutions under the main assumption that hi = 0 for
every i.

In this paper, we are interested in two main situations. Section 2 is devoted to
the study a lattice of Toda type, whose classical model presents a exponentially
decreasing nonlinearity [10]. Section 3 considers a lattice with singular repulsive
forces between particles.

In the latter years, several papers have appeared concerning the autonomous
conservative case [1, 2, 3, 4, 9] of system (1). In these works, the variational
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structure of the problem allows to consider periodic solutions as critical points
of a suitable functional, so classical variational techniques as the mountain pass
Theorem are available. In contrast with this type of “free” systems, in our case
a forcing term appears determining much of the motion. Also, the variational
structure is lost due to the (possible) linear friction term, whence a completely
different method of proof of topological type is required.

The strategy of proof is made of two main steps: first a related finite system
of particles is studied by means of classical tools from topological degree. The
method is inspired from [12]. Also, a similar approach in order to get a priori
bounds of the T -periodic solutions can be found in [13], where a similar type of
nonlinearity is considered for a nonlinear equation of arbitrary order. Second, a
simple limiting argument is applied to the finite system, by using the a priori
estimates deduced in the previous step. We stress that the obtained estimates are
independent of the number of particles of the finite system, and this fact may be
of interest by itself for applications. This limiting argument from a finite system
has a remarkable analogy with [3], and as it was noted there, this could be very
interesting for numerical applications.

2. Lattices of Toda type

In the early 1970’s, Toda considered a 1-dimensional lattice in which the force
between neighbor particles is an exponentially decreasing function of their distance.
It is known that the classical Toda lattice is a free explicitly integrable system. If
gi(s) = e−s, system (1) is a forced Toda lattice. We are going to consider a larger
set of “admissible” restoring forces.

Definition. System (1) is said of Toda type if for all i, gi : R → R+ is a
continuous function such that

lim
x→−∞

gi(x) = +∞, lim
x→+∞

gi(x) = 0. (2)

2.2. Main result

We are going to look for T -periodic solutions of (1) on the configuration space

H = {x = {xi}i∈Z ∈ C2(R)Z :
∫ T

0
x0(t)dt = 0}

By a T -periodic solution we understand a solution x ∈ H such that xi(0) =
xi(T ), x′i(0) = x′i(T ) for each i ∈ Z. Note that if x is a solution of (1), then also
is x + C for every constant C, so we assume

∫ T
0 x0(t)dt = 0 as a normalization

condition.
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Theorem 1. Let consider a system of Toda type such that hi = 0 for all i ∈ Z.
Then, for any K ∈ R+ there exists a T -periodic solution x ∈ H of (1) such that∫ T

0
gi(xi+1(t)− xi(t))dt = KT, ∀i ∈ Z. (3)

We remark that condition (3) assures the existence of an infinite number of
essentially different T -periodic solutions.

2.2. A related finite system

Let consider the finite system of 2n+ 1 equations
x′′−n + cx′−n = −g−n(x−n+1 − x−n) + h−n(t) +K

x′′i + cx′i = gi−1(xi − xi−1)− gi(xi+1 − xi) + hi(t), i = −n+ 1, . . . , n− 1
x′′n + cx′n = gn−1(xn − xn−1) + hn(t)−K

(4)
where K > 0 and hi = 0.

By making the change of variables{
y(t) = x0(t)
di(t) = xi+1(t)− xi(t), i = −n, . . . , n− 1

(5)

the equivalent system is

y′′ + cy′ = g−1(d−1)− g0(d0) + h0(t) (6)
d′′−n + cd′−n = 2g−n(d−n)− g−n+1(d−n+1) + ĥ−n(t)−K
d′′i + cd′i = 2gi−1(di−1)− gi(di)− gi−2(di−2) + ĥi(t), i=−n+1,... ,n−2

d′′n−1 + cd′n−1 = 2gn−1(dn−1)− gn−2(dn−2) + ĥn−1(t)−K
(7)

where ĥi = hi+1 − hi. First, we are going to study the sub-system (7). Let us
consider the following homotopy

d′′−n + cd′−n = 2g−n(d−n)− g−n+1(d−n+1) + λĥ−n(t)−K
d′′i + cd′i = 2gi−1(di−1)− gi(di)− gi−2(di−2) + λĥi(t), i=−n+1,... ,n−2

d′′n−1 + cd′n−1 = 2gn−1(dn−1)− gn−2(dn−2) + λĥn−1(t)−K
(8)

with λ ∈ [0, 1].

Lemma 1. There exists N = (N−n, . . . , Nn−1) ∈ (R+)2n such that

‖di‖∞ < Ni, i=−n,... ,n−1
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for any T -periodic solution d = (di) of (8).

Proof. An integration of (8) over a period gives

2
∫ T

0
g−n(d−n(t))dt−

∫ T

0
g−n+1(d−n+1(t))dt = KT

2
∫ T

0
gi−1(di−1(t))dt−

∫ T

0
gi(di(t))dt−

∫ T

0
gi−2(di−2(t))dt = 0, i=−n+1,... ,n−2

2
∫ T

0
gn−1(dn−1(t))dt−

∫ T

0
gn−2(dn−2(t))dt = KT.

If
∫ T

0 gi(di(t))dt are seen like unknowns of a linear system of 2n equations, it
is easy to verify that ∫ T

0
gi(di(t))dt = KT, i=−n,... ,n−1 (9)

is the unique solution.
By using assumption (2), let ψi1 < ψi2 be fixed numbers satisfying

gi(x) > K ∀x < ψi1, (10)

gi(x) < K ∀x > ψi2. (11)

If di(t) < ψi1 for all t ∈ [0, T ], then gi(di(t)) > K and (9) is contradicted only
integrating over a period. Thus, there exists t1 ∈ [0, T ] such that di(t1) > ψi1. By
an analogous argument, di(t2) < ψi2 for some t2 ∈ [0, T ], and by continuity of the
solutions, there exists t̃ ∈ [0, T ] such that

ψi1 < di(t̃) < ψi2.

Now, we multiply each equation of (8) by ect. Taking into account that d′′i e
ct+

cd′ie
ct = (d′ie

ct)′ and by using (9) we get

‖(d′iect)′‖L1 ≤ (4KT + ‖ĥi‖L1)ecT =: Mi

after an integration over a period. Take di(t∗) = min{di(t) : t ∈ [0, T ]}. Then,

|d′i(t)ect| = |
∫ t

t∗

(d′i(s)e
cs)′ds| ≤ ‖(d′iect)′‖L1 ≤Mi

for all t ∈ [0, T ]. In consequence, ‖d′i‖∞ ≤Mi. Note that Mi only depends on i,K
but not on n.



Vol. 51 (2000) Periodic motions of forced infinite lattices 337

Besides,

|di(t)− di(t̃)| = |
∫ t

t̃

d′i(s)ds| ≤ T‖d′i‖∞ ≤ TMi

for all t ∈ [0, T ], so ‖di‖∞ ≤ TMi + di(t̃) ≤ TMi + ψi2 =: Ni. �

In the following lemma, the Brouwer degree is denoted by degB. For definition
and main properties of topological degree we make reference to [8].

Lemma 2. Let F : R2n −→ R2n be a continuous function of components F =
(F−n, . . . , Fn−1) defined by

F−n(d−n, . . . , dn−1) = 2g−n(d−n)− g−n+1(d−n+1)−K
Fi(d−n, . . . , dn−1) = 2gi−1(di−1)− gi(di)− gi−2(di−2), i = −n+ 1, . . . , n− 2
Fn−1(d−n, . . . , dn−1) = 2gn−1(dn−1)− gn−2(dn−2)−K

for all (d−n, . . . , dn−1) ∈ R2n. Assume that there exists a compact set D ⊂ R2n

such that
(d−n(t), . . . , dn−1(t)) ∈ D, ∀t ∈ [0, T ]

for any T -periodic solution of (8), λ ∈ [0, 1]. Then, if

degB(F,Ω, 0) 6= 0

for some Ω open bounded set containing D, there exists at least a T -periodic solu-
tion of (7).

Proof. It is an immediate consequence of the results in [5]. �

Proposition 1. Under the previous assumptions, there exists at least a T -periodic
solution of system (4).

Proof. Let study the equivalent system (6)− (7). First, we are going to prove the
existence of a T -periodic solution of (7). By Lemmas 1 and 2, we only have to
prove that

degB(F,Ω, 0) 6= 0

where F is defined in Lemma 2 and Ω is an open bounded set of R2n large enough.
To this purpose, we make a convex homotopy between F and F̃ : (R+)2n −→ R2n

defined by

F̃−n(d−n, . . . , dn−1) = 2g̃(d−n)− g̃(d−n+1)−K
F̃i(d−n, . . . , dn−1) = 2g̃(di−1)− g̃(di)− g̃(di−2), i = −n+ 1, . . . , n− 2

F̃n−1(d−n, . . . , dn−1) = 2g̃(dn−1)− g̃(dn−2)−K
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where g̃ : R → R+ is a continuous function with continuous and negative deriva-
tive, satisfying (2) and such that

g̃(x) < gi(x), ∀x ∈ R, i = −n, . . . , n− 1. (12)

It is clear that this choice is possible. Then, the respective Brouwer degrees coin-
cide (maybe with a larger Ω) if we find a priori estimates for the solutions of

λF (d−n, . . . , dn−1) + (1− λ)F̃ (d−n, . . . , dn−1) = 0, λ ∈ [0, 1],

that is,
2(λg−n(d−n) + (1− λ)g̃(d−n))− (λg−n+1(d−n+1) + (1− λ)g̃(d−n+1)) = K

2(λgi−1(di−1) + (1− λ)g̃(di−1))− (λgi(di) + (1− λ)g̃(di))−
−(λgi−2(di−2) + (1− λ)g̃(di−2)) = 0, i = −n+ 1, . . . , n− 2

2(λgn−1(dn−1) + (1− λ)g̃(dn−1))− (λgn−2(dn−2) + (1− λ)g̃(dn−2)) = K

with λ ∈ [0, 1]. As in the proof of Lemma 1, λgi(di)+(1−λ)g̃(di) can be considered
as unknowns of a linear system of equations with a unique solution, namely,

λgi(di) + (1− λ)g̃(di) = K, i=−n,... ,n−1.

From here, by using (12),

g̃(di) < K, i = −n, . . . , n− 1

and as g̃ is strictly decreasing, there exists the inverse g̃−1 and

di > g̃−1(K), i = −n, . . . , n− 1.

On the other hand,
gi(di) > K, i = −n, . . . , n− 1

and by using (11) it follows that di < ψi2 for all i. In conclusion, we have found
a priori bounds for the solutions of the convex homotopy and hence it is proved
that

degB(F,Ω, 0) = degB(F̃ ,Ω, 0)

for Ω large enough. Finally, we compute this last degree. If we define

A =



2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . . . . . . .
...

0
. . . . . . −1

0 · · · · · · 0 −1 2


,
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it is easy to prove that detA 6= 0. Taking into account that g̃ is strictly decreasing,
then the vector field F̃ has the unique zero (ξ, . . . , ξ) with ξ = g̃−1(K). If F̃ ′ is
the jacobian matrix of the vector field F̃ , by the definition of Brouwer degree and
some easy computations we get

degB(F̃ ,Ω, 0) = sign det F̃ ′(ξ, . . . , ξ) = sign det g̃′(ξ)A 6= 0.

Therefore, the existence of a T -periodic solution of sub-system (7) is proved.
Finally, the existence of a T -periodic solution of equation (6) is trivial because
using (9) the right-hand member has mean value zero. �

2.3. Proof of Theorem 1.

Taking K a positive fixed number, the idea is to pass to the limit in the finite
system (4). By previous Subsection, we have a priori bounds on the T -periodic
solutions of system (6)− (7), depending on K, i but not on the total number n of
particles of the finite system (see definitions of Mi, Ni). Let y0(t) be chosen as the
T -periodic solution of (6) such that

∫ T
0 y0(t)dy = 0. Specifically, ‖d′i‖∞ ≤Mi and

‖di‖∞ ≤ Ni for all t. Moreover,

y′′0 + cy′0 = g−1(d−1)− g0(d0) + h0(t)

and by using similar reasonings to those used to find Mi, Ni, it is not hard to
deduce that ‖y′0‖∞ ≤M0 and ‖y0‖∞ ≤ N0.

Now, we are going to invert the change of variables (5) to get estimates on the
T -periodic solution of system (4) given by Proposition 1, denoted from now on by
{x(n)

i }i=−n,... ,n.
Let start defining

Pi := max{gi(x) : x ≥ −Ni}

for all i ∈ Z. Then, it is easy to verify from (7) that

‖d′′i ‖∞ ≤ 2Pi−1 + Pi + Pi+1 + ‖ĥi‖∞ + cMi =: Di.

Directly, ‖x(n)
0

′
‖∞ ≤M0 and ‖x(n)

0 ‖∞ ≤ N0, and moreover, from the equation we
deduce that

‖x(n)
0

′′
(t)‖∞ ≤ cM0 + P−1 + P0 + ‖h0‖∞ =: Q0.

On the other hand, x(n)
1 = d1 + x

(n)
0 , so

‖x(n)
1 ‖∞ ≤ N1 +N0 =: Ñ1

‖x(n)
1

′
‖∞ ≤M1 +M0 =: M̃1
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‖x(n)
1

′′
‖∞ ≤ D1 +Q0 =: Q1

In general, x(n)
i = di + x

(n)
i−1 and a recursive argument leads to

‖x(n)
i ‖∞ ≤

i∑
j=0

Nj =: Ñi

‖x(n)
i

′
‖∞ ≤

i∑
j=0

Mj =: M̃i

‖x(n)
i

′′
‖∞ ≤ Q0 +

i∑
j=1

Dj =: Qi

for any i = 1, . . . , n. A symmetric argument provides bounds if i is negative.

Thus, fixing a position i, the sequences {x(n)
i }n≥i and {x(n)

i

′
}n≥i are uniformly

bounded and equicontinuous. Besides, it is easy to prove that {x(n)
i

′′
}n≥i is also

an equicontinuous sequence by using the relation given by (4). Now, Ascoli-Arzela
theorem implies the existence of some xi ∈ C2(R) such that xni → xi (or at least
a subsequence of this) uniformly in C2, and evidently {xi}i∈Z is a T -periodic
solution of system (1). Besides, passing to the limit in (9), condition (3) is proved.
�

2.4. Ordered T -periodic solutions

From the physical point of view, it is interesting to look for T -periodic solutions
on the configuration space

H+ = {x = {xi} ∈ C2(R)Z :
∫ T

0
x0(t)dt = 0, (13)

xi(t) < xi+1(t), ∀i ∈ Z, t ∈ [0, T ]},

which implies an order in the lattice that avoid collision between particles. It is
possible to prove the following result. Remember that ĥi = hi+1 − hi.

Theorem 2. Let consider a system of Toda type such that hi = 0 for all i ∈ Z.
Then, for any n ∈ N there exists a Kn ∈ R+ such that if 0 < K < Kn, system (1)
has a T -periodic solution x ∈ H satisfying (3) and such that

xi(t) < xi+1(t), ∀t ∈ [0, T ], i = −n, . . . , n.

Moreover, if ‖ĥi‖L1 is uniformly bounded for every i ∈ Z, then there exists some
K∞ ∈ R+ such that if 0 < K < K∞, system (1) has a T -periodic solution x ∈ H+

satisfying (3).
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Proof. The key idea of the proof is a revision of a priori bounds found on Lemma
1. Remember that we have defined

Mi := (4KT + ‖ĥi‖L1)ecT

holding that ‖d′i‖∞ ≤Mi, and ψi1 < ψi2 fixed numbers satisfying

gi(x) > K ∀x < ψi1,

gi(x) < K ∀x > ψi2.

If we look at ψi1 as a function of K it is clear from its own definition that
limK→0+ ψi1(K) = +∞. Hence, it is possible to fix Kn such that

ψi1(K) > TMi, i = −n, . . . , n

for all 0 < K < Kn. Now, repeating the arguments of Lemma 1, for any i =
−n, . . . , n there exists some t̃ such that di(t̃) > ψi1, so in consequence

di(t) = di(t) + di(t̃)− di(t̃) ≥ di(t̃)− |di(t)− di(t̃)| > ψi1 − TMi > 0

for all t ∈ [0, T ] and i = −n, . . . , n.
Finally, if there exists some M > 0 such that ‖ĥi‖L1 < M for every i ∈ Z, then

it is easy to verify that there exists some K∞ such that if 0 < K < K∞, then

ψi1(K) > TMi, ∀i ∈ Z,

which again implies after some easy computations that di(t) > 0 for all t ∈ [0, T ]
and i ∈ Z. �

Clearly, the assumption imposed over ĥi is quite restrictive. Next Section will
be devoted to a class of lattices in which T -periodic solutions are in H+ without
further assumptions.

3. Lattices of singular type

In this Section, we are going to consider lattices in which forces between particles
present a repulsive singularity in the origin.

Definition 2. System (1) is said of singular type if for all i, gi : R+ → R+ is a
continuous function such that

lim
x→0+

gi(x) = +∞, lim
x→+∞

gi(x) = 0 (14)
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and ∫ 1

0
gi(s)ds = +∞. (15)

This type of system describes the motion of a 1-dimensional lattice with ex-
ternal time-periodic forces and singular repulsive interaction between neighbor
particles. The “model case” is gi(x) = x−α with α > 0. A simple mechanical
model for this system is an infinite chain of coupled pistons filled with a perfect
gas, with time-periodic forces and a possible viscous friction. It is possible to think
on a long train with pistons between wagons acting like shock absorbers. Also,
forces between charged particles of the same sign (Coulomb forces) are included,
assuming a short-ranged interaction between particles.

We are going to look for T -periodic solutions of singular lattices on the config-
uration space H+ defined in (13). As we have already noted, a conservation on
the order of the particles is imposed. In this sense, hypothesis (15), the so-called
“strong force condition”, is standard on the related literature about singular forces
(see for instance [6, 7, 11, 12]) in order to avoid collisions between particles. On
the model case, hypothesis (15) holds if α ≥ 1.

The main result of this Section is the following.

Theorem 3. Let consider a system of singular type such that hi = 0 for all i ∈ Z.
Then, for any K ∈ R+ there exists a T -periodic solution x ∈ H+ of (3) such that∫ T

0
gi(xi+1(t)− xi(t))dt = KT, ∀i ∈ Z.

The idea of proof is the same that in Section 2. We consider the associate finite
system (4), and by using the change of variables (5) we can prove the following
result about the corresponding homotopic system (8).

Lemma 3. There exists ε = (ε−n, . . . , εn−1) ∈ (R+)2n such that

εi < di(t) <
1
εi
, ∀t ∈ [0, T ], i = −n, . . . , n− 1

for any T -periodic solution d = (di) of (8).

Proof. As in Lemma 1, by using now assumption (14), it is possible to fix ψi1 < ψi2
for each i satisfying

gi(x) > K ∀x < ψi1,

gi(x) < K ∀x > ψi2.

Repeating the proof of Lemma 1, there are Mi, Ni only depending on K, i such
that

‖di‖∞ ≤ Ni, ‖d′i‖∞ ≤Mi
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for each i ∈ Z. Now, let find a priori bounds from below.
Multiplying each equation of (8) by d′i and integrating on [t, t̃], some easy

computations lead to

d′i(t̃)
2

2
− d′i(t)

2

2
+ c

∫ t̃

t

d′i(s)
2ds+

∫ t̃

t

gi(di(s))d′i(s)ds ≤ (3KT + ‖ĥi‖L1)‖d′i‖∞

and in consequence∫ di(t̃)

di(t)
gi(s)ds ≤ (3KT + ‖ĥi‖L1)‖d′i‖∞ +

d′i(t)
2

2
≤ (3KT + ‖ĥi‖L1)Mi +

M2
i

2

for all t < t̃. The periodicity of di implies that this inequality holds for all t. By
condition (15), it is possible to fix δi > 0 such that∫ ψi1

δi

gi(s)ds > (3KT + ‖ĥi‖L1)Mi +
M2
i

2
. (16)

Then, ∫ di(t̃)

di(t)
gi(s)ds <

∫ ψi1

δi

g(s)ds

and as di(t̃) > ψi1, we deduce that di(t) > δi for all t.
To end the proof, we only have to take εi as the maximum of δi and 1

Ni
. �

The analogous of Lemma 2 in this context is the following result.

Lemma 4. Let F : (R+)2n −→ R2n be a continuous function of components
F = (F−n, . . . , Fn−1) defined by (2). Assume that there exists a compact set
D ⊂ (R+)2n such that

(d−n(t), . . . , dn−1(t)) ∈ D, ∀t ∈ [0, T ]

for any T -periodic solution of (8), λ ∈ [0, 1]. Then, if

degB(F,Ω, 0) 6= 0

for some Ω open bounded set containing D, there exists at least a T -periodic solu-
tion of (7).

Computation of degree is done by repeating exactly the proof of Proposition 1.
In fact, the remaining proof is identical, with the only detail that the existence of
an a priori bound from below of the solutions insures that the T -periodic solution
obtained belongs to H+.
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4. Further remarks

By means of a revision of proofs, it is clear that other types of forces between
particles can be considered without further difficulties. For instance, the addition
and subtraction of a fixed number on each equation of (1) enable us to study not
only positive nonlinearities but also nonlinearities uniformly bounded from below.
Also, limits (2) can be interchanged.

With respect to the singular lattice, it is interesting to note that condition (15)
is used only in (16), so it is possible to weaken this hypothesis assuming that∫ ψi1

0
gi(s)ds > (3KT + ‖ĥi‖L1)Mi +

M2
i

2

for every i ∈ Z.
As a final remark, an open problem that naturally arises in this context is to

find necessary and sufficient conditions over the mean values hi for existence and
multiplicity of T -periodic solutions of system (1). Another line of research would
be to study systems with a more complex interaction between particles. Finally, it
would be interesting to find conditions for the existence of periodic solutions with
finite energy.
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