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1. Introduction

The purpose of this paper is to study some qualitative properties of the second order linear operator
L½p; q�u � u00 þ pðtÞu0 þ qðtÞu
with periodic conditions, where p, q 2 Lð½0;x�; RÞ are given Lebesgue integrable functions. More precisely, we are interested
in sufficient conditions for the operator L½p; q� to be non-degenerate, inversely positive or inversely negative. This question
and related ones have focused the attention of many researchers [1,2,6,5,8,10,13–15,17,18] because it plays the crucial role
in the implementation of different methods of proof for the existence of a periodic solution of an abstract nonlinear second
order equation Lu ¼ Nu, where N is the so-called Nemitskii operator. We will come back to this connection later.

In order to get a precise description of our objective, it is convenient to introduce the following definitions. Here,
AC1ð½a; b�; RÞ stands for the set of functions u : ½a; b� ! R which are absolutely continuous together with their first derivative.
For brevity, sometimes we will omit the dependence of the operator L½p; q� on p, q and write simply L.

Definition 1.1. The operator L½p; q� belongs to the set V� if and only if every function u 2 AC1ð½0;x�; RÞ satisfying
L½p; q�uðtÞP 0 for a:e: t 2 ½0;x�; ð1:1Þ
uð0Þ ¼ uðxÞ; u0ð0ÞP u0ðxÞ; ð1:2Þ
verifies also
uðtÞ 6 0 for t 2 ½0;x�: ð1:3Þ
The operator L½p; q� belongs to the set V�S if and only if every function u 2 AC1ð½0;x�; RÞ satisfying (1.1) and (1.2) verifies
also
u � 0 or uðtÞ < 0 for t 2 ½0;x�: ð1:4Þ
. All rights reserved.
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Definition 1.2. The operator L½p; q� belongs to the set V+ if and only if every function u 2 AC1ð½0;x�; RÞ satisfying (1.1) and
(1.2) verifies also
uðtÞP 0 for t 2 ½0;x�: ð1:5Þ

The operator L½p; q� belongs to the set VþS if and only if every function u 2 AC1ð½0;x�; RÞ satisfying (1.1) and (1.2) verifies also
u � 0 or uðtÞ > 0 for t 2 ½0;x�: ð1:6Þ
Definition 1.3. The operator L½p; q� is said to be nonresonant if and only if the homogeneous problem
Lu ¼ 0; ð1:7Þ
uð0Þ ¼ uðxÞ; u0ð0Þ ¼ u0ðxÞ ð1:8Þ
has only the trivial solution.

It is convenient to state some comments concerning these concepts. According to Lemma 3.1 (established in Section 3),
V� � V�S . In the related literature, it is often called a maximum principle. On the other hand, in general we only have the
inclusion VþS � Vþ. Therefore, we can distinguish between the antimaximum and strong antimaximum principle. Finally,
it is easy to realize that an operator L belonging to V� or V+ is automatically nonresonant.

The aim of this paper is to derive sufficient conditions on p, q such thatL½p; q� holds a maximum or antimaximum principle.
Such sufficient conditions generalize or complement previous published results and are important in a variety of applications
to nonlinear problems, in a sense that will be detailed in the last section. The structure of the paper is as follows: Section 2 con-
tains our main results, which are proved in Section 4 by using some auxiliary propositions exposed in Section 3. Finally, Section
5 includes some remarks, an illustrative example and a concrete application to a nonlinear problem with singularity.

2. Main Results

Our first result is a characterization of the set V�.

Theorem 2.1. L½p; q� 2 V� holds if and only if there exists a function b 2 AC1ð½0;x�; RÞ satisfying
L½p; q�bðtÞ 6 0 for a:e: t 2 ½0;x�; ð2:1Þ
bðtÞ > 0 for t 2 ½0;x�; ð2:2Þ
bð0Þ ¼ bðxÞ; b0ð0Þ 6 b0ðxÞ ð2:3Þ
and
measft 2 ½0;x� : L½p; q�bðtÞ < 0g þ b0ðxÞ � b0ð0Þ > 0: ð2:4Þ
Such a theoretical result can be applied in order to get a practical criterion shown in the next corollary. At this moment, it
is convenient to fix some notation: ½x�þ ¼ maxfx;0g; ½x�� ¼ �minfx;0g. Given p 2 Lð½0;x�; RÞ, we define p̂ as the periodic
extension to [0,2x]
p̂ðtÞ ¼
pðtÞ for a:e: t 2 ½0;x�;
pðt �xÞ for a:e: t 2 ½x;2x�:

�

Let us define the operators r, r1 : Lð½a; b�; RÞ ! ACð½a; b�; RÞ as
rðpÞðtÞ ¼ exp
Z t

a
pðsÞds

� �
for t 2 ½a; b�;

r1ðpÞðtÞ ¼ rðpÞðbÞ
Z t

a
rðpÞðsÞdsþ

Z b

t
rðpÞðsÞds for t 2 ½a; b�:
Corollary 2.1. Let q X 0 and
Pþ 6 1�U
4

� �
P�; ð2:5Þ
where
P� ¼
Z x

0
½qðsÞ��rðpÞðsÞr1ð�pÞðsÞds; ð2:6Þ

Pþ ¼
Z x

0
½qðsÞ�þrðpÞðsÞr1ð�pÞðsÞds; ð2:7Þ

U ¼ sup
Z tþx

t
rð�p̂ÞðsÞds

Z tþx

t
½q̂ðsÞ�þrðp̂ÞðsÞds : t 2 ½0;x�

� �
: ð2:8Þ
Then L½p; q� 2 V�.
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Concerning the antimaximum principle, the following theorem is our main result.

Theorem 2.2. Let us assume q X 0 and the following conditions hold
Z x

0
qðsÞrðpÞðsÞr1ð�pÞðsÞds P 0 ð2:9Þ
and
U 6 4; ð2:10Þ
where U is given by (2.8). Then L½p; q� 2 VþS .
Theorem 2.3. Let us assume q X 0, (2.9) holds, and
U 6 16; ð2:11Þ
where U is given by (2.8). Then L½p; q� is nonresonant.

In the case when
Z x

0
pðsÞds ¼ 0; ð2:12Þ
one can easily verify that the constants P�, P+ and U defined by (2.6), (2.7), (2.8) have the following form:
P� ¼
Z x

0
rð�pÞðsÞds

Z x

0
½qðsÞ��rðpÞðsÞds;

Pþ ¼ U ¼
Z x

0
rð�pÞðsÞds

Z x

0
½qðsÞ�þrðpÞðsÞds:
Therefore, the consequences established below immediately follow from Corollary 2.1 and Theorems 2.2 and 2.3.

Corollary 2.2. Let q X 0, (2.12) holds, and let
Z x

0
½qðsÞ�þrðpÞðsÞds <

4Rx
0 rð�pÞðsÞds

;

Rx
0 ½qðsÞ�þrðpÞðsÞds

1� 1
4

Rx
0 rð�pÞðsÞds

Rx
0 ½qðsÞ�þrðpÞðsÞds

6

Z x

0
½qðsÞ��rðpÞðsÞds:
Then L½p; q� 2 V�.
Corollary 2.3. Let q X 0, (2.12) holds, and let
Z x

0
qðsÞrðpÞðsÞds P 0;

Z x

0
½qðsÞ�þrðpÞðsÞds 6

4Rx
0 rð�pÞðsÞds

:

Then L½p; q� 2 VþS .
Corollary 2.4. Let q X 0, (2.12) holds, and let
Z x

0
qðsÞrðpÞðsÞds P 0;

Z x

0
½qðsÞ�þrðpÞðsÞds 6

16Rx
0 rð�pÞðsÞds

:

Then L½p; q� is nonresonant.

For the important special case when p � 0, i.e. when Lu :¼ u00 þ qðtÞu is the Hill’s operator, the following assertions can
be immediately derived from the obtained results.

Corollary 2.5. Let q X 0, and let
Z x

0
½qðsÞ�þds <

4
x
;

Rx
0 ½qðsÞ�þds

1� x
4

Rx
0 ½qðsÞ�þds

6

Z x

0
½qðsÞ��ds:
Then L½0; q� 2 V�.
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Corollary 2.6. Let q X 0, and let
Z x

0
qðsÞds P 0;

Z x

0
½qðsÞ�þds 6

4
x
:

Then L½0; q� 2 VþS .
Corollary 2.7. Let q X 0, and let
Z x

0
qðsÞds P 0;

Z x

0
½qðsÞ�þds 6

16
x
:

Then L½0; q� is nonresonant.
3. Auxiliary propositions

Lemma 3.1. Let p; q 2 Lð½a; b�; RÞ; t0 2 ½a; b�. Let, moreover, u 2 AC1ð½a; b�; RÞ satisfy
L½p; q�uðtÞ 6 0 for a:e: t 2 ½a; b�; ð3:1Þ
uðtÞP 0 for t 2 ½a; b�; ð3:2Þ
uðt0Þ ¼ 0; u0ðt0Þ ¼ 0: ð3:3Þ
Then
uðtÞ ¼ 0 for t 2 ½a; b�: ð3:4Þ
Proof. Put
wðtÞ ¼maxfuðsÞ : ðt � sÞðs� t0ÞP 0g for t 2 ½a; b�;
A ¼ ft 2 ½a; b� : wðtÞ ¼ uðtÞg:
Then, obviously, w 2 ACð½a; b�; RÞ,
wðtÞP uðtÞ for t 2 ½a; b�; ð3:5Þ
w0ðtÞsgnðt � t0ÞP 0 for a:e: t 2 ½a; b�; ð3:6Þ
wðt0Þ ¼ 0; ð3:7Þ
and
w0ðtÞ ¼
u0ðtÞ for a:e: t 2 A;

0 for t 2 ½a; b� n A:

�
ð3:8Þ
From (3.1) we obtain
½u0ðtÞrðpÞðtÞ�0 þ qðtÞrðpÞðtÞuðtÞ 6 0 for a:e: t 2 ½a; b�: ð3:9Þ
The integration of (3.9) from t0 to t (from t to t0), in view of (3.2) and (3.3), yields
u0ðtÞrðpÞðtÞsgnðt � t0Þ 6 sgnðt � t0Þ
Z t

t0

½qðsÞ��rðpÞðsÞuðsÞds for t 2 ½a; b�: ð3:10Þ
Now the inequality (3.10), with respect to (3.5), (3.6), and (3.8), results in
w0ðtÞsgnðt � t0Þ 6 wðtÞrð�pÞðtÞsgnðt � t0Þ
Z t

t0

½qðsÞ��rðpÞðsÞds for a:e: t 2 ½a; b�: ð3:11Þ
However, according to Gronwall–Bellman Lemma and (3.7), from (3.11) it follows that
wðtÞ 6 0 for t 2 ½a; b�: ð3:12Þ
Now (3.2), (3.5), and (3.12) yield (3.4). h
Lemma 3.2. Let p;h 2 Lð½a; b�; RÞ, and let u 2 AC1ð½a; b�; RÞ be such that
u00ðtÞ þ pðtÞu0ðtÞ ¼ hðtÞ for a:e: t 2 ½a; b�; ð3:13Þ
uðaÞ ¼ uðbÞ: ð3:14Þ
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Then
uðtÞ ¼ uðaÞ � 1R b
a rð�pÞðsÞds

Z b

t
rð�pÞðsÞds

Z t

a
hðsÞrðpÞðsÞ

Z s

a
rð�pÞðnÞdnds

"

þ
Z t

a
rð�pÞðsÞds

Z b

t
hðsÞrðpÞðsÞ

Z b

s
rð�pÞðnÞdnds

#
for t 2 ½a; b� ð3:15Þ
and
½u0ðbÞ � u0ðaÞ�
Z b

a
rð�pÞðsÞds ¼

Z b

a
hðsÞrðpÞðsÞr1ð�pÞðsÞds: ð3:16Þ
Proof. From (3.13) we get
½u0ðtÞrðpÞðtÞ�0 ¼ hðtÞrðpÞðtÞ for a:e: t 2 ½a; b�: ð3:17Þ
Multiplying both sides of (3.17) by
R t

a rð�pÞðsÞds, resp. by
R b

t rð�pÞðsÞds, and integrating it from a to t, resp. from t to b, we
obtain
u0ðtÞrðpÞðtÞ
Z t

a
rð�pÞðsÞds� uðtÞ þ uðaÞ ¼

Z t

a
hðsÞrðpÞðsÞ

Z s

a
rð�pÞðnÞdnds; ð3:18Þ
resp.
�u0ðtÞrðpÞðtÞ
Z b

t
rð�pÞðsÞdsþ uðbÞ � uðtÞ ¼

Z b

t
hðsÞrðpÞðsÞ

Z b

s
rð�pÞðnÞdnds: ð3:19Þ
Now, multiplying (3.18) by
R b

t rð�pÞðsÞds and (3.19) by
R t

a rð�pÞðsÞds, we get
u0ðtÞrðpÞðtÞ
Z t

a
rð�pÞðsÞds

Z b

t
rð�pÞðsÞdsþ uðaÞ�uðtÞ½ �

Z b

t
rð�pÞðsÞds¼

Z b

t
rð�pÞðsÞds

Z t

a
hðsÞrðpÞðsÞ

Z s

a
rð�pÞðnÞdnds;

ð3:20Þ

�u0ðtÞrðpÞðtÞ
Z t

a
rð�pÞðsÞds

Z b

t
rð�pÞðsÞdsþ uðbÞ�uðtÞ½ �

Z t

a
rð�pÞðsÞds¼

Z t

a
rð�pÞðsÞds

Z b

t
hðsÞrðpÞðsÞ

Z b

s
rð�pÞðnÞdnds:

ð3:21Þ
Summing the corresponding sides of (3.20) and (3.21), on account of (3.14), we arrive at (3.15). Further, from (3.15) we
obtain
u0ðtÞ ¼ rð�pÞðtÞR b
a rð�pÞðsÞds

Z t

a
hðsÞrðpÞðsÞ

Z s

a
rð�pÞðnÞdnds�

Z b

t
hðsÞrðpÞðsÞ

Z b

s
rð�pÞðnÞdnds

" #
for t 2 ½a; b�;
whence we get (3.16). h
Lemma 3.3. Let p; q 2 Lð½a; b�; RÞ, and let u 2 AC1ð½a; b�; RÞ satisfy
L½p; q�uðtÞP 0 for a:e: t 2 ½a; b�; ð3:22Þ
uðaÞ ¼ 0; uðbÞ ¼ 0: ð3:23Þ
Moreover, let us assume that there exists a function v 2 AC1ð½a; b�; RÞ such that
L½p; q�vðtÞ 6 0 for a:e: t 2 ½a; b�; ð3:24Þ
vðtÞ > 0 for t 2 ½a; b�: ð3:25Þ
Then
uðtÞ 6 0 for t 2 ½a; b�:
Proof. Suppose on the contrary that u has a positive value. Put
k ¼max
uðtÞ
vðtÞ : t 2 ½a; b�
� �

;

wðtÞ ¼ kvðtÞ � uðtÞ for t 2 ½a; b�: ð3:26Þ
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Then w 2 AC1([a,b];R),
k > 0; ð3:27Þ
wðtÞP 0 for t 2 ½a; b�; ð3:28Þ
and, because of (3.23) and (3.27), there exists t0 2 ]a,b[ such that
wðt0Þ ¼ 0; w0ðt0Þ ¼ 0: ð3:29Þ
Moreover, in view of (3.22), (3.24), (3.26), and (3.27), we have
L½p; q�wðtÞ 6 0 for a:e: t 2 ½a; b�: ð3:30Þ
Now, on account of (3.28), (3.29) and (3.30), w satisfies assumptions of Lemma 3.1. Therefore, w(t) = 0 for t 2 [a,b], i.e.,
kvðtÞ ¼ uðtÞ for t 2 ½a; b�:
In particular, we have
kvðaÞ ¼ uðaÞ: ð3:31Þ
However, (3.31) together with (3.25) and (3.27) contradicts (3.23). h
Lemma 3.4. Let p; q 2 Lð½a; b�; RÞ, and let u 2 AC1ð½a; b�; RÞ satisfy (3.22), (3.23), and
uðtÞ > 0 for t 2�a; b½: ð3:32Þ
Then
4 <
Z b

a
rð�pÞðsÞds

Z b

a
½qðsÞ�þrðpÞðsÞds: ð3:33Þ
Proof. Put
hðtÞ ¼ L½p; q�uðtÞ for a:e: t 2 ½a; b�: ð3:34Þ
Then, in view of (3.22),
hðtÞP 0 for a:e: t 2 ½a; b�: ð3:35Þ
According to Lemma 3.2, on account of (3.34), we have
uðtÞ ¼ � 1R b
a rð�pÞðsÞds

Z b

t
rð�pÞðsÞds

Z t

a
½�qðsÞuðsÞ þ hðsÞ�rðpÞðsÞ

Z s

a
rð�pÞðnÞdnds

"

þ
Z t

a
rð�pÞðsÞds

Z b

t
½�qðsÞuðsÞ þ hðsÞ�rðpÞðsÞ

Z b

s
rð�pÞðnÞdnds

#
for t 2 ½a; b�: ð3:36Þ
Put
M ¼maxfuðtÞ : t 2 ½a; b�g ð3:37Þ
and choose t0 2 ]a,b[ such that
uðt0Þ ¼ M: ð3:38Þ
In view of (3.32) we have
M > 0: ð3:39Þ
From (3.36), on account of (3.32), (3.35), (3.37), and (3.38), it follows that
M6
MR b

a rð�pÞðsÞds

Z b

t0

rð�pÞðsÞds
Z t0

a
½qðsÞ�þrðpÞðsÞ

Z s

a
rð�pÞðnÞdndsþ

Z t0

a
rð�pÞðsÞds

Z b

t0

½qðsÞ�þrðpÞðsÞ
Z b

s
rð�pÞðnÞdnds

" #
:

ð3:40Þ
According to (3.39), the function [q]+ is not identically equal to zero, and therefore from (3.40) we obtain
Z b

a
rð�pÞðsÞds <

Z t0

a
rð�pÞðsÞds

Z b

t0

rð�pÞðsÞds
Z b

a
½qðsÞ�þrðpÞðsÞds: ð3:41Þ
Now, using the inequality AB 6 1
4 ðAþ BÞ2, from (3.41) we get (3.33). h
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Lemma 3.5. Let us assume that q X 0 and (2.9) hold. Then there is no positive function u 2 AC1ð½0;x�; RÞ satisfying
L½p; q�uðtÞ 6 0 for a:e: t 2 ½0;x�; ð3:42Þ
uð0Þ ¼ uðxÞ; u0ð0Þ 6 u0ðxÞ: ð3:43Þ
Proof. Assume on the contrary that there is a positive function u 2 AC1ð½0;x�; RÞ satisfying (3.42) and (3.43). Put
qðtÞ ¼ u0ðtÞ
uðtÞ for t 2 ½0;x�: ð3:44Þ
Then
q0ðtÞ 6 �qðtÞ � pðtÞqðtÞ � q2ðtÞ for a:e: t 2 ½0;x�: ð3:45Þ
From (3.45) we obtain
qðtÞrðpÞðtÞ½ �0r1ð�pÞðtÞ 6 �qðtÞrðpÞðtÞr1ð�pÞðtÞ � q2ðtÞrðpÞðtÞr1ð�pÞðtÞ for a:e: t 2 ½0;x�: ð3:46Þ
Further, the integration of (3.46) from 0 to x, in view of (3.43) and (3.44), results in
0 6 qðxÞ � qð0Þ½ �
Z x

0
rð�pÞðsÞds 6 �

Z x

0
qðsÞrðpÞðsÞr1ð�pÞðsÞds�

Z x

0
q2ðsÞrðpÞðsÞr1ð�pÞðsÞds: ð3:47Þ
Now (2.9) and (3.47) imply
qðtÞ ¼ 0 for t 2 ½0;x�:
Consequently, in view of (3.44) we have that u is a positive constant function. This fact together with (3.42) implies
qðtÞ 6 0 for a:e: t 2 ½0;x�: ð3:48Þ
However, (2.9) and (3.48) yield q � 0 which contradicts the assumption of the lemma. h
Lemma 3.6. Let there exists a function v 2 AC1ð½0;x�; RÞ satisfying
L½p; q�vðtÞ 6 0 for a:e: t 2 ½0;x�; ð3:49Þ
vðtÞ > 0 for t 2 ½0;x�; ð3:50Þ
vð0Þ ¼ vðxÞ; v 0ð0Þ 6 v 0ðxÞ; ð3:51Þ
and
measft 2 ½0;x� : L½p; q�vðtÞ < 0g þ v 0ðxÞ � v 0ð0Þ > 0: ð3:52Þ
Then there is no non–negative non–trivial function u 2 AC1ð½0;x�; RÞ satisfying
L½p; q�uðtÞP 0 for a:e: t 2 ½0;x�; ð3:53Þ
uð0Þ ¼ uðxÞ; u0ð0ÞP u0ðxÞ: ð3:54Þ
Proof. Assume on the contrary that there exists a function u 2 AC1ð½0;x�; RÞ satisfying (3.53), (3.54), u X 0, and
uðtÞP 0 for t 2 ½0;x�: ð3:55Þ
Put
k ¼max
uðtÞ
vðtÞ : t 2 ½0;x�
� �

; ð3:56Þ

wðtÞ ¼ kvðtÞ � uðtÞ for t 2 ½0;x�: ð3:57Þ
Then, in view of (3.49)–(3.51), (3.53)–(3.57), we have w 2 AC1ð½0;x�; RÞ,
k > 0; ð3:58Þ
L½p; q�wðtÞ 6 0 for a:e: t 2 ½0;x�; ð3:59Þ
wðtÞP 0 for t 2 ½0;x�; ð3:60Þ
wð0Þ ¼ wðxÞ; ð3:61Þ
and there exists t0 2 [0,x] such that
wðt0Þ ¼ 0: ð3:62Þ
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If t0 2 ]0,x[ then, in view of (3.60), we get
w0ðt0Þ ¼ 0: ð3:63Þ
If t0 2 {0,x} then, in view of (3.54), (3.57), (3.60), (3.61), (3.62), we have
kv 0ð0ÞP u0ð0ÞP u0ðxÞP kv 0ðxÞ;
which together with (3.51) and (3.58) implies (3.63) again. Therefore, according to Lemma 3.1 and (3.59) we find
wðtÞ ¼ 0 for t 2 ½0;x�: ð3:64Þ
However, from (3.64) on account of (3.49), (3.51), (3.53), (3.54), (3.57), and (3.58) it follows that
L½p; q�vðtÞ ¼ 0 for a:e: t 2 ½a; b�;
vð0Þ ¼ vðxÞ; v 0ð0Þ ¼ v 0ðxÞ;
which contradicts (3.52). h
4. Proofs of main results

Proof of Theorem 2.1. Let us assume that there exists b 2 AC1ð½0;x�; RÞ satisfying (2.1), (2.2), (2.3), (2.4). We will show that
L½p; q� 2 V�. According to Definition 1.1 it is sufficient to show that every function u 2 AC1ð½0;x�; RÞ satisfying (1.1) and (1.2)
is non–positive. Assume on the contrary that there exists u 2 AC1ð½0;x�; RÞ with positive values satisfying (1.1) and (1.2).
According to Lemmas 3.3 and 3.6 there exist t1 2 ]0,x[ and t2 2 ]t1,x[ such that
uðtÞ > 0 for t 2 ½0; t1½[�t2;x�; ð4:1Þ
uðt1Þ ¼ 0; uðt2Þ ¼ 0: ð4:2Þ
Put
k1 ¼ max
uðtÞ
bðtÞ : t 2 ½0; t1�
� �

; ð4:3Þ

k2 ¼ max
uðtÞ
bðtÞ : t 2 ½t2;x�
� �

; ð4:4Þ

w1ðtÞ ¼ k1bðtÞ � uðtÞ for t 2 ½0; t1�; ð4:5Þ

w2ðtÞ ¼ k2bðtÞ � uðtÞ for t 2 ½t2;x�: ð4:6Þ
Note that
w1ðtÞP 0 for t 2 ½0; t1�; w2ðtÞP 0 for t 2 ½t2;x� ð4:7Þ
and
w1ðt1Þ > 0; w2ðt2Þ > 0: ð4:8Þ
We claim that k1 ¼ uð0Þ
bð0Þ. On the contrary, suppose that k1 ¼ uðt�Þ

bðt�Þ with t⁄ 2 ]0, t1]. By (4.2), t⁄ < t1. Then, w1(t⁄) = k1b(t⁄) � u(t⁄) = 0
and w01ðt�Þ ¼ 0 as a consequence of (4.7). Then, Lemma 3.1 can be applied to w1, obtaining that w1 is identically zero, which
contradicts (4.8). Thus, k1 ¼ uð0Þ

bð0Þ and therefore w1(0) = 0. By an analogous argument, w2(x) = 0.
Again by Lemma 3.1, we necessarily have
w1ð0Þ ¼ 0; w2ðxÞ ¼ 0; ð4:9Þ
w01ð0Þ > 0; w02ðxÞ < 0: ð4:10Þ
Now (1.2), (2.2), (2.3), (4.5), (4.6), and (4.9) yield
k1 ¼ k2: ð4:11Þ
Consequently, (1.2), (4.3), (4.4), (4.5), (4.6), (4.10) and (4.11) result in
b0ð0Þ > b0ðxÞ: ð4:12Þ
However, (4.12) contradicts (2.3). Therefore, every function u 2 AC1ð½0;x�; RÞ satisfying (1.1) and (1.2) is non–positive. Con-
sequently, L½p; q� 2 V�.

Reciprocally, let us take L½p; q� 2 V�. Then the equation
L½p; q�u ¼ �1 ð4:13Þ
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has a unique periodic solution u. According to Definition 1.1, u(t) P 0 for t 2 [0,x]. We will show that u is a positive function.
Assume on the contrary that there exists t0 2 [0,x] such that
uðt0Þ ¼ 0:
Therefore, we have also
u0ðt0Þ ¼ 0:
Thus, in view of Lemma 3.1 we obtain
uðtÞ ¼ 0 for t 2 ½0;x�: ð4:14Þ
However, (4.14) contradicts (4.13). Therefore,
uðtÞ > 0 for t 2 ½0;x�: ð4:15Þ
Put
bðtÞ ¼ uðtÞ for t 2 ½0;x�: ð4:16Þ
Then b satisfies Eqs. (2.1)–(2.4). h
Proof of Corollary 2.1. First note that according to the assumptions we have
½q�� X 0: ð4:17Þ
Therefore, according to Theorem 2.1 we have
L½p;�½q��� 2 V�: ð4:18Þ
Indeed, it is sufficient to put b(t) = 1 for t 2 [0,x]. Consequently, without loss of generality we can assume
½q�þ X 0: ð4:19Þ
Put
wðtÞ ¼ � 1Rx
0 rð�pÞðsÞds

�
Z x

t
rð�pÞðsÞds

Z t

0
Pþ½qðsÞ�� �P�½qðsÞ�þ
� �

rðpÞðsÞ
Z s

0
rð�pÞðnÞdnds

�

þ
Z t

0
rð�pÞðsÞds

Z x

t
Pþ½qðsÞ�� �P�½qðsÞ�þ
� �

rðpÞðsÞ
Z x

s
rð�pÞðnÞdnds

	
for t 2 ½0;x�:
Then, obviously, w 2 AC1ð½0;x�; RÞ, and
w00ðtÞ ¼ Pþ½qðtÞ�� �P�½qðtÞ�þ � pðtÞw0ðtÞ for a:e: t 2 ½0;x�; ð4:20Þ
wð0Þ ¼ wðxÞ: ð4:21Þ
Therefore, according to Lemma 3.2, in view of (2.6) and (2.7), we have
w0ð0Þ ¼ w0ðxÞ: ð4:22Þ
Let t1 2 ½0;x½ and t2 2�t1; t1 þx½ be such that
ŵðt1Þ ¼ m; ŵðt2Þ ¼ M; ð4:23Þ
where
m ¼minfwðtÞ : t 2 ½0;x�g; M ¼ maxfwðtÞ : t 2 ½0;x�g; ð4:24Þ
and
ŵðtÞ ¼
wðtÞ for t 2 ½0;x�;
wðt �xÞ for t 2�x;2x�:

�
ð4:25Þ
According to Lemma 3.2, (4.23), and (4.25), we have
M ¼ m� 1R t1þx
t1

rð�p̂ÞðsÞds
�
Z t1þx

t2

rð�p̂ÞðsÞds
Z t2

t1

Pþ½q̂ðsÞ�� �P�½q̂ðsÞ�þ
� �

rðp̂ÞðsÞ
Z s

t1

rð�p̂ÞðnÞdnds
�

þ
Z t2

t1

rð�p̂ÞðsÞds
Z t1þx

t2

Pþ½q̂ðsÞ�� �P�½q̂ðsÞ�þ
� �

rðp̂ÞðsÞ
Z t1þx

s
rð�p̂ÞðnÞdnds

	
: ð4:26Þ
In view of (2.8), (4.17), (4.19), and the inequality AB 6 1
4 ðAþ BÞ2, from (4.26) it follows that
M < mþUP�

4
: ð4:27Þ
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Now put
bðtÞ ¼ Pþ þwðtÞ �m for t 2 ½0;x�: ð4:28Þ
Then, in view of (4.19), (4.20), (4.21), (4.22), (4.23) and (4.24) we have (2.2), (2.3), and
b00ðtÞ ¼ Pþ½qðtÞ�� �P�½qðtÞ�þ � pðtÞb0ðtÞ for a:e: t 2 ½0;x�: ð4:29Þ
On the other hand, on account of (2.5), (4.24), and (4.27), from (4.28) it follows that
Pþ 6 bðtÞ < P� for t 2 ½0;x�: ð4:30Þ
Thus, using (4.30) in (4.29) we find that (2.1) holds and, with respect to (4.19), also (2.4) is satisfied. Now the conclusion of
the corollary follows from Theorem 2.1. h
Proof of Theorem 2.2. According to Definition 1.2 it is sufficient to show that every nontrivial function u 2 AC1ð½0;x�; RÞ sat-
isfying (1.1) and (1.2) is positive. Take, therefore, u 2 AC1ð½0;x�; RÞ satisfying (1.1), (1.2), u X 0, and suppose on the contrary
that u assumes nonpositive values. According to Lemma 3.5, the function u has a zero; according to Lemma 3.1, u takes also
positive values. Thus there exist t1; t2 2 ½0;x� such that t1 6 t2,
uðt1Þ ¼ 0; uðt2Þ ¼ 0; ð4:31Þ
and either t1 < t2,
uðtÞ > 0 for t 2�t1; t2½; ð4:32Þ
or
uðtÞ > 0 for t 2 ½0; t1½[�t2;x�: ð4:33Þ
If (4.32) holds true, then according to Lemma 3.4 we have
4 <
Z t2

t1

rð�pÞðsÞds
Z t2

t1

½qðsÞ�þrðpÞðsÞds 6
Z x

0
rð�pÞðsÞds

Z x

0
½qðsÞ�þrðpÞðsÞds: ð4:34Þ
However, (4.34) contradicts (2.10).
Let, therefore, (4.33) be fulfilled. Define
hðtÞ ¼ L½p; q�uðtÞ for a:e: t 2 ½0;x�: ð4:35Þ
By Picard–Lindelöff Theorem, there exists a unique function v 2 AC1ð½0;x�; RÞ of the initial value problem
L½p; q�vðtÞ ¼ hðtÞ for a:e: t 2 ½0;x�; ð4:36Þ
vð0Þ ¼ uðxÞ; v 0ð0Þ ¼ u0ðxÞ: ð4:37Þ
Put
wðtÞ ¼ uðtÞ � vðtÞ for t 2 ½0;x�:
Then, in view of (1.2), (4.35), (4.36) and (4.37), we have
L½p; q�wðtÞ ¼ 0 for a:e: t 2 ½0;x�;
wð0Þ ¼ 0; w0ð0Þ ¼ u0ð0Þ � u0ðxÞ:
Consequently, according to (1.2), Lemma 3.4, and the assumption (2.10), we get w(t) P 0 for t 2 [0,x], i.e., u(t) P v(t) for
t 2 [0,x]. Thus, in view of (4.31), (4.33), (4.37), there exists t3 2 ]0, t1] such that
vðt3Þ ¼ 0; vðtÞ > 0 for t 2 ½0; t3½: ð4:38Þ
Define z : ½t2; t3 þx� ! R as follows:
zðtÞ ¼
uðtÞ for t 2 ½t2;x�;
vðt �xÞ for t 2�x; t3 þx�:

�
ð4:39Þ
Then, on account of (1.1), (4.31), (4.33), (4.35), (4.36), (4.37), (4.38) and (4.39) we have z 2 AC1ð½t2; t3 þx�; RÞ and
L½p̂; q̂�zðtÞP 0 for a:e: t 2 ½t2; t3 þx�;

zðtÞ > 0 for t 2�t2; t3 þx½;

zðt2Þ ¼ 0; zðt3 þxÞ ¼ 0:
Therefore, according to Lemma 3.4, the inequality
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4 <
Z t3þx

t2

rð�p̂ÞðsÞds
Z t3þx

t2

½q̂ðsÞ�þrðp̂ÞðsÞds ð4:40Þ
holds true. However, in view of the fact t3 6 t1 6 t2 we have t3 + x 6 t2 + x, and so from (4.40) we obtain
4 <
Z t2þx

t2

rð�p̂ÞðsÞds
Z t2þx

t2

½q̂ðsÞ�þrðp̂ÞðsÞds;
which contradicts (2.10). h
Proof of Theorem 2.3. Assume on the contrary that there exists a nontrivial solution u to (1.7) and (1.8). According to
Lemma 3.5, u has a zero, and according to Lemma 3.1, u assumes both positive and negative values. Therefore, there exist
t0 2 ½0;x½; t2 2�t0; t0 þx�, and t1 2 ]t0, t2[ such that
ûðt0Þ ¼ 0; ûðt1Þ ¼ 0; ûðt2Þ ¼ 0;

ûðtÞ > 0 for t 2�t0; t1½; ûðtÞ < 0 for t 2�t1; t2½;
where û is given by
ûðtÞ ¼
uðtÞ for t 2 ½0;x�;
uðt �xÞ for t 2�x;2x�:

(

Consequently, according to Lemma 3.4 we have
4 <
Z t1

t0

rð�p̂ÞðsÞds
Z t1

t0

½q̂ðsÞ�þrðp̂ÞðsÞds; ð4:41Þ

4 <
Z t2

t1

rð�p̂ÞðsÞds
Z t2

t1

½q̂ðsÞ�þrðp̂ÞðsÞds: ð4:42Þ
Now, multiplying the corresponding sides of (4.41) and (4.42), and using the inequality AB 6 1
4 ðAþ BÞ2, we arrive to
16 <
Z t2

t0

rð�p̂ÞðsÞds
Z t2

t0

½q̂ðsÞ�þrðp̂ÞðsÞds 6
Z t0þx

t0

rð�p̂ÞðsÞds
Z t0þx

t0

½q̂ðsÞ�þrðp̂ÞðsÞds: ð4:43Þ
However, (4.43) contradicts (2.11). h
5. Further comments and comparison with related results.

As commented in the Introduction, an operator L belonging to V� or V+ is automatically nonresonant. Therefore, according
to the classical Fredholm alternative, the complete problem
Lu ¼ hðtÞ; ð5:1Þ
uð0Þ � uðxÞ ¼ c0; u0ð0Þ � u0ðxÞ ¼ c1 ð5:2Þ
with h 2 Lð½0;x�; RÞ; c0; c1 2 R, has a unique solution u. In terms of the associated Green’s function G(t,s), L 2 V� means that
G(t,s) < 0, L 2 Vþ means that G(t,s) P 0 and L 2 VþS means that G(t,s) > 0 for all t,s. For the close relation among maximum-
antimaximum principle, Green’s function and eigenvalues, see the excellent survey [18]. In this way, our results can be com-
pared with those available in the related literature concerning the sign of the Green’s function of the second order linear
operator with periodic boundary conditions.

In our opinion, the main strength of our results is that the coefficients are allowed to change sign. The case of constant
coefficients can be fully solved [10]. The case of one-signed and bounded q was considered in [1]. Essentially, Corollaries 2.6
and 2.7 are known since the times of Lyapunov. Corollary 2.7 can be found in [8] and more recently in [15, Th.4], whereas
Corollary 2.6 is a result widely used in the method of upper and lower solutions. An extended version with a La-condition
was proved in [14] for the case of non-negative q and later extended to the case of indefinite sign in [2]. In this last paper,
the authors gives a result for the general operator L½p; q�with both p, q changing sign, assuming that

R T
0 pðsÞds ¼ 0 (see [2, Th.

5.1]). It can be checked that our Corollary 2.3 is just this result for a = 1. The case
R T

0 pðsÞds – 0 was considered in [13,17], but
in these papers both p, q are assumed positive. As to the knowledge of the authors, a first result for the general operator
L½p; q� with both p, q changing sign can be found in [6]. The papers [6,4,7] give also effective criteria for nonresonance of
a general linear n-th order operator. Corollary 2.1 and Theorems 2.2 and 2.3 provide essentially new information which com-
plement or generalize the previously mentioned results.

To illustrate the previous comments and prove the applicability of our results, we can construct a simple example which
is not covered by any of the mentioned references. Fix p(t) = sint and q(t) = ksin t, where k > 0. The minimal period is x = 2p.
Obviously (2.12) holds. In order to apply Corollary 2.3, some elementary computations give
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rðpÞðtÞ ¼ exp
Z t

0
pðsÞds

� �
¼ expð1� cos tÞ;

Z 2p

0
qðsÞrðpÞðsÞds ¼ 0;

Z 2p

0
½qðsÞ�þrðpÞðsÞds ¼ k

Z p

0
sinðsÞ expð1� cos sÞds ¼ kðe2 � 1Þ:
Therefore, by a direct application of Corollary 2.3, one has that L½p; q� 2 VþS if
k 6
4

ðe2 � 1Þ
R 2p

0 rð�pÞðsÞds
¼ 4

ðe2 � 1Þ
R 2p

0 expð�1þ cos sÞds
’ 0:213935:
Similar examples can be easily built for the remaining results. Besides, note that the involved conditions are of integral type,
so we could construct examples with unbounded p, q without difficulty.

We finish the paper with some comments concerning the applications to nonlinear problems. With a nonresonance cri-
terion for the operator L, one can deduce existence and uniqueness results for the nonlinear equation
Lu ¼ f ðt;uÞ; ð5:3Þ
by using the arguments of [5,15,16]. On the other hand, L 2 V� provides a method of well-ordered upper and lower solutions
for Eq. (5.3), whereas L 2 VþS gives a method of upper and lower solutions on the reversed order (see [1,10,13,14] and their
references). Besides, an antimaximum principle enables the applications of classical fixed point theorems like Schauder’s or
Krasnoselskii’s to regular or singular problems like in [3,9,12,13] and many others. The inclusion of delays [17] does not sup-
pose major changes. We consider that the previously mentioned techniques are sufficiently developed in the literature. Since
the key point is to use an adequate maximum (or antimaximum) principle for the linear part, our results have direct appli-
cation to nonlinear problems.

Just to illustrate the wide applicability to nonlinear problems, we are going to sketch an example inspired in [11]. In this
reference, Krasnoselskii’s fixed point Theorem on compression-expansion of conical shells is used in order to prove the exis-
tence of periodic solutions of the equation u00 = f(t,u), where the nonlinearity f has a singularity in the origin. The following
result holds.

Theorem 5.1. Let us assume that f : R� Rþ ! Rþ is a continuous function T-periodic in the first variable and such that
lim
u!0þ

f ðt;uÞ
u
¼ þ1; lim

u!þ1

f ðt;uÞ
u
¼ 0;
uniformly in t. If L½p; q� 2 VþS , then the equation
L½p; q�u ¼ f ðt;uÞ
has at least one positive T-periodic solution.
Sketch of the proof. Since L½p; q� 2 VþS , the associated Green’s function G(t,s) is positive and the problem is equivalent to

find a fixed point of the operator
Au ¼
Z T

0
Gðt; sÞf ðs; uðsÞÞds:
Now the proof mimicks the arguments of [11, Theorem 3.2] (see also Corollary 4.1). Fix m = mint,sG(t,s), M = maxt,sG(t,s). It
can be proved that the operator A is completely continuous and maps the cone
K ¼ u 2 C½0; T� : min
t

u >
m
M
kuk

n o
;

into itself. Then the main assumption over f is used to prove the usual compression-expansion condition of Krasnoselskii’s
fixed point Theorem. Further details are omitted for brevity.
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