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PERIODIC SOLUTIONS OF SINGULAR SYSTEMS
WITHOUT THE STRONG FORCE CONDITION

DANIEL FRANCO AND PEDRO J. TORRES

(Communicated by Carmen C. Chicone)

Abstract. We present sufficient conditions for the existence of at least a non-
collision periodic solution for singular systems under weak force conditions. We
deal with two different types of systems. First, we assume that the system is
generated by a potential, and then we consider systems without such hypoth-
esis. In both cases we use the same technique based on Schauder fixed point
theorem. Recent results in the literature are significantly improved.

1. Introduction

The main purpose of this paper is to study

(1.1) ẍ(t) + ∇xV (t, x(t)) = f(t)

where V ∈ C1(R×R
N \ {0}, R) is a singular potential and f ∈ L1(R/TZ, RN ). We

shall assume that V and f are T -periodic in t. In such a situation it is natural to
look for T -periodic non-collision solutions of (1.1). Here, as usual, by a T -periodic
non-collision solution, we mean a function u ∈ H1(R/TZ, RN ) solving (1.1) and
such that u(t) �= 0 for all t. If necessary, see [4] for the definitions of the above
functional spaces.

We shall assume that (1.1) has a singularity of repulsive type in 0, i.e.

lim
|x|→0

V (t, x) = +∞ uniformly in t.

Singular potentials appear when gravitational or electromagnetic forces are con-
sidered. The problem of finding periodic solutions for (1.1) in the situation de-
scribed above has generated much interest in the last decades (see [3] and the
extensive bibliography therein). The variational arguments have been clearly the
most used tools, although other techniques have been used (see for example [5]). In
relation with the variational approach, a common hypothesis is the unboundedness
of the action functional near the singularity to guarantee that its critical points have
no collisions with the singularity. This condition has been known at least since the
times of Poincaré [11]. Nowadays, it is known as the “strong force condition” in a

Received by the editors August 17, 2006.
2000 Mathematics Subject Classification. Primary 37J45, 34C25, 34B16.
The first author was supported by D.G.I. MTM2004-06652-C03-03, Ministerio de Educación y

Ciencia, Spain.
The second author was supported by D.G.I. MTM2005-03483, Ministerio de Educación y Cien-

cia, Spain.

c©2007 American Mathematical Society
Reverts to public domain 28 years from publication

1229



1230 DANIEL FRANCO AND PEDRO J. TORRES

term first used by Gordon in [6]. Roughly, it establishes a maximum rate of growth
of the potential near the singularity. For example, if

V (t, x) =
1

|x|α+1

the strong force condition holds for α ≥ 1. Therefore, important cases such as New-
tonian-type potentials do not satisfy that condition. Even in the scalar case, a
weak singularity may lead to collisions, as it is shown in the classical paper [8]. The
behavior of solutions with collisions is a difficult topic not very well understood
up to now. For attractive singularities, it is closely related with the regularization
techniques frequently employed in Celestial Mechanics. In the weak repulsive case,
an impact model for the continuation of the solutions after a collision was proposed
in [12]. We refer the reader to [1, 2, 13] and the references therein for further
literature on problems with weak forces.

In Section 2, we shall consider the potential

(1.2) V (t, x) = a(t)
|x|2
2

− g(t,
|x|2
2

)

with a T -periodic dependence on t and such that g presents a singularity of the
repulsive type. Our viewpoint sheds some new light on problems with weak force
potentials.

In order to prove our results we shall adapt a technique recently presented for a
nonlinear Hill’s equation [14], which relies on Schauder’s fixed point theorem. There
are examples in the literature of techniques that work well for the one dimensional
case without assuming the strong force condition, but one needs to consider it to
deal with higher dimensional systems (see Remark 1 in [17]). As we will see, that
is not our case.

The last section of the paper will be dedicated to the study of systems with
singularities but not necessarily those generated by a potential. This section was
motivated by the recent paper [9]. There the authors use a Leray-Schauder alterna-
tive and a fixed point theorem in cones to guarantee the existence of twin positive
periodic solutions for the system

(1.3) ẍ(t) + a(t)x(t) = F (x(t))

where F can be expressed as a sum of two positive functions satisfying certain
monotone conditions which prevent us from considering system (1.1) with V as
in (1.2). As an example they show that their results guarantee the existence of
solution for the system

ẍ(t) + a1(t)x(t) =
√

(x2 + y2)−α + µ
√

(x2 + y2)β ,

ÿ(t) + a2(t)y(t) =
√

(x2 + y2)−α + µ
√

(x2 + y2)β
(1.4)

when α > 0 and β ∈ [0, 1) for every positive constant µ. We shall present results
improving the above result, since we shall show that when the singularity is weak
enough that µ can be zero or even negative.

As we will see, one of the advantages of using the Schauder fixed point theorem
instead of the Leray-Schauder alternative relies on the fact that we do not need to
make a technical truncation to get compactness because we can work in a set where
the singularity is excluded.
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2. Existence results I

When V is the potential defined in (1.2), system (1.1) can be written as

ẍ + a(t)x = D2g(t,
|x|2
2

)x + f(t),

where D2g denotes the partial derivative of g with respect to the second variable.
Let us comment on the particular case a(t) ≡ k2. It is well known (see, for

example, [5]) that for k ∈ (0, π
T ] the Green’s function of the periodic problem

G(t, s) =

⎧⎨⎩
sin k(t−s)+sink(T−t+s)

2k(1−cos kT ) , 0 ≤ s ≤ t ≤ T,

sin k(s−t)+sink(T−s+t)
2k(1−cos kT ) , 0 ≤ t ≤ s ≤ T,

is non-negative.
In the general case, we will assume the standing assumption:
(A) The Hill’s equation x′′ +a(t)x = 0 is non-resonant (i.e. the unique periodic

solution is the trivial one) and the corresponding Green’s function G(t, s)
is non-negative for every (t, s) ∈ [0, T ] × [0, T ].

For a non-constant a(t), there is no explicit expression of the Green’s function,
but there is an Lp-criterion for the positiveness of the Green’s function proved in
[15] (the proof relies on an anti-maximum principle from [16]) which is becoming
standard in related literature (see for instance [7, 9, 14]).

As usual we denote by f1, . . . , fN the components of a given function f with
values on R

N . For f ∈ L1(R/TZ, RN ) we define the function γ : R → R
N by

γi(t) =
∫ T

0

G(t, s)fi(s)ds, i = 1, . . . , N,

which is just the unique T -periodic solution of

ẍ + a(t)x = f(t).

Let us denote

γ∗ = min
i,t

γi(t) and γ∗ = max
i,t

γi(t).

Theorem 2.1. Let us assume (A) holds, γ∗ > 0, and that the potential V satisfies
(H1) D2g(t, s) ≥ 0,
(H2) D2g(t, s) ≤ c

sα
with α, c > 0,

for all t ∈ R, s > 0. Then, there exists a T -periodic solution x of (1.1) such that
xi ≥ γ∗ for i = 1, . . . , N .

Proof. Consider the closed, convex and bounded set

K = {x ∈ C(R/TZ, RN) : r ≤ xi(t) ≤ R}
where r, R > 0 are chosen later.

We are going to show that there exists a T -periodic solution belonging to K.
Clearly, finding such a solution is equivalent to finding a fixed point for the operator
T : K ⊂ C(R/TZ, RN ) → C(R/TZ, RN ) defined by

(2.1) T x(t) =
∫ T

0

G(t, s)
[
D2g(t,

|x(s)|2
2

)x(s) + f(s)
]

ds.
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Note that since T is defined on K we avoid the singularity and standard reasoning
shows that T is compact (see [10] for more details).

Next, we shall prove that T (K) ⊂ K. Therefore, as a consequence of the
Schauder fixed point theorem, the existence of the T -periodic solution is guar-
anteed.

Taking r = γ∗, we have for each i ∈ {1, . . . , N} and x ∈ K

(T x)i(t) =
∫ T

0

G(t, s)
[
D2g(t,

|x(s)|2
2

)xi(s) + fi(s)
]

ds ≥ min
t

γi(t) ≥ r.

On the other hand, for each i ∈ {1, . . . , N} we have

(T x)i(t) ≤
∫ T

0

G(t, s)D2g(t,
|x|2
2

)xi ds + γ∗

≤
∫ T

0

G(t, s)
c 2α

(x2
i )α

xi ds + γ∗

= c 2α

∫ T

0

G(t, s)x1−2α
i ds + γ∗.

Now, we consider two cases.

• Case α > 1
2 : Since for x ∈ K

c2α

∫ T

0

G(t, s)x1−2α
i ds ≤ c2αr1−2α

∫ T

0

G(t, s) ds,

we deduce that it is sufficient to choose R such that

c2αr1−2α

∫ T

0

G(t, s) ds + γ∗ < R.

• Case 0 < α ≤ 1
2 : For x ∈ K we have

c2α

∫ T

0

G(t, s)x1−2α
i ds ≤ c2αR1−2α

∫ T

0

G(t, s) ds.

Therefore, we are done because for R big enough one has

c2αR1−2α

∫ T

0

G(t, s) ds + γ∗ < R. �

Remark 2.2. Note that the constant c > 0 helps us to locate the solution in the
following sense: smaller is the constant c > 0, and smaller is the set K to which
the solution belongs.

If α is small enough we can improve the condition on the function γ in Theorem
2.1.

Theorem 2.3. Let us assume that there exists i ∈ {1, . . . , N} such that mint γi(t) >
0. Besides, let us assume that the conditions (A), (H1) and (H2) hold with 0 <
α ≤ 1

2 . Then, there exists a T -periodic solution of (1.1).
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Proof. Let Λ = {i : mint γi(t) > 0} �= ∅ and consider the closed, convex and
bounded set

K̂ = {x ∈ C(R/TZ, RN ) : r ≤ xi(t) ≤ R if i ∈ Λ; |xi| ≤ R in the other case}

where r, R > 0 are chosen later. Again T : K̂ → C(R/TZ, RN ), defined by (2.1), is
a compact operator.

Following the proof of Theorem 2.1 we easily see that

r ≤ (T x)i(t) ≤ R

for i ∈ Λ. Now take i ∈ {1, . . . , N} \ Λ

|(T x)i(t)| ≤
∣∣∣∣∣
∫ T

0

G(t, s)
[
D2g(t,

|x|2
2

)xi + fi(s)
]

ds

∣∣∣∣∣
≤

∫ T

0

G(t, s)
c2α|xi|
(x2

i )α
ds + |γi(t)|

≤ c2α

∫ T

0

G(t, s)|xi|1−2α ds + max
t

|γi(t)|

≤ c2α

k2
R1−2α + max

t
|γi(t)|.

Therefore, choosing R large enough we have T (K̂) ⊂ K̂ and there exists a
periodic solution. �

Remark 2.4. Besides the lower bound given in the statement of Theorem 2.1, from
the proof it is easy to deduce an upper bound for the solution depending on the
value of α. For example, if α > 1

2 and a ≡ k2 we get that

xi ≤
c2α

k2
γ1−2α
∗ + γ∗.

On the other hand, it is also possible to get some estimates for the periodic solution
in Theorem 2.3. For example, for i ∈ Λ we have

xi ≥ min
i∈Λ,t

γi(t).

3. Existence results II

In this section we study the system

(3.1) ẍ(t) + a(t)x(t) = F (t, x(t))

with F a T -periodic function in the first variable and a ∈ L1(R/TZ, RN ) such that
each component ai satisfies the standing hypothesis (A). In this situation G(t, s) is
a vectorial Green’s function whose components are the Green’s functions of each
coefficient ai, all of them non-negative by assumption.

Our main idea is to obtain sufficient conditions for the existence of at least a
periodic positive solution for

ẍ(t) + a1(t)x(t) =
√

(x2 + y2)−α + µ
√

(x2 + y2)β ,

ÿ(t) + a2(t)y(t) =
√

(x2 + y2)−α + µ
√

(x2 + y2)β
(3.2)

when α > 0, β ∈ [0, 1) and µ ∈ R.
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Now, for f ∈ L1(R/TZ, RN) we define γ : R → R
N by

γi(t) =
∫ T

0

Gi(t, s)fi(s)ds, i = 1, . . . , N,

and as before we denote γ∗ = mini,t γi(t) and γ∗ = maxi,t γi(t).

Theorem 3.1. Suppose that there exist α > 0, β ∈ [0, 1), b ∈ L1(R/TZ, R+) and
f ∈ L1(R/TZ, RN ) such that each component Fi of F satisfies

fi(t)|x|β ≤ Fi(t, x) ≤ b(t)
|x|α + fi(t)|x|β.

If f is such that γ∗ > 0, then there exists a T -periodic solution of (3.1).

Proof. Consider K = {x ∈ C(R/TZ, RN) : r ≤ xi(t) ≤ R}. We have to prove that
T̂ (K) ⊂ K where now

T̂ x(t) =
∫ T

0

G(t, s)F (t, x(s))ds.

For each i ∈ {1, . . . , N}, one obtains

(T̂ x)i(t) ≥
∫ T

0

Gi(t, s)fi(s)rβds ≥ rβγ∗

and

(T̂ x)i(t) ≤
∫ T

0

Gi(t, s)[fi(s)(
√

NR)β +
b(s)
rα

]ds ≤ γ∗(
√

NR)β +
Bi

rα

where Bi =
∫ T

0
Gi(t, s)b(s)ds.

We have finished, since β ∈ [0, 1) guaranties that the following inequalities hold
for r small enough and R big enough:

rβγ∗ > r, γ∗(
√

NR)β +
Bi

rα
< R. �

Corollary 3.2. System (3.2) has a positive periodic solution for every µ ∈ (0,∞).

The following result assures us that (3.2) still has a positive solution when µ = 0
if α is sufficiently small.

Theorem 3.3. Suppose that there exist α ∈ (0, 1), β ∈ [0, 1), f ∈ L1(R/TZ, RN )
and b, b̃ ∈ L1(R/TZ, R+) such that each component Fi of F satisfies

b̃(t)
|x|α + fi(t)|x|β ≤ Fi(t, x) ≤ b(t)

|x|α + fi(t)|x|β.

If f is such that γ∗ = 0, then there exists a T -periodic solution of (3.1).

Proof. Considering the same set K as in the preceding result and denoting B̃i =∫ T

0
Gi(t, s)b̃(s)ds and Bi =

∫ T

0
Gi(t, s)b(s)ds, we obtain

(T̂ x)i(t) ≥
∫ T

0

Gi(t, s)
b̃(s)

|x(s)|α ds ≥ B̃i

(
√

NR)α

and

(T̂ x)i(t) ≤
∫ T

0

Gi(t, s)[fi(s)|x(s)|β +
b(s)

|x(s)|α ]ds ≤ γ∗(
√

NR)β +
Bi

rα
.
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Thus, we need to fix r < R such that

B̃i

(
√

NR)α
≥ r, γ∗(

√
NR)β +

Bi

rα
≤ R

for any i = 1, . . . , N .
Taking R = 1/r, it is sufficient to find R > 1 such that

B̃i

(
√

N)α
R1−α ≥ 1, γ∗(

√
NR)β + BiR

α ≤ R,

and these inequalities hold for R big enough because α ∈ (0, 1) and β ∈ [0, 1). �

Our last result allows us to explore the existence of positive solutions for (3.2)
when µ < 0, which is well known as a more difficult situation. We need to assume
that β = 0 and α ∈ (0, 1) although we believe these hypotheses can be weakened.
The proof would be almost the same as in Theorem 4 of [14], so we leave it to the
reader.

Theorem 3.4. Suppose that there exist α ∈ (0, 1), b, b̃ ∈ L1(R/TZ, R+) and f ∈
L1(R/TZ, RN ) such that each component Fi of F satisfies

b̃(t)
|x|α + fi(t) ≤ Fi(t, x) ≤ b(t)

|x|α + fi(t).

If f is such that γ∗ < 0 and

γ∗ ≥
[

B̃

(
√

NB)α
α2

] 1
1−α2 (

1 − 1
α2

)
,

then there exists a T -periodic solution of (3.1).

Of course, we do not need all the components of γ to be negative. We have
chosen this situation for clarity and because it covers our model (3.2). However,
choosing an adequate set K and making straightforward variations of the technique
one could consider

ẍ(t) + a1(t)x(t) =
√

(x2 + y2)−α + µ1

√
(x2 + y2)β,

ÿ(t) + a2(t)y(t) =
√

(x2 + y2)−α + µ2

√
(x2 + y2)β,

where µ1, µ2 ∈ R can have a different sign. Of course, analogous results are obtained
when the coefficients µ1 and µ2 are periodically dependent on time. The interested
reader is invited to check out such direct generalizations.

As a final comment, let us emphasize that our standing hypothesis (A) (non-
negativeness) is weaker than the required condition in [15, 7, 9] (positiveness of the
Green’s function) and allows, for instance, the critical case a(t) ≡ π

T .
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