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Abstract

In this paper, we solve a basic problem about the existence of an analytic potential with a prescribed
period function. As an application, it is shown how to extend to the whole phase plane an arbitrary potential
defined on a semiplane in order to get isochronicity.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In general, an inverse problem could be described as a task where the effect is known, but the
cause is unknown. In the framework of dynamical systems, one wonders about the existence of a
system which exhibits a concrete dynamic response. This paper is devoted to the analysis of two
basic inverse problems in the context of analytic potential systems.

Consider the system {
ẋ = −y,

ẏ = V ′(x),
(1)

where V is an analytic function defined in a neighborhood of the origin. We always assume that
the system has a non-degenerate center at 0, that is V (0) = V ′(0) = 0 and V ′′(0) = k > 0. We
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denote by P the projection in the x-axis of the period annulus of the origin. Clearly P is an open
interval containing 0. We will denote its endpoints by x− and x+. Thus, P = (x−, x+).

For x ∈ P \ {0} we denote by T (x) the period of the orbit of the potential system passing
through the point (x,0). It is well known that T is an analytic function on P \ {0} and that it
extends analytically to 0 by T (0) = limx→0 T (x). Also it is well known that T (0) > 0 (all these
results are direct consequence of Theorem 3 in the next section). Since for each x ∈ (0, x+)

it exists y ∈ (x−,0) such that T (x) = T (y) it follows that 0 is a local extremum of the func-
tion T .

In this paper we first study the following inverse problem. Given an analytic function F

having a local extremum at 0, and satisfying F(0) > 0, we investigate the existence of some
non-degenerate potential V such that F is the period function associated to V . Our main result
in this direction is the following theorem:

Theorem 1. Let F be an analytic function at 0 with F(0) = a > 0 and assume that F has a local
minimum or maximum at 0. If F is non-constant then it exists a unique function V analytic at 0
such that the period function of the potential system associated to V is F . If F is constant then
there exist infinitely many analytic functions V satisfying that the period function of V is F . All

these solutions are of the form π2

2a2 (x − σ(x))2 where σ is an analytic involution defined in a
neighborhood of 0.

Theorem 1 is a direct consequence of Theorem 5 and Corollary 2 in Section 3. We notice that
Corollary 2 was already proved in [2].

This paper is closely related with the results which appear in [5,6]. In these classical papers the
author considers the analogous inverse problem associated to the energy of the orbits. Consider
the energy H(x,y) = y2/2 + V (x), which is a first integral of our system. Then the orbits can
be parameterized by the value of H at the orbit. Set T(h) the period of the orbit having energy
level h. It is well known that T is also analytic and obviously T(H(x,0)) = T (x). In that paper it
is proved that given an analytic function T such that T(0) > 0 there exist infinitely many analytic
functions V such that T is the period function (with respect the energy) of V . A little more
general problem was also studied in [3].

Another related reference is [1], where the author considers the half-period function, T̄ . For
each x ∈ P , x > 0, T̄ (x) is defined as the time that the solution with initial condition (x,0)

spends to intersect for a first time the y-axis. In that paper the author proves an equivalent result
to the first part of Theorem 1 for the half-period function. Due to the symmetries in the case when
V is even, clearly T (x) = 4T̄ (x). So the even case (see Theorem 4) could be obtained from the
previous work of Alfawicka. We present here a new proof which is much simpler and can be
extended to the general case.

The second inverse problem concerns the way to complete or extend a potential working in
the semiplane y > 0 to the whole phase plane in order to get an isochronous center at the origin.
This problem was raised in [4, Section 3], where the even case was solved. The following result
solves completely the question.

Theorem 2. Let V be an analytic function defined in a neighborhood of 0 satisfying V (0) =
V ′(0) = 0 and V ′′(0) = k > 0. Then, for any A > π√

2k
, there exists a unique analytic function

V ∗ defined in a neighborhood of 0 satisfying V ∗(0) = (V ∗)′(0) = 0 and (V ∗)′′(0) > 0 verifying
that the system
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ẋ = −y,

ẏ =
{

V ′(x), if y > 0,

(V ∗)′(x), if y < 0,

has an isochronous center at the origin with period A.

The paper is structured as follows. In Section 2, a symmetrization argument is provided in
such a way that any arbitrary potential V has an equivalent even potential. Section 3 contains the
proof of Theorem 1 while in Section 4 we give the proof of Theorem 2.

2. Symmetrization of a potential system

Our first purpose is to associate to system (1) a symmetric potential system given by an even
function Ṽ . To do this, observe that since V has a local minimum at 0, we can define an involution
by

V
(
σ(x)

) = V (x),

xσ (x) � 0.

Note that σ is well defined in P . Set

g(x) = x

√
V (x)

x2
= sign(x)

√
V (x).

Writing V (x) = kx2 + · · · , where the dots mean the higher order terms, it is clear that g is
analytic in P , g(0) = 0 and g′(0) = √

k. An easy computation shows that

σ(x) = g−1(−g(x)
)
.

So, σ is analytic in P . Now set h(x) = x−σ(x)
2 . Since σ ′(x) < 0 we get that h′(x) > 0, and hence

it is a diffeomorphism from P to h(P ) = (
x−−x+

2 ,
x+−x−

2 ). We define Ṽ = V ◦ h−1. The next
lemma states some basic properties of h and Ṽ .

Lemma 1. The following assertions hold:

(1) h(σ (x)) = −h(x);
(2) V (x) = Ṽ (h(x)) and Ṽ is an even function on (

x−−x+
2 ,

x+−x−
2 );

(3) h−1(x) − h−1(−x) = 2x.

Proof. The property (1) follows by direct computations

h
(
σ(x)

) = σ(x) − σ 2(x) = −h(x).

2
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The first assertion of (2) follows directly from the definition of Ṽ . Also we have

Ṽ
(−h(x)

) = Ṽ
(
h
(
σ(x)

)) = V
(
σ(x)

) = V (x) = Ṽ
(
h(x)

)
.

Since h is a diffeomorphism it follows that Ṽ is even.
From (1) we get

σ(x) = h−1(−h(x)
)

and

σ
(
h−1(x)

) = h−1(−x).

Then,

h−1(x) − h−1(−x) = h−1(x) − σ
(
h−1(x)

) = 2h
(
h−1(x)

) = 2x. �
Our next purpose is to compare the potential systems associated to V and Ṽ . To do this we

define

g̃(x) = x

√
Ṽ (x)

x2
.

An easy computation shows that g̃ is an analytic odd diffeomorphism defined in h(P ) and

g = g̃ ◦ h.

For x ∈ P let TV (x) be the period of the orbit of the potential system passing through the
point (x,0). It is well known that T is also analytic at P . In the same way we denote by T

Ṽ

the period function of the potential system associated to Ṽ . The next theorem relates these two
period functions.

Theorem 3.

TV (x) = 2
√

2

π/2∫
0

(
g̃−1)′(

g̃
(
h(x)

)
sin θ

)
dθ = T

Ṽ

(
h(x)

)
.

Proof. For x > 0, we have

TV (x) = √
2

x∫
σ(x)

dy√
V (x) − V (y)

.
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Putting y = g−1(g(x) sin θ) and taking into account that V = g2, we obtain

TV (x) = √
2

π/2∫
−π/2

(
g−1)′(

g(x) sin θ
)
dθ

= √
2

0∫
−π/2

(
g−1)′(

g(x) sin θ
)
dθ + √

2

π/2∫
0

(
g−1)′(

g(x) sin θ
)
dθ

= √
2

π/2∫
0

[(
g−1)′(

g(x) sin θ
) + (

g−1)′(−g(x) sin θ
)]

dθ.

Now we focus our attention to the expression appearing in the integral. Putting z = g(x) sin θ ,
taking into account that g = g̃ ◦ h, and that g̃ is odd, we get

(
g−1)′

(z) + (
g−1)′

(−z) = (
h−1)′(

g̃−1(z)
)(

g̃−1)′
(z) + (

h−1)′(
g̃−1(−z)

)(
g̃−1)′

(−z)

= (
g̃−1)′

(z)
[(

h−1)′(
g̃−1(z)

) + (
h−1)′(−g̃−1(z)

)]
.

From Lemma 1(3) we obtain

(
h−1)′(

g̃−1(z)
) + (

h−1)′(−g̃−1(z)
) = 2.

Thus, we get

TV (x) = 2
√

2

π/2∫
0

(
g̃−1)′(

g(x) sin θ
)
dθ = 2

√
2

π/2∫
0

(
g̃−1)′(

g̃
(
h(x)

)
sin θ

)
dθ

and the first equality holds for x > 0. One can check easily that the same expression holds for
x < 0. The same computations for T

Ṽ
gives

T
Ṽ
(x) = 2

√
2

π/2∫
0

(
g̃−1)′(

g̃(x) sin θ
)
dθ.

Hence, we get

T (x) = T
Ṽ

(
h(x)

)
. �
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3. The proof of Theorem 1

Taking advantage of the latter section, we easily obtain the following well-known results.
Corollary 1 was originally proved in [5] and Corollary 2 in [2].

Corollary 1. If V is an even isochronous potential with associated constant period a > 0, then

V (x) = kx2 with k = 2π2

a2 > 0.

Proof. Assume that V = kx2 + · · · is an even isochronous potential and let g(x) = x

√
V (x)

x2 .
Since V is even, g is odd. So (g−1)′ is even. Let

(
g−1)′

(x) =
∞∑
i=0

c2ix
2i

be the power expansion of (g−1)′ at the origin. Clearly c0 = 1√
k

. Since the period function T (x)

is constant, we get that T (g−1(x)) is also the same constant a. From Theorem 3 we have

a = T
(
g−1(x)

) = √
2

π/2∫
−π/2

(
g−1)′

(x sin θ) dθ.

Hence we obtain that

a =
∞∑
i=0

c2iI2ix
2i , (2)

where I2i = 2
√

2
∫ π/2
−π/2 sin2i θ dθ . This implies that c2i = 0 for all i > 0. Thus (g−1)′(x) = 1√

k
,

and since g(0) = 0 we obtain g(x) = √
kx. Therefore, V (x) = kx2. Besides, from (2) we get

a = c0I0, taking into account that c0 = 1√
k

, one easily finds k = 2π2

a2 . �
Corollary 2. If V is an isochronous potential with associated constant period a > 0, then V (x) =
k(x − σ(x))2 for some analytic involution σ and k = π2

2a2 .

Proof. Let Ṽ be the even potential associated to V . By Theorem 3 it follows that Ṽ is also
isochronous (with the same associated period) and by the previous corollary we obtain that

Ṽ (x) = 2π2

a2 x2. The result follows from the fact that V (x) = Ṽ (h(x)). �
This previous result is the second part of Theorem 1. It remains to prove the first part. As we

remarked in the Introduction, although the even case can be deduced from [1], we give here a
simpler proof.

Theorem 4. Let T be a non-constant even function analytic at 0 with T (0) = a > 0. Then there
exists a unique function V analytic at 0, such that the period function of the potential system
associated to V is T . Moreover, V is even.
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Proof. In view of Theorem 3 we look for an analytic odd function g with g′(0) 	= 0 satisfying

T (x) = 2
√

2

π/2∫
0

(
g−1)′(

g(x) sin θ
)
dθ (3)

or equivalently

T
(
g−1(x)

) = 2
√

2

π/2∫
0

(
g−1)′

(x sin θ) dθ. (4)

If we put

T (x) =
∞∑
i=0

t2ix
2i

and

g−1(x) =
∞∑
i=0

a2i+1x
2i+1,

we obtain a1 = t0/I0 = a/I0 > 0 and the following recurrence

a2n+1 = 1

(2n + 1)I2n

n∑
i=1

t2i

( ∑
j1+···+j2i=2n

aj1 · · ·aj2i

)
, (5)

where Ik = 2
√

2
∫ π/2

0 sink θ dθ . Note also that since T is an analytic function at 0 it exists d > 0
such that |t2n| < d2n for all n > 0. From this recurrence we obtain a unique formal power series
satisfying Eq. (3). Since V = g2 this implies that if there exists an analytic potential with the
prescribed period function it is unique. To solve the existence problem it suffices to show that the
power series

∑∞
i=0 a2i+1x

2i+1 with coefficients satisfying (5) and a1 = a/I0 > 0, has positive
convergence radius.

To do this consider F : R
2 → R

2 defined by

F(x, y) = d2y3 − (a1 − 1)d2xy2 + a1x − y

which is analytic and satisfies ( ∂F
∂y

)(0,0) = −1. Thus from the Implicit Function Theorem it fol-
lows that there exists a neighborhood of 0, V in R and an analytic function G : V → R satisfying
G(0) = 0 and F(x,G(x)) = 0. Notice that F(x,−G(−x)) = −F(−x,G(−x)) = 0. So from the
Implicit Function Theorem −G(−x) = G(x) and G is odd.
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Now we put G(x) = ∑∞
i=0 b2i+1x

2i+1. Note that since G is analytic at 0 this power series has
positive radius of convergence. On the other hand substituting this power series in the equation
F(x,G(x)) = 0 we obtain

1

x

( ∞∑
i=0

b2i+1x
2i+1

)
= (a1 − 1) + 1

1 − d2(
∑∞

i=0 b2i+1x2i+1)2
. (6)

Then b1 = a1 and

b2n+1 =
n∑

i=1

d2i

( ∑
j1+···+j2i=2n

bj1 · · ·bj2i

)
. (7)

We claim that |a2i+1| � b2i+1 for all i � 0. Since b1 = a1 > 0 the claim holds for i = 0. Now
assume that |a2i+1| � b2i+1 for all i < n. Taking into account that

(2n + 1)I2n =
√

2π(2n + 1)!!
(2n)!! > 1

for all n � 0, we have

|a2n+1| =
∣∣∣∣∣ 1

(2n + 1)I2n

n∑
i=1

t2i

( ∑
j1+···+j2i=2n

aj1 · · ·aj2i

)∣∣∣∣∣
�

n∑
i=1

d2i

( ∑
j1+···+j2i=2n

|aj1 | · · · |aj2i
|
)

�
n∑

i=1

d2i

( ∑
j1+···+j2i=2n

bj1 · · ·bj2i

)

= b2n+1,

and the claim is proved. Thus, since the power series
∑∞

i=0 b2i+1x
2i+1 has positive radius of

convergence the same holds for the power series
∑∞

i=0 a2i+1x
2i+1. �

Now we are able to extend this theorem to the general case.

Theorem 5. Let F be an analytic function at 0 with F(0) = a > 0. Assume that F has a local
minimum or maximum at 0 and that it is not constant. Then there exists a unique function V

analytic at 0 such that the period function of the potential system associated to V is F .

Proof. Since F has a local extremum and it is not constant it has an associated analytic involution
σ defined by

F
(
σ(x)

) = F(x),

xσ (x) � 0.
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In fact σ can be obtained in the following way. From our hypotheses on F there exists k > 0
in such a way F(x) = a + a2kx

2k + · · · with a2k 	= 0. Assume for instance that a2k > 0. Set

f (x) = x

(
F(x) − a

x2k

) 1
2k = sign(x)

(
F(x) − a

) 1
2k .

Clearly f is analytic at 0, f (0) = 0 and f ′(0) 	= 0. Then σ(x) = f −1(−f (x)).
We also define h(x) = x−σ(x)

2 . Thus we get F(x) = F̃ (h(x)), where F̃ = F ◦ h−1 is an ana-
lytic even function. Applying Theorem 4 to F̃ we obtain an analytic even function Ṽ having F̃ as
a period function. Now let V = Ṽ ◦ h. From Theorem 3 we obtain that the period function asso-
ciated to V satisfies T (x) = F̃ (h(x)) = F(x). This proves the existence of a potential satisfying
the required conditions.

Now assume that V1 and V2 are analytic potentials satisfying that its period function is F .
Then all the functions F , V1, V2 have associated the same analytic involution σ and the same
diffeomorphism h(x) = x−σ(x)

2 . Thus F̃ = F ◦h−1, Ṽ1 = V1 ◦h−1 and Ṽ2 = V2 ◦h−1 are analytic
and even. Also from Theorem 3 both Ṽ2 and Ṽ1 have the same period function F̃ and from
Theorem 4 we get Ṽ1 = Ṽ2. Since h is a diffeomorphism this implies V1 = V2. �

With this result the proof of Theorem 1 is completed.

4. The proof of Theorem 2

Given an analytic potential V that has a non-degenerate center at the origin, we will denote
by σV the analytic involution implicitly defined in a neighborhood of 0 by

V (x) = V
(
σV (x)

)
, xσV (x) � 0.

We also denote by TV the period function associated to the potential system given by V . We
stress the fact that when TV is not constant, σV is also determined by the equation

TV

(
σV (x)

) = TV (x), xσV (x) � 0.

The next proposition was proved in [4].

Proposition 1. Let V1 and V2 be analytic functions defined in a neighborhood of the origin
satisfying that V1(0) = V2(0) = V ′

1(0) = V ′
2(0) = 0 and V ′′

1 (0),V ′′
2 (0) > 0. Then the following

statements are equivalent:

• the system

ẋ = −y,

ẏ =
{

V ′
1(x), if y > 0,

V ′
2(x), if y < 0,

has a center at the origin;
• σV1 = σV2;• there exists an analytic diffeomorphism g such that V1 = g(V2) and g(0) = 0.
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Proof of Theorem 2. Let TV be the period function associated to V . Denote by T +
V the time

expended by the solution beginning at (x,0) to come to (σV (x),0). Clearly T +
V = TV

2 . In partic-
ular T +

V (0) = π√
2k

. So, in view of Proposition 1 we look for an analytic function V ∗ satisfying

V ∗(0) = (V ∗)′(0) = 0, (V ∗)′′ > 0, σV = σV ∗ and T +
V + T +

V ∗ = A. Note that this last equality is
equivalent to TV ∗ = 2A − TV . Note also that 2A − TV (0) = 2T − 2π√

2k
> 0.

Consider first the case when TV is constant. This implies that TV ∗ must also be constant,
namely TV ∗ = 2A− 2π√

2k
. In this case from Theorem 1 we have that V = k

4 (x −σV (x))2 and also

V ∗ = B
4 (x − σ(x))2 for some B > 0. In view of Proposition 1, σ must be exactly σV and B is

determined from the relation TV ∗ = 2A − 2π√
2B

. This ends the proof of the theorem in this case.
Now assume that TV is not constant. Now the analytic function 2A − TV is not constant, is

positive at 0 and has a local minimum or maximum at 0. From Theorem 1 it follows that there
exists one and only one analytic function V ∗ such that V ∗(0) = (V ∗)′(0) = 0, (V ∗)′′(0) > 0 and
TV ∗ = 2A − TV . Moreover since TV and 2A − TV define the same involutions it follows that
σV = σV ∗ . This ends the proof of the theorem. �
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