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Periodic oscillations of the relativistic pendulum with friction
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It is proved that the forced pendulum equation with friction and a singular φ-Laplacian operator of
relativistic type has periodic solutions, in contrast to what happen in the Newtonian case.
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1. Introduction and main result

In this Letter we consider the existence of periodic solutions for
the forced pendulum equation with relativistic effects
(

x′√
1 − x′ 2

c2

)′
+ kx′ + a sin x = p(t), (1.1)

where c > 0 is the speed of light in the vacuum, k � 0 is a possible
viscous friction coefficient and p is a continuous and T -periodic
forcing term with mean value p̄ = 1

T

∫ T
0 p(t)dt = 0. This equation

can be derived from an appropriate Lagrangian formulation [1].
Physically, we are assuming a basic principle of Special Relativity:
the mass of a moving object is not constant but depends on its ve-
locity. From a more mathematical perspective, the equation can be
seen as a singular φ-Laplacian oscillator. A first related reference
is [2]. More recently, the publication of [3] has renewed the inter-
est in the study of equations with singular φ-Laplacian operators.
If compared with the classical or Newtonian case, the relativistic
pendulum has been scarcely studied, therefore at this stage it is
important to point out the dynamical differences between both
models. The aim of this note is to reveal a new dynamical response
when relativistic effects are considered.

In the non-relativistic regime, that is, if c is assumed to be +∞,
we have the classical forced pendulum equation

x′′ + kx′ + a sin x = p(t), (1.2)
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which is a paradigm in Classical Mechanics and Dynamical Sys-
tems. The long story around this equation can be found in the
reviews [4,5]. Concerning the existence of periodic solutions, the
first result was proved by Hamel [6] in 1922 for the conservative
case k = 0.

Theorem 1 (Hamel’s theorem). If k = 0, then Eq. (1.2) has at least one
T -periodic solution.

Let us note that the original result by Hamel was proved for
p(t) = sin t but the idea is easily extended to the general case.
The proof is of variational type and hence the conservative nature
of the problem plays the fundamental role. However, Mawhin [7]
conjectured that a topological approach may be useful to prove
the existence of periodic solutions in the presence of friction. The
first counterexample was presented by Ortega [8]. Later, Alonso [9]
provided a different counterexample, but the more general non-
existence result is given in [10]. From now on, let us denote by CT

the Banach space of the continuous and T -periodic functions and
by C̃T the space of the functions of CT with zero mean value.

Theorem 2. (See [10].) Given positive constants a,k and T , there exists
p ∈ C̃T such that Eq. (1.2) has no T -periodic solutions.

Our main aim is to prove that Mawhin’s conjecture is partially
true in the relativistic framework. Our main result is as follows.

Theorem 3. Let us assume that 2cT � 1. For any values a,k and for any
p ∈ C̃T , Eq. (1.1) has at least one T -periodic solution.
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The proof is an elementary application of the Schauder’s Fixed
Point Theorem and will be given in the next section. Of course,
now an interesting open question arises: are there proper coun-
terexamples for higher values of the period?

2. Proof of the main result

Eq. (1.1) can be written as

φ(x′)′ + kx′ + a sin x = p(t),

where φ : ]−c, c[ → R is given by

φ(u) = u√
1 − u2

c2

.

Of course, the inverse φ−1 is a bounded operator. The first step
of the proof is to make the change of variables x = arcsin y. Then
Eq. (1.1) is equivalent to

φ

(
y′√

1 − y2

)′
+ k

y′√
1 − y2

+ ay = p(t). (2.1)

The second step is to write the problem of finding a T -periodic
solution of (2.1) as a fixed point problem for a suitable operator.
A first integration of the equation gives

φ

(
y′√

1 − y2

)
+ k arcsin y =

t∫
0

(
p(s) − ay(s)

)
ds + C,

where C is a constant to be fixed later. For convenience, let us
define the operator

F [y](t) =
t∫

0

(
p(s) − ay(s)

)
ds − k arcsin y.

Then, we get

y′ =
√

1 − y2φ−1(F [y](t) + C
)
.

Finally, a new integration gives

y(t) =
t∫

0

√
1 − y2φ−1(F [y](s) + C

)
ds + D.

Lemma 1. For any y ∈ C̃T , there exists a unique choice of C y, D y such
that

T [y](t) ≡
t∫

0

√
1 − y2φ−1(F [y](s) + C y

)
ds + D y ∈ C̃T . (2.2)

Proof. Periodicity is equivalent to

T∫
0

√
1 − y2φ−1(F [y](s) + C y

)
ds = 0.
As a function of C y , the left-hand side of this equation is contin-
uous and increasing, so the existence of a unique solution C y for
such equation follows from a basic application of the Mean Value
Theorem. Once C y is fixed, D y is given by

D y = − 1

T

T∫
0

t∫
0

√
1 − y(s)2φ−1(F [y](s) + C y

)
ds dt,

which is the unique choice such that T [y](t) ∈ C̃T . �
Therefore, we have a well-defined functional T : C̃T → C̃T . Let

us define the closed and convex set

K = {
y ∈ C̃T : ‖y‖∞ � 2cT

}
.

The operator T is well defined, continuous and compact on K .
Take y ∈ K . Note that ‖φ−1[y]‖∞ < c for every y ∈ CT . Therefore,

∣∣T [y](t)∣∣ � 2

∣∣∣∣∣
t∫

0

√
1 − y(s)2φ−1(F [y](s) + C y

)
ds

∣∣∣∣∣ < 2cT

for all t . In consequence, by the Schauder’s fixed point Theo-
rem there exists a T -periodic solution y of (2.1). The hypothesis
2cT � 1 enables to invert the change and hence x = arcsin y is a
T -periodic solution of the original equation (1.1).

As a final note, let us remark that the same proof works if the
linear friction term kx′ is replaced by h(x)x′ without further re-
strictions on the continuous function h. Also, the term sin x could
be extended to a more general nonlinearity, but such a general-
ization is out of the scope of this note and will be developed
elsewhere. The method does not seem to work if the nonlinear-
ity includes the derivative as in [2].
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