
J. Differential Equations 239 (2007) 196–212

www.elsevier.com/locate/jde

Periodic solutions of second order non-autonomous
singular dynamical systems

Jifeng Chu a,b,∗, Pedro J. Torres c,1, Meirong Zhang a,2

a Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
b College of Science, Hohai University, Nanjing 210098, China

c Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain

Received 12 January 2007; revised 7 May 2007

Available online 18 May 2007

Abstract
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non-autonomous singular dynamical systems. The first one is based on a nonlinear alternative principle of
Leray–Schauder and the result is applicable to the case of a strong singularity as well as the case of a weak
singularity. The second one is based on Schauder’s fixed point theorem and the result sheds some new light
on problems with weak singularities and proves that in some situations weak singularities may help create
periodic solutions. Recent results in the literature are generalized and significantly improved.
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1. Introduction

The main purpose of this paper is to study the existence of positive T -periodic solutions of
the second order non-autonomous dynamical system

ẍ + a(t)x = f (t, x) + e(t), (1.1)

or

−ẍ + a(t)x = f (t, x) + e(t), (1.2)

where a(t), e(t) ∈ C(R/T Z,R
N), f (t, x) ∈ C((R/T Z) × R

N \ {0},R
N). As usual, by a

T -periodic positive solution, we mean a function x(t) = (x1(t), . . . , xN(t)) ∈ C
2(R/T Z,R

N)

solving (1.1) (or (1.2)) and such that xi(t) > 0 for all t , i = 1,2, . . . ,N . In particular, a T -periodic
positive solution is also a non-collision solution, which means that a function x ∈ C(R/T Z,R

N)

solving (1.1) (or (1.2)) and such that x(t) �= 0 for all t .
In this paper, we are mainly interested in equations with a singularity in x = 0, which means

lim
x→0+ fi(t, x) = +∞ uniformly in t, i = 1,2, . . . ,N.

Then (1.1) presents a singularity of repulsive type whereas (1.2) has an attractive singularity.
Electrostatic or gravitational forces are the most important examples of singular interactions.

The question of existence of collisionless periodic orbits for Lagrangian systems with singu-
larities has attracted much attention of many mathematicians and physicists over many years,
such as [1,8,10,21,22,32]. There are two main lines of research in this area. The first one is the
variational approach [2,23–25]. In the attractive case, it is necessary some condition on the action
functional near the singularity to guarantee that its critical points have no collisions with the sin-
gularity. An example is the well-known strong force condition, which was first introduced with
this name by Gordon in [12], although the idea goes back at least to Poincaré [19]. This condi-
tion has been widely used for avoiding collisions in the attractive case (see [2] and the references
therein). For example, if we consider the system

ẍ + ∇xV (t, x) = f (t) (1.3)

with V (t, x) = − 1
|x|α , the strong force condition corresponds to the case α � 2. In the repulsive

case and dimension higher than 1, the possibility of the solutions to wind around the singularity
enables to avoid the strong force condition [23].

Besides the variational approach, topological methods have been widely applied, starting with
the pioneering paper of Lazer and Solimini [16]. In particular, the method of upper and lower
solutions, degree theory, some fixed point theorems in cones for completely continuous oper-
ators and Schauder’s fixed point theorem are the most relevant tools [3,10,11,14,27]. Here we
remark that, even in the scalar case, the existence of periodic solutions for singular problems has
commanded much attention in recent years [4,6,7,9,13,20,31]. Contrasting with the variational
setting, the strong force condition plays here a different role linked to repulsive singularities.
A counterexample in the paper of Lazer and Solimini [16, Theorem 4.1] shows that a strong force
assumption (unboundedness of the potential near the singularity) is necessary in some sense for
the existence of positive periodic solutions in the scalar case. Compared with the case of strong
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singularities, the study of the existence of periodic solutions under the presence of weak singu-
larities by topological methods is more recent and the number of references is much smaller.
Here we refer the reader to [5,11,21,28].

This paper is mainly motivated by the recent papers [15,28], in which the scalar periodic sin-
gular problems have been studied by Leray–Schauder alternative principle, a well-known fixed
point theorem in cones, and Schauder’s fixed point theorem, respectively. Some results in [28]
prove that in some situations weak singularities may help create periodic solutions. We remark
here that there are examples in the literature of techniques that work well for the scalar case with-
out assuming the strong force condition, but need to consider it to deal with higher-dimensional
systems, see Remark 1 in [29]. However, as we will see, that is not our case.

The remaining part of the paper is organized as follows. In Section 2, some preliminary results
will be given. In Section 3, by employing a nonlinear alternative principle of Leray–Schauder, we
state and prove the first existence result for (1.1) under the positiveness of the Green’s function
associated with (2.1)–(2.2). The result is applicable to the case of a strong singularity as well
as the case of a weak singularity. Analogous results still remain valid for the system with an
attractive singularity since the proof relies essentially on the positiveness of the Green’s function
of the linear part.

In Section 4, by using Schauder’s fixed point theorem, we state and prove the second existence
result for (1.1), assuming that the Green’s function associated with (2.1)–(2.2) is non-negative.
Our view point sheds some new light on problems with weak force potentials and we prove that
in some situations weak singularities may stimulate the existence of periodic solutions, just as
pointed out in [28] for the scalar case.

To illustrate our results, in both Sections 3 and 4, we have selected the system

⎧⎪⎨
⎪⎩

ẍ + a1(t)x =
√(

x2 + y2
)−α + μ

√(
x2 + y2

)β + e1(t),

ÿ + a2(t)y =
√(

x2 + y2
)−α + μ

√(
x2 + y2

)β + e2(t)

(1.4)

with a1, a2, e1, e2 ∈ C[0, T ], α,β > 0 and μ ∈ R is a given parameter. Here we emphasize that
in the new results e1, e2 does not need to be positive. Therefore we generalize and improve some
results contained in [11,17] and even for the scalar cases in [4,15].

In this paper, we will use the notation R
N+ = {x ∈ RN : xi � 0 for each i = 1,2, . . . ,N} with

the norm |x| = maxi |xi |. For x = (x1, . . . , xN), y = (y1, . . . , yN), we write x � y, if x − y =
(x1 − y1, . . . , xN − yN) ∈ R

N+ . We say that a function ϕ : RN → R is non-decreasing if ϕ(x) �
ϕ(y) for x, y ∈ R

N with x � y. Given ψ ∈ L1[0, T ], we write ψ � 0 if ψ � 0 for a.e. t ∈ [0, T ]
and it is positive in a set of positive measure. For a given function p ∈ L1[0, T ], we denote the
essential supremum and infimum by p∗ and p∗, if they exist. The usual Lp-norm is denoted by
‖ · ‖p. The conjugate exponent of p is denoted by p̃: 1

p
+ 1

p̃
= 1.

2. Preliminaries

We denote by a1, a2, . . . , aN and e1, e2, . . . , eN the components of given functions a(t), e(t) ∈
C(R/T Z,R

N), respectively. For each i = 1,2, . . . ,N, we consider the scalar equation

x′′ + ai(t)x = ei(t) (2.1)
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with periodic boundary conditions

x(0) = x(T ), x′(0) = x′(T ). (2.2)

In Section 3, we assume that the following standing hypothesis is satisfied:

(A) the Green function Gi(t, s), associated with (2.1)–(2.2), is positive for all (t, s) ∈
[0, T ] × [0, T ], i = 1,2, . . . ,N.

In Section 4, we assume that

(B) the Green function Gi(t, s), associated with (2.1)–(2.2), is non-negative for all (t, s) ∈
[0, T ] × [0, T ], i = 1,2, . . . ,N.

In other words, the (strict) anti-maximum principle holds for (2.1)–(2.2). Under the condition
(A) or (B), the solution of (2.1)–(2.2) is given by

x(t) =
T∫

0

Gi(t, s)ei(s) ds.

When ai(t) = k2, condition (A) is equivalent to 0 < k2 < λ1 = ( π
T

)2 and condition (B) is
equivalent to 0 < k2 � λ1. Note that λ1 is the first eigenvalue of the linear problem with Dirichlet
conditions x(0) = x(T ) = 0. In this case, we have

Gi(t, s) =
{ sink(t−s)+sink(T −t+s)

2k(1−cos kT )
, 0 � s � t � T ,

sink(s−t)+sink(T −s+t)
2k(1−cos kT )

, 0 � t � s � T ,

and

1

2k
cot

kT

2
� Gi(t, s) � 1

2k sin kT
2

.

See [10,26].
For a non-constant function a(t), there is an Lp-criterion proved in [26], which is given in the

following lemma for the sake of completeness. Let K(q) denote the best Sobolev constant in the
following inequality:

C‖u‖2
q � ‖u′‖2

2, for all u ∈ H 1
0 (0, T ).

The explicit formula for K(q) is

K(q) =

⎧⎪⎨
⎪⎩

2π

qT 1+2/q ( 2
2+q

)1−2/q
( �( 1

q
)

�( 1
2 + 1

q
)

)2 if 1 � q < ∞,

4
T

if q = ∞,

where � is the Gamma function. See [30].



200 J. Chu et al. / J. Differential Equations 239 (2007) 196–212
Lemma 2.1. For each i = 1,2, . . . ,N, assume that ai(t) � 0 and ai ∈ Lp[0, T ] for some 1 �
p � ∞. If

‖ai‖p < K(2p̃),

then the standing hypothesis (A) holds. Moreover, condition (B) holds if

‖ai‖p � K(2p̃).

Under hypothesis (A), we always denote

mi = min
0�s,t�T

Gi(t, s), Mi = max
0�s,t�T

Gi(t, s), σi = mi/Mi. (2.3)

Obviously, Mi > mi > 0 and 0 < σi < 1.
We define the function γ : R → R

N by

γi(t) =
T∫

0

Gi(t, s)ei(s) ds, i = 1,2, . . . ,N,

which is the unique T -periodic solution of

ẍ + a(t)x = e(t).

Throughout this paper, we use the following notations

γ∗ = min
i,t

γi(t), γ ∗ = max
i,t

γi(t).

3. Existence result (I)

In this section, we state and prove the first existence result. The proof is based on the following
nonlinear alternative of Leray–Schauder, which can be found in [18].

Lemma 3.1. Assume Ω is a relatively compact subset of a convex set K in a normed space X. Let
T :Ω → K be a compact map with 0 ∈ Ω . Then one of the following two conclusions holds:

(I) T has at least one fixed point in Ω.

(II) There exist x ∈ ∂Ω and 0 < λ < 1 such that x = λT x.

In applications below, we take X = C[0, T ] × · · · × C[0, T ] (N copies) and denote by ‖ · ‖
the supremum norm of C[0, T ]. Define the operator T :X → X by T x = (T1x,T2x, . . . , TNx)T ,

where

(Tix)(t) =
T∫

Gi(t, s)fi

(
s, x(s) + γ (s)

)
ds, i = 1,2, . . . ,N. (3.1)
0
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It is easy to see that finding a fixed point for the operator T is equivalent to finding a T -periodic
solution of system (3.2) below.

Theorem 3.1. Suppose that a(t) satisfies (A). Furthermore, we assume that

(H1) for each constant L > 0, there exists a continuous function φL � 0 such that each compo-
nent fi of f satisfies fi(t, x) � φL(t) for all t ∈ [0, T ] and x ∈ [−L,L];

(H2) for each component fi of f , there exist continuous, non-negative functions gi(x), hi(x)

and ki(t), such that

0 � fi(t, x) � ki(t)
{
gi(x) + hi(x)

}
for all (t, x) ∈ [0, T ] × R

N+ \ {0},
and gi(x) > 0 is non-increasing and hi(x)/gi(x) is non-decreasing in x;

(H3) there exists a positive number r > 0 such that

r

gi(γ∗, . . . , γ∗, σir + γ∗, γ∗, . . . , γ∗){1 + hi(r+γ ∗,...,r+γ ∗)
gi (r+γ ∗,...,r+γ ∗) }

> K∗
i

for all i = 1,2, . . . ,N , here Ki(t) = ∫ T

0 Gi(t, s)ki(s) ds.

If γ∗ � 0, then (1.1) has at least one positive T -periodic solution x with x(t) > γ (t) for all t and
0 < |x − γ | < r .

Proof. We first show that

ẍ + a(t)x = f
(
t, x(t) + γ (t)

)
(3.2)

has a positive T -periodic solution x satisfying x(t) + γ (t) > 0 for t ∈ [0, T ] and 0 < |x| < r. If
this is true, it is easy to see that u(t) = x(t) + γ (t) will be a positive T -periodic solution of (1.1)
with 0 < |u − γ | < r since

ü + a(t)u = ẍ + γ̈ + a(t)x + a(t)γ = f (t, x + γ ) + e(t) = f (t, u) + e(t).

Since (H3) holds, we can choose n0 ∈ {1,2, . . .} such that 1
n0

< σr + γ∗ and

K∗
i gi(γ∗, . . . , γ∗, σir + γ∗, γ∗, . . . , γ∗)

{
1 + hi(r + γ ∗, . . . , r + γ ∗)

gi(r + γ ∗, . . . , r + γ ∗)

}
+ 1

n0
< r

for all i = 1,2, . . . ,N. Here σ = min{σ1, σ2, . . . , σN }.
Let N0 = {n0, n0 + 1, . . .}. Fix n ∈ N0. Consider the family of systems

ẍ + a(t)x = λf n
(
t, x(t) + γ (t)

) + a(t)

n
, (3.3)

where λ ∈ [0,1], and for each i = 1,2, . . . ,N,

f n
i (t, x) =

{
fi(t, x) if xi � 1

n
,

f (t, x , . . . , x , 1 , x , . . . , x ) if x � 1 .
i 1 i−1 n i+1 N i n
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Solving of (3.3) is equivalent to the following fixed point problem

xi(t) = λ

T∫
0

Gi(t, s)f
n
i

(
s, x(s) + γ (s)

)
ds + 1

n
= λ

(
T n

i x
)
(t) + 1

n
(3.4)

for each i = 1,2, . . . ,N.

We claim that any fixed point x of (3.4) for any λ ∈ [0,1] must satisfy |x| �= r . Otherwise,
assume that x is a fixed point of (3.4) for some λ ∈ [0,1] such that |x| = r . Without loss of
generality, we assume that |xj | = r for some j = 1,2, . . . ,N. Thus we have

xj (t) − 1

n
= λ

T∫
0

Gj(t, s)f
n
j

(
s, x(s) + γ (s)

)
ds

� λmj

T∫
0

f n
j

(
s, x(s) + γ (s)

)
ds

= σjMjλ

T∫
0

f n
j

(
s, x(s) + γ (s)

)
ds

� σj max
t

{
λ

T∫
0

Gj(t, s)f
n
j

(
s, x(s) + γ (s)

)
ds

}

= σj

∥∥∥∥xj − 1

n

∥∥∥∥.

Hence, for all t , we have

xj (t) � σj

∥∥∥∥xj − 1

n

∥∥∥∥ + 1

n
� σj

(
‖xj‖ − 1

n

)
+ 1

n
� σj r.

Therefore,

xj (t) + γj (t) � σj r + γ∗ >
1

n

since 1
n

� 1
n0

< σr + γ∗.
Thus we have from condition (H2), for all t ,

xj (t) = λ

T∫
Gj(t, s)f

n
j

(
s, x(s) + γ (s)

)
ds + 1

n

0



J. Chu et al. / J. Differential Equations 239 (2007) 196–212 203
= λ

T∫
0

Gj(t, s)fj

(
s, x(s) + γ (s)

)
ds + 1

n

�
T∫

0

Gj(t, s)fj

(
s, x(s) + γ (s)

)
ds + 1

n

�
T∫

0

Gj(t, s)kj (s)gj

(
x(s) + γ (s)

){
1 + hj (x(s) + γ (s))

gj (x(s) + γ (s))

}
ds + 1

n

� gj (γ∗, . . . , γ∗, σj r + γ∗, γ∗, . . . , γ∗)
{

1 + hj (r + γ ∗, . . . , r + γ ∗)
gj (r + γ ∗, . . . , r + γ ∗)

}
K∗

j + 1

n0

since xi(t) � 1
n

for all i ∈ {1, . . . ,N} \ {j} and γ∗ � 0.

Therefore,

r = |xj | � gj (γ∗, . . . , γ∗, σj r + γ∗, γ∗, . . . , γ∗)
{

1 + hj (r + γ ∗, . . . , r + γ ∗)
gj (r + γ ∗, . . . , r + γ ∗)

}
K∗

j + 1

n0
.

This is a contradiction to the choice of n0 and the claim is proved.
From this claim, Lemma 3.1 guarantees that

x(t) = (
T nx

)
(t) + 1

n
(3.5)

has a fixed point, denoted by xn, in Br = {x ∈ X: |x| < r}, i.e.,

ẍ + a(t)x = f n
(
t, x(t) + γ (t)

) + a(t)

n
(3.6)

has a T -periodic solution xn with |xn| < r . Since xn
i (t) � 1

n
> 0 for all i = 1, . . . ,N and

t ∈ [0, T ], xn is actually a positive T -periodic solution of (3.6).
Next we claim that xn(t) + γ (t) have a uniform positive lower bound, i.e., there exists a

constant δ > 0, independent of n ∈ N0, such that

min
i,t

{
xn
i (t) + γi(t)

}
� δ (3.7)

for all n ∈ N0. Since (H1) holds, there exists a continuous function φr+γ ∗(t) � 0 such that each
component fi of f satisfies fi(t, x) � φr+γ ∗(t) for all t and |x| � r + γ ∗. Let xr+γ ∗

(t) be the
unique T -periodic solution to

ẍ + a(t)x = Φ(t)
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with Φ(t) = (φr+γ ∗(t), . . . , φr+γ ∗(t))T , then we have

x
r+γ ∗
i (t) + γi(t) =

T∫
0

Gi(t, s)φr+γ ∗(s) ds + γi(t) � Φ∗ + γ∗ > 0

for each i = 1, . . . ,N, here

Φ∗ = min
i,t

Φi(t), Φi(t) =
T∫

0

Gi(t, s)φr+γ ∗(s) ds.

Next we show that (3.7) holds for δ = Φ∗ + γ∗ > 0. To see this, for each i = 1, . . . ,N, since
xn
i (t) + γi(t) � r + γ ∗ and xn

i (t) + γ∗ � 1
n
, we have

xn
i (t) + γi(t) =

T∫
0

Gi(t, s)f
n
i

(
s, xn(s) + γ (s)

)
ds + γi(t) + 1

n

�
T∫

0

Gi(t, s)φr+γ∗(s) ds + γi(t)

=
T∫

0

Gi(t, s)φr+γ∗(s) ds + γi(t)

� Φ∗ + γ∗ = δ.

In order to pass the solutions xn of the truncation systems (3.6) to that of the original system
(3.2), we need the following fact ∣∣ẋn

∣∣ � H (3.8)

for some constant H > 0 and for all n � n0. To this end, by the periodic boundary conditions,
ẋn(t0) = 0 for some t0 ∈ [0, T ]. Integrating (3.6) from 0 to T , we obtain

T∫
0

a(t)xn(t) dt =
T∫

0

[
f n

(
t, xn(t) + γ (t)

) + a(t)

n

]
dt.

Therefore, for each i = 1, . . . ,N,

∥∥ẋn
i

∥∥ = max
t

∣∣∣∣∣
t∫

t0

ẍn
i (s) ds

∣∣∣∣∣
= max

t

∣∣∣∣∣
t∫ [

f n
i

(
s, xn(s) + γ (s)

) + ai(s)

n
− ai(s)x

n
i (s)

]
ds

∣∣∣∣∣

t0
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�
T∫

0

[
f n

i

(
s, xn(s) + γ (s)

) + ai(s)

n

]
ds +

T∫
0

ai(s)x
n
i (s) ds

= 2

T∫
0

ai(s)x
n
i (s) ds < 2r|ai |1 = Hi,

here |ai |1 = maxi |
∫ T

0 ai(s) ds|. Then (3.8) is satisfied for H = maxi{Hi}.
The fact |xn| < r and (3.8) show that for each i = 1,2, . . . ,N, {xn

i }n∈N0 is a bounded and
equi-continuous family on [0, T ]. Now the Arzela–Ascoli Theorem guarantees that {xn

i }n∈N0

has a subsequence, {xnk

i }k∈N, converging uniformly on [0, T ] to a function xi ∈ C[0, T ]. Let
x = (x1, . . . , xN), from the fact |xn| < r and (3.7), x satisfies δ � xi(t) + γi(t) � r + γ ∗ for all
t and i = 1, . . . ,N . Moreover, x

nk

i satisfies the integral equation

x
nk

i (t) =
T∫

0

Gi(t, s)fi

(
s, xnk (s) + γ (s)

)
ds + 1

nk

, i = 1, . . . ,N.

Letting k → ∞, we arrive at

xi(t) =
T∫

0

Gi(t, s)fi

(
s, x(s) + γ (s)

)
ds, i = 1, . . . ,N,

where the uniform continuity of fi(t, x) on [0, T ]× [δ, r +γ ∗] is used. Therefore, x is a positive
periodic solution of (3.2) and satisfies 0 < |x| � r.

Finally it is not difficult to show that |x| < r , by noting that if |x| = r , the argument similar to
the proof of the first claim will yield a contradiction. �
Corollary 3.1. Suppose that a1(t), a2(t) satisfy (A) and α > 0, β � 0, then for each e1(t), e2(t) ∈
C(R/T Z,R) with γ∗ � 0, we have

(i) if β < 1, then (1.4) has at least one positive T -periodic solution for each μ > 0;
(ii) if β � 1, then (1.4) has at least one positive T -periodic solution for each 0 < μ < μ1, where

μ1 is some positive constant.

Proof. We will apply Theorem 3.1. To this end, the assumption (H1) is fulfilled by φL(t) =
(
√

2L)−α . If we take

g1(x, y) = g2(x, y) =
√(

x2 + y2
)−α

, h1(x, y) = h2(x, y) = μ

√(
x2 + y2

)β

and k1(t) = k2(t) = 1, then (H2) is satisfied. Let

ω1(t) =
T∫

G1(t, s) ds, ω2(t) =
T∫

G2(t, s) ds.
0 0
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Now the existence condition (H3) becomes

μ <
r[(σir + γ∗)2 + γ 2∗ ] α

2 − ω∗
i

2
α+β

2 (r + γ ∗)α+β
, i = 1,2,

for some r > 0. So (1.4) has at least one positive T -periodic solution for

0 < μ < μ1 := min
i=1,2

sup
r>0

r[(σir + γ∗)2 + γ 2∗ ] α
2 − ω∗

i

2
α+β

2 (r + γ ∗)α+β
.

Note that μ1 = ∞ if β < 1 and μ1 < ∞ if β � 1. We have the desired results (i) and (ii). �
Remark 3.1. We emphasize that our results are applicable to the case of a strong singularity as
well as the case of a weak singularity since we only need α > 0, and that e does not need to
be positive. Therefore the new results generalize and improve those in [10,11] and those in [15]
even for the scalar cases.

Corollary 3.2. Suppose that a(t) satisfies (A). Assume further that there exist continuous func-
tions b, b̂ � 0 and α > 0, 0 � β < 1 such that each component fi of f satisfies

(F) 0 � b̂(t)

|x|α � fi(t, x) � b(t)

|x|α + b(t)|x|β, for all t.

If γ∗ � 0, then (1.1) has at least one positive T -periodic solution.

Proof. We will apply Theorem 3.1. To this end, we take

φL(t) = b̂(t)

Lα
, ki(t) = b(t), gi(x) = 1

|x|α , hi(x) = |x|β.

Then (H1) and (H2) are satisfied and the existence condition (H3) becomes

r(σir + γ∗)α

1 + (r + γ ∗)α+β
> β∗

i , i = 1, . . . ,N, (3.9)

for some r > 0, here

βi(t) =
T∫

0

Gi(t, s)b(s) ds.

Since α > 0, 0 � β < 1 and γ∗ � 0, we can choose r > 0 large enough such that (3.9) is satis-
fied. �
Remark 3.2. At the cost of a more involved notation, the assumption (H1) in Theorem 3.1 can be
generalized by considering the function φL is different for each component of f . Consequently,
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in Corollary 3.2 the functions b, b̂ � 0 can be different for each i. In this way, new cases are
covered like the possibility of adding some weights in the singular part of the model system⎧⎪⎨

⎪⎩
ẍ + a1(t)x = b1(t)

√(
x2 + y2

)−α + μ

√(
x2 + y2

)β + e1(t),

ÿ + a2(t)y = b2(t)

√(
x2 + y2

)−α + μ

√(
x2 + y2

)β + e2(t)

(3.10)

with bi � 0.

Remark 3.3. In the proof of Theorem 3.1, the positiveness of Green’s function G(t, s) plays
an important role, and then it is not applicable to the critical case, such as k = μ1 for the case
a(t) = k2. The validity of our results for the critical case remains still open to the authors. In Sec-
tion 4, we will state a different existence result, which can deal with the critical case. However,
it can only cover the case of a weak singularity.

Finally in this section, we consider the system with an attractive singularity (1.2). Recall that
a1, a2, . . . , aN are the components of a(t) ∈ C(R/T Z,R

N). If ai(t) � 0, it is well known that
the linear equation

−x′′ + ai(t)x = ei(t)

with periodic boundary conditions has a positive Green’s function (see for instance [26]), in other
words, the standing hypothesis (A) holds. Then, the problem of finding a T -periodic solution of
system (1.2) is expressed as a fixed point problem for the same operator defined in (3.1). This
means that all the results obtained in Section 3 are automatically valid for the system (1.2). For
instance, the counterpart of Theorem 3.1 for the attractive case is as follows.

Theorem 3.2. Suppose that ai(t) � 0 for i = 1, . . . ,N and that assumptions (H1)–(H3) hold. If
γ∗ � 0, then (1.2) has at least one positive T -periodic solution x with x(t) > γ (t) for all t and
0 < |x − γ | < r .

4. Existence result (II)

In this section, we establish the second existence result for (1.1) by using Schauder’s fixed
point theorem.

Theorem 4.1. Suppose that a(t) satisfies (B) and f (t, x) satisfies (H1)–(H2). Furthermore, as-
sume that

(G1) there exists a positive constant R > 0 such that R > Φ∗, Φ∗ + γ∗ > 0 and, for each i =
1, . . . ,N,

R � gi(Φ∗ + γ∗, . . . ,Φ∗ + γ∗)
{

1 + hi(R + γ ∗, . . . ,R + γ ∗)
gi(R + γ ∗, . . . ,R + γ ∗)

}
K∗

i ,

here Φ∗ = mini,t Φi(t), Φi(t) = ∫ T

0 Gi(t, s)φR+γ ∗(s) ds.

Then (1.1) has at least one positive T -periodic solution.
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Proof. A T -periodic solution of (1.1) is just a fixed point of the map T :X → X defined by (3.1).
Note that T is a completely continuous map.

Let R be the positive constant satisfying (G1) and r = Φ∗ > 0. Then we have R > r > 0. Now
we define the set

Ω = {
x ∈ X: r � xi(t) � R for all t, i = 1, . . . ,N

}
. (4.1)

Obviously, Ω is a closed convex set. Next we prove T (Ω) ⊂ Ω.

In fact, for each x ∈ Ω and for each i = 1, . . . ,N , using that Gi(t, s) � 0 and condition (H1),

(Tix)(t) �
T∫

0

Gi(t, s)φR+γ ∗(s) ds � Φ∗ = r > 0.

On the other hand, by conditions (H2) and (G1), we have

(Tix)(t) �
T∫

0

Gi(t, s)ki(s)gi

(
x(s) + γ (s)

){
1 + hi(x(s) + γ (s))

gi(x(s) + γ (s))

}
ds

� gi(Φ∗ + γ∗, . . . ,Φ∗ + γ∗)
{

1 + hi(R + γ ∗, . . . ,R + γ ∗)
gi(R + γ ∗, . . . ,R + γ ∗)

}
K∗

i � R.

In conclusion, T (Ω) ⊂ Ω . By a direct application of Schauder’s fixed point theorem, the proof
is finished. �

As an application of Theorem 4.1, we consider the case γ∗ = 0. The following corollary is a
direct result of Theorem 4.1.

Corollary 4.1. Suppose that a(t) satisfies (B) and f (t, x) satisfies conditions (H1) and (H2).
Furthermore, assume that

(G∗
1) there exists a positive constant R > 0 such that R > Φ∗ and for each i = 1, . . . ,N,

R � gi(Φ∗, . . . ,Φ∗)
{

1 + hi(R + γ ∗, . . . ,R + γ ∗)
gi(R + γ ∗, . . . ,R + γ ∗)

}
K∗

i .

If γ∗ = 0, then (1.1) has at least one positive T -periodic solution.

Corollary 4.2. Suppose that a1(t), a2(t) satisfy (B) and 0 < α < 1, β � 0, then for each
e1(t), e2(t) ∈ C(R/T Z,R) with γ∗ = 0, we have

(i) if α + β < 1 − α2, then (1.4) has at least one positive periodic solution for each μ � 0;
(ii) if α + β � 1 − α2, then (1.4) has at least one positive T -periodic solution for each 0 �

μ < μ2, where μ2 is some positive constant.
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Proof. We apply Corollary 4.1 and follow the same notation as in the proof of Corollary 3.1.
Then (H1) and (H2) are satisfied and the existence condition (G∗

1) becomes

μ <
2

α
2 RΦα∗ − ω∗

i

2
α+β

2 ω∗
i (R + γ ∗)α+β

, i = 1,2, (4.2)

for some R > 0 with R > Φ∗. Note that

Φ∗ = 2− α
2 (R + γ ∗)−αω∗,

here ω∗ = mini=1,2{ωi∗}. Therefore, (4.2) becomes

μ <
2

α−α2
2 R(R + γ ∗)−α2

ωα∗ − ω∗
i

2
α+β

2 ω∗
i (R + γ ∗)α+β

, i = 1,2,

for some R > 0.
So (1.4) has at least one positive T -periodic solution for

0 < μ < μ2 = min
i=1,2

sup
R>0

2
α−α2

2 R(R + γ ∗)−α2
ωα∗ − ω∗

i

2
α+β

2 ω∗
i (R + γ ∗)α+β

.

Note that μ2 = ∞ if α +β < 1 −α2 and μ2 < ∞ if α +β � 1 −α2. We have the desired results
(i) and (ii). �

The next results explore the case when γ∗ > 0.

Theorem 4.2. Suppose that a(t) satisfies (B) and f (t, x) satisfies condition (H2). Furthermore,
assume that

(G2) there exists R > γ ∗ such that, for all i = 1, . . . ,N,

gi(γ∗, . . . , γ∗)
{

1 + hi(R + γ ∗, . . . ,R + γ ∗)
gi(R + γ ∗, . . . ,R + γ ∗)

}
K∗

i � R.

If γ∗ > 0, then (1.4) has at least one positive T -periodic solution.

Proof. We follow the same strategy and notation as in the proof of Theorem 4.1. Let R be the
positive constant satisfying (G2) and r = γ∗, then R > r > 0 since R > γ ∗. Next we prove
T (Ω) ⊂ Ω.

For each x ∈ Ω and for each i = 1, . . . ,N, by the non-negative sign of Gi(t, s) and fi(t, x),
we have

(Tix)(t) =
T∫

Gi(t, s)fi

(
s, x(s)

)
ds + γi(t) � γ∗ = r > 0.
0
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On the other hand, by (H2) and (G2), we have

(Tix)(t) �
T∫

0

Gi(t, s)ki(s)gi

(
x(s) + γ (s)

){
1 + hi(x(s) + γ (s))

gi(x(s) + γ (s))

}
ds

� gi(γ∗, . . . , γ∗)
{

1 + hi(R + γ ∗, . . . ,R + γ ∗)
gi(R + γ ∗, . . . ,R + γ ∗)

}
K∗

i � R.

In conclusion, T (Ω) ⊂ Ω and the proof is finished by Schauder’s fixed point theorem. �
Corollary 4.3. Suppose that a1(t), a2(t) satisfy (B) and α,β � 0, then for each e1(t), e2(t) ∈
C(R/T Z,R) with γ∗ > 0, we have

(i) if α + β < 1, then (1.4) has at least one positive T -periodic solution for each μ � 0;
(ii) if α + β � 1, then (1.4) has at least one positive T -periodic solution for each 0 � μ < μ3,

where μ3 is some positive constant.

Proof. We apply Theorem 4.2 and follow the same notation as in the proof of Corollary 3.1.
Then (H1) and (H2) are satisfied and the existence condition (G2) becomes

μ <
2

α
2 Rγ ∗α − ω∗

i

2
α+β

2 ω∗
i (R + γ ∗)α+β

, i = 1,2,

for some R > 0. So (1.4) has at least one positive T -periodic solution for

0 < μ < μ3 = min
i=1,2

sup
R>0

2
α
2 Rγ ∗α − ω∗

i

2
α+β

2 ω∗
i (R + γ ∗)α+β

.

Note that μ3 = ∞ if α + β < 1 and μ3 < ∞ if α + β � 1. We have the desired results (i)
and (ii). �
Corollary 4.4. Suppose that a(t) satisfies (B) and f (t, x) satisfies (F) with β = 0. Then we have

(i) if α > 0 and γ∗ > 0, then (1.1) has at least one positive T -periodic solution;
(ii) if 0 < α < 1 and γ∗ = 0, then (1.1) has at least one positive T -periodic solution.

Proof. We will apply Theorem 4.2 and Corollary 4.1. To this end, we take

φL(t) = b̂(t)

Lα
, ki(t) = b(t), gi(x) = 1

|x|α , hi(x) = 0.

Then (H1) and (H2) are satisfied.
If γ∗ > 0, then the existence condition (G2) becomes

Rγ α∗ � β∗
i , i = 1, . . . ,N, (4.3)

for some R > 0. This is clear since α > 0 and γ∗ > 0, and thus we have the desired result (i).
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If γ∗ = 0, then the existence condition (G∗
1) becomes

R � Φ−α∗ β∗
i , Φ∗ = ω∗

(R + γ ∗)α
. (4.4)

Note that (4.4) is equivalent to

R �
(R + γ ∗)α2

β∗
i

ωα∗
, i = 1, . . . ,N. (4.5)

Since 0 < α < 1, we can choose R > 0 large enough such that (4.5) is satisfied. So we have the
desired result (ii). �
Remark 4.1. The validity of (ii) in Corollary 4.4 under strong force conditions remains still open
to us. Such an open problem has been partially solved by Corollary 3.2. However, we do not solve
it completely because we need the positivity of G(t, s) in Corollary 3.2, and therefore it is not
applicable to the critical case. The validity for the critical case remains open to the authors.

Remark 4.2. By employing Theorem 4.1 directly, we can deal with the case γ∗ < 0, which is not
covered in Section 3. In particular, we can get the same result as Theorem 3.1 in [11]. Here we
omit it.

Remark 4.3. By using the same techniques in this paper, we can deal with (1.2) with the potential
such as

V (t, x) = a(t)
|x|2

2
− g

(
t,

|x|2
2

)

with a T -periodic dependence on t and such that g presents a singularity of repulsive type.
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