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Abstract

We develop new criteria for the stability of a periodic solution of a given newtonian
equation based on the L1-norm of the coefficients of the third order approximation,
by proving that the twist coefficient is different form zero.

1. Introduction

In this paper we develop L1-criteria for the Lyapunov stability of the trivial
solution of the equation

ẍ + a(t)x + b(t)x2 + c(t)x3 = 0, (1·1)

where a, b, c ∈ L1(IR \ 2πZZ) are measurable 2π-periodic coefficients. The main mo-
tivation to perform this study is to obtain criteria of L1 type for the stability of a
2π-periodic solution u(t) of the scalar newtonian equation

ẍ + f (t, x) = 0, (1·2)

where f (t, x) is a Caratheodory function which is 2π-periodic in the first variable and
has continuous derivatives in x up to order 4.
Let us consider the variational equation of (1·2) at x = u(t)

ẍ + fx(t, u(t))x = 0. (1·3)

If (1·3) has Floquet multipliers λ1, λ2 such that |λi | = 1, λi � ±1, i = 1, 2, then u(t)
is said elliptic or linearly stable. However, the Lyapunov stability of u(t) depends
essentially on the nonlinear terms of the Taylor expansion of (1·2) around u(t).
Following the works of Ortega [5, 6, 7], it is clear that in most cases the stability of
u(t) can be determined from the third order approximation (1·1) of equation (1·2),
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where the coefficients are given by

a(t) = fx(t, u(t)), b(t) =
1
2
fxx(t, u(t)), c(t) =

1
6
fxxx(t, u(t)). (1·4)

More precisely, Ortega succeed in computing an explicit formula for the twist coeffi-
cient β = β(a, b, c) of (1·1), later reformulated in [3] (see (4·1), (4·2)). This coefficient
corresponds to the first nonlinear term in the Birkhoff normal form of the Poincaré
map. If β is different from zero, we say that u is of twist type, and Moser Twist The-
orem [9] implies that such a solution is Lyapunov stable. Generically, a solution of
twist type has also a complicated dynamics in its behaviour, arising from the typical
self-similar KAM scenario (including subharmonics with periods tending to infinity
and quasiperiodic solutions). In general, the stability of the zero solution of (1·2) can
be presented by the condition such that the twist coefficient β is non-zero. To this
end, estimates of the rotation number of the linearized equation

ẍ + a(t)x = 0 (1·5)

and the L4 norm of r(t), the positive periodic solution of the Ermakov–Pinney equa-
tion

r̈ + a(t) r =
1
r3

,

play a key role, as is shown in [3]. In the cited paper, such estimates are obtained
provided that uniform bounds of a(t) are known. Results along these lines, with
stability criteria basic on uniform bounds of a(t), can be found in [3–7, 11, 13].
However, in a purely Caratheodory context this assumption looks rather unnatural
since it is possible that such uniform bounds do not exist. In this sense, [7] includes
the following result as a particular case.

[7, corollary 3·3]. If there exists a number θ∗, π/2 < θ∗ < 2π/3 such that
(i) a(t) > 0 for all t, and 2π

∫ 2π
0 a+(t) dt � 4(θ∗/π)2,

(ii) b(t) � 0 for all t, or b(t) � 0 for all t,
(iii) c(t) < 0 for all t,

then x = 0 is a solution of twist type of (1·1).
In this paper, we are interested in L1-conditions like (i). This concrete assumption

implies that the rotation number is in the first or second region of stability. Other
related result asserts that if b ≡ 0, then x = 0 is twist type if the linearized equation
is elliptic and (iii) holds [6]. On the other hand, results in [3] allow more flexible
L1-conditions on the nonlinear coefficients b and c, but a is required to be bounded
with more restrictive assumptions over such bounds. Our aim is to combine these
two situations and get new stability criteria without imposing uniform bounds in the
coefficients.

2. Main results

Let us consider a ∈ L1(IR \ 2πZZ) such that its mean value a = (1/2π)
∫ 2π

0
a(t) dt

is positive. Define positive constants σ, δ, σ1 and σ2 by

σ2 = a, δ =
∫ 2π

0
|a(t)− σ2| dt (2·1)
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and

σ1 = σ − δ

4πσ
, σ2 = σ +

δ

4πσ
. (2·2)

In addition, p+(t) = max{p(t), 0}, p−(t) = max{−p(t), 0} is the positive and neg-
ative part respectively of a given function p(t). Our first result is the following.

Theorem 2·1. Assume that σ1, σ2 defined by (2·2) satisfy σ1, σ2 ∈ M0 = (0, 1/4).
Suppose that b, c ∈ L1(IR \ 2πZZ) are such that either(

tan 2πσ1
tan 2πσ2

)2

‖c−‖1 − ‖c+‖1 >
7
3σ

(
tan 2πσ2
tan 2πσ1

)1/2

‖b+‖1 ‖b−‖1, (2·3)

or

‖c+‖1 −
(
tan 2πσ2
tan 2πσ1

)2

‖c−‖1

>

√
2
3σ

(
tan 2πσ2
tan 2πσ1

)5/2 [
‖b+‖21 + ‖b−‖21 +

1

2
√
2
(3 cot πσ1 + cot 3πσ1) ‖b‖21

]
. (2·4)

Then the trivial solution x = 0 of (1·1) is of twist type.

To our knowledge, this is the first result available in the literature not imposing
some kind of uniform bounds on the coefficients a, b, c. As we will see, the condition
σ1, σ2 ∈ M0 = (0, 1/4) implies that the rotation number is in the first region of
stability.
Our next aim is to get results dealing with higher regions of stability. For that, the

set

Ω0 = {ω ∈ (0,∞) : ω � p/q for all p, q ∈ IN with 1 � q � 4} (2·5)

will play an important role in our results. Let us begin with a definition.

Definition 2·2. A function a ∈ L1(IR \ 2πZZ) is said to be admissible if

[σ1, σ2] ⊂ Ω0.

As we will see in the next section, if a is admissible, then the linear part of (1·1) does
not have resonances up to order 4.
For convenience, we will define several functions which are involved in our next

results. Let

N (σ, σ1, σ2) =

√
2π
σ

max

{(
tan 2πσ1
tan 2πσ2

)1/2

,

(
tan 2πσ2
tan 2πσ1

)1/2
}

,

K1(θ) =

√
2
8
+ max

{
− 3
16
cot

(
θ

2

)
, 0

}
+max

{
− 1
16
cot

(
3θ
2

)
, 0

}
,

K̃1(θ) =

√
2
8
+ max

{
3
16
cot

(
θ

2

)
, 0

}
+max

{
1
16
cot

(
3θ
2

)
, 0

}
,

K2(θ) =

{
|2 + 3 cos (θ)|/(8| sin (3θ/2)|), if θ ∈ (0, 2π/3) � (4π/3, 2π),

|cos (θ)|
√
−2 cos (θ)/(8| sin (3θ/2)|), if θ ∈ (2π/3, 4π/3),
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and K2(θ) is extended by 2π-periodicity. Then, K1, K̃1, K2 are well defined in the
domain Θ0 = {θ > 0 : θ � 2nπ/3 for all n ∈ IN}. Define K, K̃: Θ0 → IR by

K(θ) = min{K1(θ), K2(θ)}, K̃(θ) = min{K̃1(θ), K2(θ)}.

Theorem 2·3. Assume that a(t) ∈ L1(IR/2πZZ) is admissible. Then, there exists a
constant µ = µ(σ, σ1, σ2) > 0 such that x = 0 as a periodic solution of (1·1) is of twist
type provided that b(t) and c(t) satisfy

max
t∈IR

c(t) < −µ‖b‖24. (2·6)

In fact, µ can be defined as

µ(σ, σ1, σ2)�
8
3
K(2πσ2)N (σ, σ1, σ2).

Evidently, this first result works only if c(t) is negative for all t. However, the
opposite sign is also interesting since it arises in several examples of superlinear [8]
and singular equations [10, 11]. The following result considers this situation.

Theorem 2·4. Assume that a(t) ∈ L1(IR/2πZZ) is admissible. Then, there exists a
constant µ̃ = µ̃(σ, σ1, σ2) > 0 such that x = 0 as a periodic solution of (1·1) is of twist
type provided that b(t) and c(t) satisfy

min
t∈IR

c(t) > µ̃‖b‖24. (2·7)

In fact, µ̃ can be defined as

µ̃(σ, σ1, σ2)�
8
3
K̃(2πσ2)N (σ, σ1, σ2).

3. Estimation of the rotation number

In this section we consider the Hill’s equation

ẍ + a(t)x = 0 (3·1)

with a ∈ L1(IR \ 2πZZ). In the following, we assume that the mean value a=
(1/2π)

∫ 2π
0 a(t) dt of a is positive. Let us consider the constants σ, δ defined by (2·1).

Note that δ is a measure of the variation of a with respect to its mean value. Let
x = r cos ψ, ẋ = −r sin ψ; then ψ(t) satisfies the equation

ψ̇ = cos2 ψ + a(t) sin 2 ψ. (3·2)

Since (3·2) is periodic with respect to t and ψ, the limit

ρ = ρ(a) = lim
t→∞

ψ(t)/t

exists and is independent to the choice of the solution ψ(t) [1]. This limit is called
rotation number of (3·1). The relationship between the rotation number and the
Floquet multipliers of (3·1) is given in the following Lemma [2].

Lemma 3·1. Equation (3·1) is elliptic if and only if ρ = ρ(a) � 1
2ZZ

+. In this case, the
Floquet multipliers are given by λ1,2 = e±iθ , with θ given by

θ = 2πρ.
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An elliptic equation (3·1) is called 4-elementary if its Floquet multipliers λ = e±iθ

are not roots of unity up to order 4, that is, λn � 1 for 1 � q � 4. In terms of the
rotation number, this is equivalent to

ρ ∈ Ω0,

where Ω0 was defined in (2·5). Note that Ω0 consists of a countable number of open
intervals.

Lemma 3·2. If a is admissible then equation (3·1) is 4-elementary.

Proof. By the change of variables

x(t) = ρ(t) cos φ(t)/σ, ẋ(t) = −σρ(t) sin φ(t)/σ,

it is seen that φ(t) satisfies

φ̇ = σ2 sin 2 φ/σ + a(t) cos 2 φ/σ. (3·3)

Let us denote by φ(t;φ0) the solution of (3·3) with initial value φ(0;φ0) = φ0. It is
easy to prove that there is φ0 such that

ρ =
φ(2π;φ0)− φ0

2π σ
.

By using the inequality

min{σ2, a(t)} � σ2 sin 2 φ/σ + a(t) cos 2 φ/σ � max{σ2, a(t)},

after an integration in equation (3·3) we get∫ 2π

0
min{σ2, a(t)} dt � φ(2π;φ0)− φ0 �

∫ 2 π

0
max{σ2, a(t)} dt. (3·4)

Let us define

I = {t ∈ [0, 2π] |a(t) � σ2}, J = [0, 2π]\I.

Then ∫ 2π

0
max{σ2, a(t)} dt =

∫
I

σ2 dt +
∫

J

a(t) dt

= 2πσ2 +
∫

J

(a(t)− σ2) dt,∫ 2π

0
min{σ2, a(t)} dt =

∫
J

σ2 dt +
∫

I

a(t) dt

= 2πσ2 −
∫

I

(σ2 − a(t)) dt.

On the other hand, it is easy to verify that∫
J

(a(t)− σ2) dt =
∫

I

(σ2 − a(t)) dt =
δ

2
.

Therefore, (3·4) gives

2πσ2 − δ

2
� φ(2π;φ0)− φ0 � 2πσ2 +

δ

2
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for any φ0. dividing by 2πσ, we see that the rotation number satisfies

ρ ∈ [σ1, σ2] ⊂ Ω0
and consequently the proof is complete.

4. Estimation of the twist coefficient

Let Ψ(t) be the (complex) solution of Hill’s equation (3·1) with initial conditions
Ψ(0) = 1,Ψ(0) = i. When (3·1) is elliptic, Ψ(t) is different from zero for all t, so it
can be written in polar coordinates as Ψ(t) = r(t)eiϕ(t), with r, ϕ satisfying the initial
conditions

r(0) = 1, ṙ(0) = 0, ϕ(0) = 0, ϕ̇(0) = 1,

and r(t) > 0 for all t. Let us assume that Hill’s equation (3·1) is 4-elementary.
When (3·1) comes from the linearization of a nonlinear equation (1·2) around a given
periodic solution u(t), it is said that such a solution is out of strong resonances. In
this situation, the twist character of u(t) can be determined by proving that a given
twist coefficient β is not zero. Such β depends on the coefficients of the third order
approximation (1·1) and can be written explicitly, as it was shown by Ortega in [5, 7].
After some changes of variables and reformulations [3], β can be written as

β = −3
8

∫ 2π

0
c(t)r4(t) dt +

∫ ∫
[0,2π ]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|) dt ds

+
3
16
cot

(
θ

2

) ∣∣∣∣
∫ 2π

0
b(t)r3(t)e−iϕ(t)dt

∣∣∣∣
2

+
1
16
cot

(
3θ
2

) ∣∣∣∣
∫ 2π

0
b(t)r3(t)e3iϕ(t)dt

∣∣∣∣
2

,

(4·1)

or, equivalently,

β = −3
8

∫ 2π

0
c(t)r4(t) dt+

∫ ∫
[0,2π ]2

b(t)b(s)r3(t)r3(s)χ2(|ϕ(t)− ϕ(s)|) dt ds, (4·2)

where the kernels χ1 and χ2 are given by

χ1(x) =
3 sin x − 2 sin3 x

8
, x ∈ [0, θ],

χ2(x) =
3
16
cos (x − θ/2)
sin (θ/2)

+
1
16
cos 3(x − θ/2)
sin (3θ/2)

, x ∈ [0, θ].

More precisely, the original twist coefficient is the previous one up tomultiplication by
a constant, which is not important for us. At this point, it is necessary to emphasize
that this formulation can be translated to the Caratheodory context without change.
In order to estimate β, the key point is to control the range of r(t). There is a nice
relation, proved in [3], between r(t), the Ermakov–Pinney equation and the Ricatti
equation.

Lemma 4·1. Let us assume that Hill’s equation (3·1) is elliptic. Then r(t) is the unique
positive periodic solution of the Ermakov–Pinney equation

r̈ + a(t)r = r−3. (4·3)
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Moreover, w(t) = − ṙ

r
− i

r2
is a periodic solution of the Riccati equation

ẇ = w2 + a(t). (4·4)

Hence, to estimate the norm of the periodic solution r(t) of the Ermakov–Pinney
equation, we only need to fix a bound for the imaginary part of the periodic solution
of the corresponding Riccati equation. For this purpose, we shall find an estimate
for the critical values of r(t). Let t0 be critical point of r(t), and let r0 = r(t0) be the
critical value; then w(t0) = −i/r20. It is known that the critical value w(t0) is exactly
the fixed point of the Poincaré map of the Riccati equation (4·4). Hereinafter, we will
assume without loss of generality that t0 = 0. Let us denote by w(t; z) the solution of
(4·4) with initial value w(0) = z. Then w(t; z) is well defined for all t ∈ IR, with values
in the Riemman surface. It is known that the Poincaré map of the Riccati equation
has the form of a Möbius transformation

T (z) = w(2π; z) =
az + b

cz + d
, a, b, c, d ∈ R.

Then, from the above discussion, z0 =− i/r20 is a fixed point of T . On the other
hand, since z0 is imaginary, we have a= d and b/c < 0. When a= d=0, we have
w(2π; 0) =T (0) =∞, which is excluded in our discussion. Hence, we can assume that
a= d=1, and r0 = (−c/b)1/4. To estimate r0, we only need to find some estimates for
b and c. Note that b=T (0) and c=−1/T (∞). In the following Proposition, we use
〈a, b〉 to denote [a, b] if a� b or [b, a] if a� b.

Proposition 4·2. Let us assume that a(t) is admissible in the sense of the previous
section. Then, the positive 2π-periodic solution r(t) of (4·3) satisfies

r(t) ∈
〈

σ−1/2
(
tan(2πσ1)
tan(2πσ2)

)−1/4
, σ−1/2

(
tan(2πσ2)
tan(2πσ1)

)−1/4
〉

for all t.

Proof. As already noted the question is to find an appropriate bound for b = T (0)
and c = −1/T (∞). By the above discussion, b = w(2π; 0) where w(t; 0) is the solution
of Riccati equation (4·4). Let us perform the change of variable

w(t) = σ tan
θ(t)
σ

.

Then, θ(t) satisfies the equation

θ̇ = σ2 sin 2
θ

σ
+ a(t) cos 2

θ

σ
. (4·5)

Note that this equation is exactly the same as (3·3). By mimicking the proof of
Lemma 3·2 and assuming that θ(0) = 0, it follows that

2πσ2 − δ

2
� θ(2π) � 2πσ2 +

δ

2
.

Consequently, if

(n − 1/2)π < 2πσ ± δ

2σ
< (n + 1/2)π (4·6)
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for some n ∈ IN , then

σ tan
(
2πσ − δ

2σ

)
� b � σ tan

(
2πσ +

δ

2σ

)
. (4·7)

Similarly, for c, let w∗(t∗) = 1/w(−t∗), then −c = w∗(2π). Consider the alternative
equation

ẇ∗ = a(−t∗)w∗2 + 1,

and let

w∗(t) = σ−1 tan σθ∗(t).

Then

θ̇∗ = σ−2a(−t∗) sin 2 σθ∗ + cos2 σθ∗

and

σ−2
(
2πσ2 − δ

2

)
� θ∗(2π) � σ−2

(
2πσ2 +

δ

2

)
.

Hence, if (4·6) is satisfied, then

σ−1 tan
(
2πσ − δ

2σ

)
� −c � σ−1 tan

(
2πσ +

δ

2σ

)
. (4·8)

From (4·7), (4·8), if either

(n − 1/2)π < 2πσ ± δσ

2σ
< nπ (4·9)

or

nπ < 2πσ ± δσ

2σ
< (n + 1/2)π (4·10)

for some n ∈ IN , then

−b/c ∈
〈

σ2
tan(2πσ − δ

2σ )

tan(2πσ + δ
2σ )

, σ2
tan(2πσ + δ

2σ )

tan(2πσ − δ
2σ )

〉
,

or, equivalently,

−b/c ∈
〈

σ2
tan(2πσ1)
tan(2πσ2)

, σ2
tan(2πσ2)
tan(2πσ1)

〉
.

Note that one of the previous conditions (4·9) or (4·10) is automatically verified since
a(t) is admissible. Consequently, since a critical value of r(t) verifies r0 = (−b/c)−1/4,
the proof is complete.

Now, we have all the information necessary to prove our main results.

Proof of Theorem 2·1. Following the notation of [3], let r0 = min{r(t) : t ∈
[0, 2π]}, r∞ = max{r(t) : t ∈ [0, 2π]}. Then, taking into account that σ1, σ2 ∈ (0, 1/4)
and using Proposition 4·2, we get

σ−1/2
(
tan(2πσ2)
tan(2πσ1)

)−1/4
< r0 < r∞ < σ−1/2

(
tan(2πσ1)
tan(2πσ2)

)−1/4
. (4·11)
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If condition (2·3) holds, the proof is similar to [3, theorem 3·2]. By repeating the
arguments of [3, section 3·6], we get from (4·2) that

β � 3
8
r40 ‖c−‖1 −

3
8
r4∞ ‖c+‖1 −

7
8
r6∞ ‖b+‖1 ‖b−‖1.

Now, by using (4·11) and (2·3) it is easy to verify that the right-hand side of this
inequality is positive. In consequence β > 0 and the proof is complete.
On the other hand, if the alternative condition (2·4) holds, we use formula (4·1) to

prove that the twist coefficient is negative. The first term is

−3
8

∫ 2π

0
c(t)r4(t) dt � −3

8
r40 ‖c+‖1 +

3
8
r4∞ ‖c−‖1.

On the other hand,∫ ∫
[0,2π ]2

b(t)b(s)r3(t)r3(s)χ1(|ϕ(t)− ϕ(s)|) dt ds

�
√
2
8

r6∞

∫ ∫
[0,2π ]2

b+(t)b+(s) + b−(t)b−(s) dt ds <

√
2
8

r6∞
(
‖b+‖21 + ‖b−‖21

)
, (4·12)

where it is used that 0 < χ1(x) �
√
2/8 for all x. Finally, taking into account that

0 < 2πσ1 < θ = 2πρ < 2πσ2 < π/2, we can estimate the last two terms of (4·1) as
follows

3
16
cot

(
θ

2

) ∣∣∣∣
∫ 2π

0
b(t)r3(t)e−iϕ(t) dt

∣∣∣∣
2

� 3
16
cot (πσ1)r6∞ ‖b‖21,

1
16
cot

(
3θ
2

) ∣∣∣∣
∫ 2π

0
b(t)r3(t)e−iϕ(t) dt

∣∣∣∣
2

� 1
16
cot (3πσ1)r6∞ ‖b‖21.

By using the previous inequalities in formula (4·1) we get

β � −3
8
r40 ‖c+‖1 +

3
8
r4∞ ‖c−‖1 +

√
2
8

r6∞
(
‖b+‖21 + ‖b−‖21

)
+
3
16
cot (πσ1)r6∞ ‖b‖21 +

1
16
cot (3πσ1)r6∞ ‖b‖21 .

By using (4·11) and (2·4) it is proved that the right-hand term of this inequality is
negative. Consequently β < 0 and the proof is finished.

Proofs of Theorems 2·3 and 2·4. Note that by Proposition 4·2 it is easy to verify
that

‖r‖24 � N (σ, σ1, σ2)

where N (σ, σ1, σ2) is defined in Section 2. Now, the proof of Theorem 2·3 is identical
to the proof of theorem 3·1 of [3]. The twist coefficient β is then positive. On the
other hand, the proof of Theorem 2·4 is similar, but now the estimates in formulae
(4·1) and (4·2) are used to prove that the twist coefficient β is negative.
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