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ISOCHRONICITY OF A CLASS
OF PIECEWISE CONTINUOUS OSCILLATORS

FRANCESC MAÑOSAS AND PEDRO J. TORRES

(Communicated by Carmen C. Chicone)

Abstract. Motivated by a classical pendulum clock model suggested by An-
drade in 1920, we study the equation ẍ+g(x) sgn ẋ+x = 0 and prove that for a
nonlinear analytic g the origin is never an isochronous focus or an isochronous
center.

1. Introduction

The measurement of time (chronometry) has been an enormous incentive for the
development of physics and mathematics. An important advance in this field was
the discovery of the fundamental properties of the pendulum by Galileo in 1583.
Later, many other scientists (especially Huygens and Hooke) took advantage of the
natural oscillations of different kinds of pendula and springs in their experiments
and designs.

From the mathematical point of view, systems with the property that all solu-
tions are periodic with the same period are called isochronous. Isochronous centers,
and more generally the study of the so-called period function for potential systems,
have received the attention of many researchers [4, 5, 6, 9, 11, 12]. However, from
the practical point of view, every classical mechanical device in clockmaking is sub-
jected to a loss of energy due to friction. So, it is natural to look for a notion of
isochronous dissipative oscillator. In a classical paper [3], Jules Andrade proposed
the equation

(1) ẍ + ε |x| sgn ẋ + x = 0

as a first such example with practical applications. Looking at the phase plane, the
origin is a global attractor and every non-trivial solution completes a whole turn in
a fixed time. The dissipation term ε |x| sgn ẋ models the so-called dry friction (also
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Tecnoloǵıa, Spain.

c©2005 American Mathematical Society

3027
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known as Coulomb friction; see for instance [8, 10] and the references therein) with a
damping coefficient that varies with position. A natural question is to characterize
the set of functions g such that

(2) ẍ + g(x) sgn ẋ + x = 0

is a dissipative isochronous oscillator, or more generally, a dissipative isochronous
focus. As a planar system, the previous equation can be written as

(3) (ẋ, ẏ) =
{

(−y, x + g(x)) if y ≥ 0,
(−y, x − g(x)) if y < 0.

Hence, it is a piecewise smooth planar system whose phase plane is composed of
two “uncoupled” smooth systems matched by the line y = 0. More generally, we
will consider a planar system

(4) (ẋ, ẏ) =
{

(f+(x, y), g+(x, y)) if y ≥ 0,
(f−(x, y), g−(x, y)) if y < 0

such that
(i) f±, g± are analytic in some neighborhood of the origin and f±(0, 0) =

g±(0, 0) = 0, and
(ii) the origin (0, 0) is a non-degenerate center (that is, with a non-singular

linear part) for the “uncoupled” planar systems (ẋ, ẏ) = (f+(x, y), g+(x, y))
and (ẋ, ẏ) = (f−(x, y), g−(x, y)).

By assumption (ii), the system

(ẋ, ẏ) = (f+(x, y), g+(x, y))

(respectively, (ẋ, ẏ) = (f−(x, y), g−(x, y))) has a well-defined period map T+(x)
(resp. T−(x)). If this period map is constant, the center is called isochronous. Let
us formalize the notion of isochronous focus.

Definition 1.1. Let (x(t), y(t)) denote the solution of system (4) with initial con-
ditions x(0) = x0 > 0 (resp. x0 < 0) and y(0) = 0. Also, let T (x0) denote the
first return time to the section {y = 0, x > 0} (resp. {y = 0, x < 0}). System
(4) is called an isochronous oscillator if T (x0) is constant for all x0 �= 0 and an
isochronous focus if moreover

(iii) the origin (0, 0) is a focus for the “coupled system” (4).
System (4) is called an isochronous dissipative oscillator if such a focus is an at-
tractor.

In general, the origin of (4) can be a center, a focus, or the so-called center-focus,
where there are infinitely many limit cycles accumulating at the origin. This last
possibility does not occur in our setting because of the analyticity of the return
map of the coupled system [7].

The main result of this paper is the following theorem.

Theorem 1.1. If g(x) =
∑

n≥2 anxn is a non-linear analytic function, then system
(2) is neither an isochronous focus nor an isochronous center.

This result will be proved using a sequence of partial results distributed in Sec-
tions 2 and 3. Section 2 is devoted to the study of isochronous foci whereas Section
3 deals with isochronous centers.
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2. Isochronous foci

In principle, it could happen that system (4) is an isochronous focus but both
uncoupled systems are not isochronous. Under some special conditions, our first
result states that this is not possible.

Lemma 2.1. Suppose that system (4) satisfies conditions (i), (ii), and (iii). If
f±, g± are analytic functions such that

(5) f±(x,−y) = −f±(x, y), g±(x,−y) = g±(x, y),

then system (4) is an isochronous focus if and only if the uncoupled systems (ẋ, ẏ) =
(f+(x, y), g+(x, y)) and (ẋ, ẏ) = (f−(x, y), g−(x, y)) are isochronous.

Remark. If condition (5) holds, then the phase portraits of the uncoupled systems
are symmetric with respect to y = 0. A system with this property is called a
reversible center.

Proof. If the uncoupled systems are isochronous, then system (4) is an isochronous
focus. Let us prove the converse. Without loss of generality we will assume that the
origin is an attracting focus for the coupled system. Let T+(x) and T−(x) be the
respective period maps of the uncoupled systems. For a given x < 0 small enough,
let t+(x) and t−(x) be the respective return times to the axis y = 0 of the solutions
of the uncoupled systems starting at (x, 0). Because the focus is isochronous, there
exists a constant K > 0 such that

t+(x) + t−(x) = K for all x < 0.

By the symmetry (5), we have that t+(x) = T+(x)/2 and t−(x) = T−(x)/2. Hence,
T+(x)+ T−(x) = 2K for all x < 0. As the fields are analytic and not degenerate at
the origin, also T+ and T− are analytic at 0. Hence, T+(x)+ T−(x) = 2K for all x.

Given x, let us define σ(x) as the first intersection point of the solution of the
coupled system starting at (x, 0) and the axis y = 0. Then,

t+(σ2(x)) + t−(x) = 1
2 (T+(σ2(x)) + T−(x))

= 1
2 (T+(σ(x)) + T−(σ(x))) = K = t+(x) + t−(x).

Therefore, t+(σ2(x)) = t+(x) and T+(x) = T+(σ2n(x)) for every n ∈ N. Note that
{σ2n(x)}n is a sequence converging to zero because the origin is an attracting focus.
Since T+ is an analytic function at zero, which is constant on a sequence converging
to zero, it is necessarily constant. Hence, T−(x) = 2K−T+(x) is also constant. �
Lemma 2.2. Let f(x) = −x +

∑
n≥k anxn be an analytic involution with k > 1

and ak �= 0. Then,
(1) k is even,
(2) ai = 0 for every i = k + 1, k + 3, . . . , 2k − 3,
(3) a2k−1 = −a2

k

2 .

Proof. By definition, (f ◦ f)(x) = x. Hence,

x = (f ◦ f)(x) = −f(x) +
∑

n≤k anf(x)n

= x − akxk − ak(−x)k − ak+1x
k+1 + ak+1(−x)k+1 + · · ·

· · · − a2k−1x
2k−1 + a2k−1(−x)2k−1 + ka2

k(−x)k−1xk + O(x2k).

Identifying coefficients, we get −ak + (−1)kak = 0. Hence, k is even. Automati-
cally, the odd coefficients up to a2k−3 are zero. Finally, the (2k − 1)-coefficient is
−2a2k−1 − ka2

k = 0; therefore (3) holds. �
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Theorem 2.1. Let F (x) be an analytic function such that F (x) =
∑

n≥k anxn with
k ≥ 2 and suppose that the planar system

(6) (ẋ, ẏ) =
{

(−y, x + F ′(x)) if y ≥ 0,
(−y, x − F ′(x)) if y < 0

is an isochronous focus. Then, an = 0 for every n > 2.

Proof. By Lemma 2.1, both uncoupled systems (ẋ, ẏ) = (−y, x+F ′(x)) and (ẋ, ẏ) =
(−y, x − F ′(x)) must be isochronous. By theorem B of [6], there exist positive
constants k1, k2 and involutions σ1, σ2 such that

(7)
x2

2 + F (x) = k1(x − σ1(x))2,
x2

2 − F (x) = k2(x − σ2(x))2.

Let us write
σ1(x) = −x +

∑
n≥2 bnxn = −x + l1(x),

σ2(x) = −x +
∑

n≥2 cnxn = −x + l2(x).

Then, (7) reads as

(8)
x2

2 + F (x) = k1(2x − l1(x))2,
x2

2 − F (x) = k2(2x − l2(x))2.

Therefore,
4k1 = 1/2 + a2, 4k2 = 1/2 − a2.

Quadratic terms in (8) can be canceled. By adding the resulting equations, we
obtain

(9) −4xk1l1(x) − 4xk2l2(x) + k1l
2
1(x) + k2l

2
2(x) = 0.

If l1 and l2 have a non-zero coefficient, then the first non-zero coefficients of both
functions have the same index, say k. The coefficient corresponding to x2k in (9) is

−4k1b2k−1 − 4k2c2k−1 + k1b
2
k + k2c

2
k = 0.

By Lemma 2.2 it is known that b2k−1 < 0 and c2k−1 < 0; therefore, the previous
term is negative. This is a contradiction. Hence, l1(x) = l2(x) = 0 and F (x) =
a2x

2. �

3. Non-trivial isochronous centers

The proof of Lemma 2.1 relies strongly on the fact that the origin is a focus. If
assumption (iii) is removed, it could be possible to get a non-trivial isochronous
center by matching two non-isochronous potentials.

Proposition 3.1. Given analytic potentials V1 = ax2 + O(x2) and V2 = bx2 +
O(x2), with a > 0 and b > 0, the coupled system

(10) (ẋ, ẏ) =
{

(−y, V ′
1(x)) if y ≥ 0,

(−y, V ′
2(x)) if y < 0

has a center at the origin if and only if there exists an analytic diffeomorphism at
the origin f such that V2 = f(V1).
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Proof. Let V = kx2 + O(x2) with k > 0. Then the origin is a center for the
associated potential system. Hence in a neighborhood of 0 we can implicitly define
the map σV (x) by

V (σV (x)) = V (x)

and xσV (x) ≤ 0. Note that σV is an involution. We claim that σV is analytic at
zero. To see this, consider the map

g(x) = sgn(x)
√

V (x) = x

√
V (x)
x2

.

Since k > 0, it follows that g is analytic at 0 and g′(0) =
√

k. Then h(x) =
g−1(−g(x)) is also analytic at the origin. Furthermore, easy computations show
that V (h(x)) = V (x), so σV (x) = h(x) and the claim follows.

Clearly σ′
V (0) = −1, and hence the map p(x) = x − σV (x) is an analytic diffeo-

morphism at 0. Then we can write

V (x) = Ṽ (x − σV (x)),

where Ṽ = V ◦ p−1 is also analytic at 0. Since V (x) = V (σV (x)) we get that

Ṽ (x − σV (x)) = Ṽ (σV (x) − σ2
V (x)) = Ṽ (−(x − σV (x))).

Thus we have seen that Ṽ is even, and therefore we obtain that

V (x) = fV ((x − σV (x))2).

Easy computations show that f ′
V (0) = k/4. Hence fV is an analytic diffeomorphism

at the origin.
Assume now that our system has a center at the origin. Then σV1 = σV2 ,

and we denote both maps by σ. From the above considerations we get that V1(x) =
fV1((x−σ(x))2) and V2(x) = fV2((x−σ(x))2) with fV1 , fV2 analytic diffeomorphisms
at the origin. Thus we obtain

V2(x) = fV2(f
−1
V1

(V1(x))).

�

Proposition 3.2. Let F be an analytic function at 0 with F (0) = F ′(0) = 0 and
|F ′′(0)| < 1. Then, the origin is a center for the planar system

(11) (ẋ, ẏ) =
{

(−y, x + F ′(x)) if y ≥ 0,
(−y, x − F ′(x)) if y < 0

if and only if F is even.

Proof. Set V1(x) = x2/2 + F (x) and V2(x) = x2/2−F (x). The conditions imposed
on F ensure that the corresponding planar systems associated to V1 and V2 have a
center at the origin.

If F is even, then V1 and V2 are both even functions. Therefore both potentials
have the same associated involution, namely σ(x) = −x. So the coupled system
(11) has a center at the origin.

Conversely, let us assume that system (11) has a center at the origin. By the
last result there exists an analytic diffeomorphism f such that

(12)
x2

2
− F (x) = f(

x2

2
+ F (x)).
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By contradiction, let us suppose that F is not even. Then, it has a first non-zero
odd coefficient a2k+1. If we write f(x) =

∑
bnxn, by setting equal the coefficients

corresponding to x2k+1 in identity (12) we get a contradiction. �
The next result states that a non-trivial isochronous center cannot be obtained

by matching two isochronous potentials.

Lemma 3.1. There does not exist a non-trivial even function F such that the
potentials V+ = x2

2 + F and V− = x2

2 − F are isochronous.

Proof. This follows from the fact that the only isochronous even potential is the
linear one [6]. �

The following results state that it is not possible to generate a non-trivial isochro-
nous center by matching two (non isochronous) centers generated by potentials
V+ = x2

2 + F and V− = x2

2 − F .

Theorem 3.1. There does not exist an analytic non-linear function F =
∑

n≥3 anxn

such that the planar system (11) is an isochronous center.

Proof. Let us suppose that F exists. By Proposition 3.2, F is even. For convenience
let F be re-indexed as F (x) =

∑
n≥k anx2n, where ak is the first non-zero coefficient.

We have that

V+(x) =
x2

2
+ F (x) =

x2

2
+

∑
n≥k

anx2n.

We will work in polar coordinates (θ, r). By hypothesis, we know that

(13)
∫ 2π

0

1
θ̇(θ, x)

dθ = T (x) = constant.

Our goal is to reach a contradiction by analyzing the power series expansion of 1/θ̇.
Let us write

(14) r2(θ, x) =
∑
n≥1

bn(θ)x2n.

Then,

(15)
r2(θ, x)

2
+

∑
n≥k

an

[
r2(θ, x)

]n
cos2n θ =

x2

2
+

∑
n≥k

anx2n.

By substituting (14) in (15) and equating the coefficients corresponding to the
powers 2, 4, . . . , 2k, we get

b1(θ) = 1,
b2(θ) = · · · = bk−1(θ) = 0,
bk((θ) = 2ak(1 − cos2k θ).

Therefore,

r2(θ, x) = x2 + bk(θ)x2k + O(2k + 2),
θ̇(θ, x) = 1 + 2kakr2k−2 cos2k θ + O(2k) = 1 + 2kak cos2k θx2k−2

+
(
2k(k − 1)akbk cos2k θ + (4k − 2)a2k−1 cos4k−2 θ

)
x4k−4 + O(4k − 2).

It is easy to deduce that the coefficient of the power expansion of 1/θ̇ corresponding
to x4k−4 is

B+(θ) = 4k2a2
k cos4k θ − 4k(k − 1)a2

k(1 − cos2k θ) cos2k θ − (4k − 2)a2k−1 cos4k−2 θ.
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Hence, the coefficient corresponding to x4k−4 of
∫ π

0
1

θ̇(θ,x)
dθ is just

∫ π

0
B+(θ)dθ.

By repeating the arguments with

V−(x) =
x2

2
− F (x) =

x2

2
−

∑
n≥k

anx2n,

we find that the coefficient corresponding to x4k−4 of 1
θ̇(θ,x)

is just

B−(θ) = 4k2a2
k cos4k θ − 4k(k − 1)a2

k(1 − cos2k θ) cos2k θ + (4k − 2)a2k−1 cos4k−2 θ.

Now, the coefficient corresponding to x4k−4 of
∫ 2π

0
1

θ̇(θ,x)
dθ is

∫ π

0

B+(θ)dθ +
∫ 2π

π

B−(θ)dθ.

By (13), this coefficient must be zero. Further computations lead to the equality

4k2

∫ π

0

cos4k θdθ − 4k(k − 1)
∫ π

0

(1 − cos2k θ) cos2k θdθ = 0.

Equivalently, we have that
2k − 1
k − 1

∫ π

0

cos4k θdθ =
∫ π

0

cos2k θdθ.

It is now easy to prove that this equality does not hold for any k. For instance, we
can integrate by parts to obtain∫ π

0

cos4k θdθ =
(4k − 1)(4k − 3) · · · (2k + 1)

4k(4k − 2) · · · (2k + 2)

∫ π

0

cos2k θdθ.

This, together with the previous equality, implies the identity

(4k − 1)(4k − 3) · · · (2k + 1)(2k − 1) = 4k(4k − 2) · · · (2k + 2)(k − 1).

For each k, its left-hand side is an odd integer while the right-hand side is an even
integer. This gives the desired contradiction. �
Proof of Theorem 1.1. It follows from Theorems 2.1 and 3.1. �
Remark. Note that all arguments in the proof Theorem 1.1 use only the polynomial
Taylor expansion (in fact the first non-zero coefficient). So Theorem 1.1 is true if
g is of class C∞ and g(k)(0) �= 0 for some k > 1.

In what follows we will discuss a more general question. Let F (x) = ax2 +
O(x3) and G(x) = bx2 + O(x3), a, b > 0 be analytic functions defined on some
neighborhood of 0 and consider the following system:

(16) (ẋ, ẏ) =
{

(−y, F ′(x)) if y ≥ 0,
(−y, G′(x)) if y < 0.

If the origin is a focus for the system (16), then it follows from Lemma 2.1 that
it is an isochronous focus if and only if the associated uncoupled systems have an
isochronous center at the origin. The following theorem shows that the situation is
more complicated in the center case.

Theorem 3.2. Let F (x) = ax2 + 0(x4), a > 0, be an analytic even function at 0.
Then for every k > 0 there exists a unique analytic even function at the origin G,
such that G(x) = kx2 + O(x4) and the system (16) has an isochronous center at
the origin.
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Proof. Let T (x) be the period function associated to the system

(17) (ẋ, ẏ) = (−y, F ′(x)).

It is well known that T is analytic at 0 and T (0) =
√

2/aπ. Moreover, T (x) =
T (−x), so T is even. Set T̃ (x) = T (x)/4. From the symmetries of the system (17),
T̃ (x) can be viewed as the time needed by the solution with initial condition (x, 0)
to cross the y-axis. Set k > 0 and

T̃1(x) = (
√

2/k +
√

2/a)π/4 − T̃ (x).

Clearly T̃1(x) is even, analytic, and T̃1(0) > 0. From [1] it follows that there exists
a unique function G(x) such that the system

(18) (ẋ, ẏ) = (−y, G′(x))

has a center at the origin and, for all sufficiently small x > 0, the time required
for the solution of (18) with initial condition (x, 0) to cross the y-axis is precisely
T̃1(x). Moreover from [2] it follows that G is analytic and even. It follows from the
symmetries associated with the equation (18) that its period function T1 satisfies
the identity T1(x) = 4T̃1(x). Then T1(0) =

√
2/kπ and so G(x) = kx2 + O(x4).

Since F and G are even it follows that system (16) has a center at the origin and
clearly its period function T2 satisfies the equality T2(x) = T (x)/2 + T1(x)/2 =
(
√

2/k +
√

2/a)π/2. �

We suspect that the above theorem also holds in the non-even case. Unfortu-
nately our attempts to prove it have failed.
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