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PERIODIC MOTIONS OF LINEAR IMPACT OSCILLATORS VIA
THE SUCCESSOR MAP∗

DINGBIAN QIAN† AND PEDRO J. TORRES‡

Abstract. We investigate the existence and multiplicity of nontrivial periodic bouncing solu-
tions for linear and asymptotically linear impact oscillators by applying a generalized version of the
Poincaré–Birkhoff theorem to an adequate Poincaré section called the successor map. The main
theorem includes a generalization of a related result by Bonheure and Fabry and provides a sufficient
condition for the existence of periodic bouncing solutions for Hill’s equation with obstacle at x �= 0.
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1. Introduction and main results. In this paper, we study the existence of
2mπ-periodic bouncing solutions for the following linear impact oscillator:

⎧⎨
⎩

x′′ + a(t)x = p(t) for x(t) > 0;
x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−),

(1.1)

where a(t), p(t) are 2π-periodic continuous functions and p(t) satisfies

p(t) ≤ 0 and p =
1

2π

∫ 2π

0

p(t)dt < 0.(1.2)

This system is included in a larger family of impact oscillators given by

⎧⎨
⎩

x′′ + f(t, x, x′) = 0 for x(t) > q(t);
x(t) ≥ q(t);
x(t0) = q(t0) ⇒ x′(t0+) = −x′(t0−) + 2q′(t0),

(1.3)

where f is continuous and 2π-periodic with respect to t and q ∈ C2(R) is also
2π-periodic. From the viewpoint of mechanics this equation models the motion of
a particle attached to a nonlinear spring and bouncing elastically against the barrier
described by q(t). Thus (1.3) is a model of dynamical system with discontinuity [23]
that can be included in the wide family of vibro-impact systems [3]. Because of the
range of applications in physics and engineering, vibro-impact systems have attracted
the attention of a lot of researchers and in consequence the number of papers related
to this topic is huge; see [4, 8, 10, 21, 22, 14] and their bibliographies only to mention
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some of them. There are also interesting relations with Fermi accelerator [15, 35],
dual billiards [7], and celestial mechanics [9].

In spite of this, even for the simple case of a one-degree-of-freedom linear oscilla-
tor with impacts, the dynamics is far from being understood, although some results
are known [6, 24, 25, 33]. Our purpose in this paper is to investigate the existence of
nontrivial periodic bouncing solutions with prescribed number of impacts for linear
and asymptotically linear impact oscillators. As it is known, the existence of sub-
harmonics of arbitrary order is usually a hint of a complex dynamics. The following
definition clarifies the concept of bouncing solution we mean here.

Definition 1.1. A continuous function x : R → R is a bouncing solution for
problem (1.3) if the following conditions hold:

1. x(t) ≥ q(t) for all t ∈ R;
2. the set W = {t : x(t) = q(t)} is discrete and not empty;
3. x′(t0+) = −x′(t0−) + 2q′(t0) for any t0 ∈ W ;
4. given an interval I, if I ∩ W = ∅, then x ∈ C2(I,R+) and it is a classical

solution of (1.3).
Note that the change of variables y(t) = x(t)−q(t) enables to assume without loss

of generality that the barrier is fixed at zero. In this context, Lazer and McKenna [25]
proved the existence of 2π-periodic bouncing solution for a linear oscillator with small
amplitude forcing term and small viscous damping. Recently, Bonheure and Fabry
[6] proved the existence of a 2π-periodic bouncing solution for the linear oscillator

x′′ + λx = p(t),(1.4)

where λ > 0 is a constant and p(t) < 0. They also introduced the concept of admissible
solution in [6] to treat the case where p(t) changes its sign and showed some existence
results for perturbations of a linear oscillator. The main feature of an admissible
solution is that it can vanish on a whole interval. This is physically equivalent to an
attachment of the particle to the barrier x = 0 during a whole interval of time. Due
to the condition (1.2), we are able to work directly with the more specific concept of
bouncing solution, which constitutes a particular class of admissible solutions.

Obviously, our model (1.1) includes (1.4) and also the bouncing problem for the
Hill’s equation

x′′ + a(t)x = 0(1.5)

with obstacle q(t) = d > 0. Note that x(t) is a bouncing solution of the problem⎧⎨
⎩

x′′ + a(t)x = 0 for x(t) > d;
x(t) ≥ d;
x(t0) = d ⇒ x′(t0+) = −x′(t0−)

(1.6)

if and only if y(t) is a solution of (1.1) with p(t) = −a(t)d by means of the change
y(t) = x(t) − d.

The approach of this paper is different from that in [25, 6]. We apply a new
generalized version of Poincaré–Birkhoff twist theorem to the so-called successor map,
defined as follows. For a given τ ∈ R and v ∈ R

+, let us denote by x(t; τ, v) the
unique solution of the bouncing problem (1.1) with initial conditions x(τ ; τ, v) =
0, x′(τ ; τ, v) = v > 0. We assume conditions such that this solution is well defined
and vanishes at some time τ̂ > τ . Thus τ̂ is the time of the next impact. As the
bouncing is elastic, the velocity after this impact is

v̂ = −x′(τ̂ ; τ, v).
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If v̂ is finite and positive, then the map

S : R × R
+ → R × R

+,
S(τ, v) = (τ̂ , v̂)

is well defined, continuous, and one to one. Following [1, 31, 32, 33], this function is
called successor map, although in this context “impact map” would be also adequate.

Let us state some notation to be used in the rest of the paper: given a 2π-periodic

function p(t), p̄ = 1
2π

∫ 2π

0
p(t)dt is the mean value of p and ‖p‖∞ = max0≤t≤2π |p(t)|.

The projection for the component i of a given vector is denoted by Πi. All along the
paper, the iteration of the successor map is denoted by Sn(τ, v) = (τ̂n(τ, v), v̂n(τ, v))
and we will use τ̂n = τ̂n(τ, v), v̂n = v̂n(τ, v) for short. Therefore, Π1(Sn(τ, v)) =
τ̂n, Π2(Sn(τ, v)) = v̂n. Both notations are used without distinction.

Our main result is the following.
Theorem 1.2. Assume that the successor map S is well defined for all (τ, v) ∈

R × R
+ and p(t) ≤ 0 for all t, p̄ < 0. Then for any m,n ∈ N such that n >

2m(
√
‖a‖∞), there exists at least one 2mπ-periodic bouncing solution of (1.1) with ex-

actly n impacts in each period. Moreover, for any m ∈ N such that 2m(
√

‖a‖∞) < 1,
there exist at least two 2mπ-periodic solutions with one bouncing in each period.

The following corollaries present two concrete situations where the successor map
is well defined and the previous result applies.

Corollary 1.3. Assume that p(t) ≤ 0 for all t, p̄ < 0, and ā > 0. Then, the
conclusion of Theorem 1.2 holds.

Corollary 1.4. Assume that p(t) ≤ 0 for all t, p̄ < 0, and a(t) ≡ 0. Then for
any m,n ∈ N, n ≥ 2, there exists at least one 2mπ-periodic bouncing solution of (1.1)
with exactly n impacts in each period. Moreover, for any m ∈ N, there exist at least
two 2mπ-periodic solutions with one bouncing in each period.

Remark 1.5. In our opinion, the application of the Poincaré–Birkhoff twist the-
orem to the successor map instead of the Poincaré map (as it is done in [6]) is more
natural and direct. For the linear impact oscillator (1.4) we can obtain at least two
2mπ-periodic bouncing solutions for (1.4) with exactly 1 impact in each period if
2m

√
λ < 1 , whereas in [6] only one solution is found. Moreover, we can deal with a

nonconstant coefficient a(t), in contrast with [6].
In order to understand some of the new phenomena arising in vibro-impact sys-

tems, it is interesting to consider in detail the Hill’s equation with impacts (1.6) as a
particular case. Note that if the obstacle is placed at d = 0, then a classical solution
x of Hill’s equation generates a bouncing solution |x| of (1.6). Hence, in this case
(1.6) inherits the dynamics of Hill’s equation without impacts and in consequence its
resonant or nonresonant character. However, if the obstacle is d > 0, the situation
is different. Physically, this model corresponds to a kind of offset impact oscillator
[18], consisting of a linear spring-mass system with a displaced wall with respect to
the origin (see Figure 1(a)). The time-dependence of the stiffness coefficient a(t) of
the spring can be produced by periodic changes of the temperature or other physical
variables. A periodic bouncing solution corresponds to a nontrivial periodic motion
with prescribed impacts in one period. The following result holds.

Corollary 1.6. Assume that d > 0, a(t) ≥ 0 for all t, and ā > 0. Then for any
m,n ∈ N such that n > 2m(

√
‖a‖∞), there exists at least one 2mπ-periodic bouncing

solution of (1.6) with exactly n impacts in each period.
The proof follows from Corollary 1.3 by means of the change of variables y = x−d.

Thus, the Hill’s equation could be unstable (equivalently, all nontrivial solutions are
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1.a) 1.b)

q(t)

x=0{d

Fig. 1. (a) The offset oscillator. (b) The “ping-pong” model.

unbounded [26]) but nevertheless (1.6) has periodic bouncing solutions. In other
words, possible parametric resonances are killed by the presence of an obstacle. This
fact is a good example of the obstacle’s influence in the dynamics of a given system.

Another simple but physically interesting model is the “ping-pong” problem, that
is, a free ball moving in a vertical line subjected to gravity force and bouncing against
a barrier or racket describing a periodic movement q(t) (see Figure 1(b)). If G is the
acceleration of gravity, the motion of the ball is described by

⎧⎨
⎩

x′′ + G = 0 for x(t) > q(t);
x(t) ≥ q(t);
x(t0) = q(t0) ⇒ x′(t0+) = −x′(t0−) + 2q′(t0).

This is a simple variation of Fermi’s model that have deserved the attention of many
researchers (see [19, 5, 13] and their references). After the change y(t) = x(t) − q(t),
the problem is transformed in (1.1) with a(t) ≡ 0 and p(t) = −G − q′′(t). Then,
if q′′(t) > −G for any t, the ball experiences a diversity of periodic motions with a
prescribed number of impacts as a consequence of Corollary 1.4.

Remark 1.7. The concept of bouncing solution could involve other new features
and strong differences with the situation when working with differential equations
without impacts. An interesting open problem is to prove or disprove the validity
of Massera’s theorem for impact oscillators. Massera’s theorem asserts that in the
framework of periodic differential equations the existence of a bounded solution implies
the existence of a periodic solution [28]. This classical result is false in the context
of equations with impacts in the sense that a bounded bouncing solution (using the
definition in this paper) does not imply a periodic bouncing solution. To prove this,
consider the Mathieu equation a(t) = γ + δ cos t with obstacle d = 0 and parameters
γ, δ placed in a stability region with irrational rotation number. Then any nontrivial
solution of (1.5) is quasi-periodic (but not periodic) and in consequence every bouncing
solution of (1.5) is bounded but there are no periodic bouncing solutions. Of course,
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Fig. 2. A spring-mass impact system.

this is just an effect of the definition chosen here, since the trivial solution is excluded.
Note that the trivial solution is not a bouncing solution but it is an admissible solution
in the sense of [6]. So the exciting question of the validity of Massera’s theorem for
impact oscillators is still open: does the existence of a bounded bouncing solution
imply the existence of a periodic admissible solution (including trivial solution)? We
do not know the answer.

Our successor map approach is also suitable for use in nonlinear impact oscillators,
as it is done in [34] for a singular equation. Here we include a result about the
asymptotically linear impact oscillator.

Theorem 1.8. Let us assume that g(t, x) is continuous, 2π-periodic with respect
to t, and satisfies

lim sup
x→0+

∣∣∣∣g(t, x)

x

∣∣∣∣ < +∞, lim
x→+∞

g(t, x)

x
= 0.(1.7)

Besides, let us suppose that the successor map S of the bouncing problem⎧⎨
⎩

x′′ + a(t)x + g(t, x) = p(t) for x(t) > 0;
x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−)

(1.8)

is well defined for all (τ, v) ∈ R × R
+ and p(t) ≤ 0 for all t, p̄ < 0. Then, the

conclusion of Theorem 1.2 holds.
A corollary of the previous result is the following.
Corollary 1.9. Assume that p(t) ≤ 0 for all t, p̄ < 0, g(t, x) satisfies (1.7) and

a(t)x + g(t, x) ≥ 0 for any x ≥ 0. Then, the conclusion of Theorem 1.2 holds.
This result can be illustrated by a simple physical model presented in Figure 2.

This mechanical system is a modification of the model presented in [2, 17] and consists
of a single mass moving in a straight line, attached to the wall by two linear springs
of constant k and natural length L and perturbed periodically by an external force
p(t). If it is assumed that the impacts between the mass and the wall are perfectly
elastic, then the motion of the mass is governed by⎧⎪⎪⎨

⎪⎪⎩
mx′′ + 2k

[
x− Lx

(c2 + x2)1/2

]
= p(t) for x(t) > 0;

x(t) ≥ 0;
x(t0) = 0 ⇒ x′(t0+) = −x′(t0−),
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where c > 0 is the distance between the point of impact and the attachments of the
springs (see [2, 17] for more details). If p(t) ≤ 0 for all t, p̄ < 0, it is easy to verify
that this problem is under the assumptions of Corollary 1.9 when c > L.

The rest of the paper is organized as follows. In section 2, the proof of The-
orem 1.2 is given. It relies on a generalized version of Poincaré–Birkhoff theorem.
Section 3 collects some auxiliary lemmas which are needed in the mentioned proof,
more specifically the twist property of some iteration of the successor map is proved.
Finally, section 4 is devoted to the study of the asymptotically linear impact oscillator.

2. Existence of periodic bouncing solutions. We will apply the Poincaré–
Birkhoff twist theorem to the successor map S for proving the existence of 2π-periodic
bouncing solutions for impact oscillators (1.1). The successor map was used recently
by Ortega [33] for investigation of the boundedness of all the solutions for a linear
impact oscillator by using Moser’s twist theorem and the authors [34] for investigation
of the periodic bouncing solutions for some singular impact oscillator. As a general
idea, this successor map is just a different section of the flux and it goes back at least
to Alekseev [1] and Moser [30].

The following generalized version of Poincaré–Birkhoff twist theorem is based on
the theorems of Franks [16] and Ding [11] and is slightly different from the version
used by others (see, for example, [20], [6], and [27]).

Let A and B be two annuli

A := S1 × [a1, a2], B := S1 × [b1, b2]

with 0 < b1 < a1 < a2 < b2 < +∞. A map f : A → B possesses a lift f̃ : R×[a1, a2] →
R × [b1, b2] with the form

θ′ = θ + h(θ, ρ), ρ′ = g(θ, ρ),

where h, g are continuous and 2π-periodic in θ. We say that f̃ satisfies the boundary
twist condition if

h(θ, a1) · h(θ, a2) < 0 for θ ∈ [0, 2π].

Theorem 2.1. Assume that f : A → B is an area-preserving homeomorphism
homotopic to the inclusion such that f(A) ∩ ∂B = ∅. Moreover, f possesses a lift f̃
satisfying the boundary twist condition and the area of the two connected components
of the complement of f(A) in B is the same as the area of the corresponding connected
components of the complement of A in B. Then, f has at least two geometrically
distinct fixed points (θi, ρi), (i = 1, 2) satisfying h(θi, ρi) = 0 for i = 1, 2.

Proof. The proof basically combines the proofs from Franks [16] and Ding [11]. In
[16], Franks showed that by using a result from Oxtoby and Ulam, one can extend f
to an area-preserving homeomorphism F : B → B such that F is the identity on the
boundary of B (see the proof and the remark of Theorem 4.2 in [16]). Then, we can
assume further that F is an area-preserving homeomorphism of D := {(θ, ρ) : ρ ≤ b2}
to its image such that O ∈ F (D\B). Now we meet all the assumptions of the argument
in [11]. According to the argument of [11], we can prove that F , and then f , has at
least two fixed points in A. Moreover, the fixed points (θi, ρi) satisfy h(θi, ρi) = 0
for i = 1, 2 (see [11] and [12] for more details). Figure 3 illustrates the geometrical
meaning of the hypotheses.

Now, we apply the above Poincaré–Birkhoff theorem to the successor map S.
From the discussion in the next section we know that our successor map S

S : (τ, v) → (τ̂ , v̂)
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Fig. 3. The Poincaré–Birkhoff theorem.

is well defined, one to one, and continuous in its domain R×R
+. Moreover, it satisfies

S(τ + 2π, v) = S(τ, v) + (2π, 0).

Thus, we can interpret τ and v as polar coordinates and S is an embedding home-
omorphism on S1 × R

+. It is easy to show that for any n,m ∈ N, a fixed point
of the map Sn(τ, v) − (2mπ, 0) corresponds a 2mπ-periodic bouncing solution of the
equation with n impacts in each period. We have the following lemma.

Lemma 2.2. S is an area-preserving map with the area element vdvdτ . Moreover,
S is area-preserving homotopic to the inclusion, and for any annuli A ⊂ B ⊂ S1×R

+

with S(A) ⊂ B
◦
, the area of the two connected components of the complement of S(A)

in B is the same as the area of the corresponding components of the complement of
A in B.

The proof of this lemma is similar to the proof of Lemma 1 in [20] and the proof
of Proposition 2.3 in [31]. At first we can prove, under the assumption of the C1-
smoothness of a and p which implies the C1-smoothness of S, that S is an exact
symplectic map in its domain; that is, for any C1-closed path γ in its domain∫

γ

v2

2
dτ =

∫
S◦γ

v2

2
dτ.(2.1)

Moreover, note that S is an embedding homeomorphism on S1 × R
+, then from

Jordan separation theorem (see, for instance, [29]), we know that for any annuli

A ⊂ B ⊂ S1 × R
+ with S(A) ⊂ B

◦
, there are two connected components of the

complement of S(A) in B. Such components are the images of the two components
of the complement of A in B. Hence, the geometric meaning of (2.1) is that the area
of the components of the complement of S(A) in B are the same as the area of the
corresponding components of the complement of A in B. The conclusion for the case
of continuous functions a and p follows from an approximation argument.

Moreover, Lemmas 3.4 and 3.6 (see section 3) imply that, under the assumptions

of Theorem 1.2, we can choose v
(n)
− < v

(n)
+ such that

Π1(Sn(τ, v
(n)
− )) − τ < 2mπ,

Π1(Sn(τ, v
(n)
+ )) − τ > 2mπ for τ ∈ [0, 2π].
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Hence, let A be the annulus bounded by S1 ×{v(n)
− } and S1 ×{v(n)

+ } and let B be the
annulus bounded by S1 × {v∗} and S1 × {v∗}. We can prove, as showed in section 3,

that f(A) ⊂ B
◦

for v∗ > 0 sufficiently small and v∗ sufficiently large, where f : A → B
is defined by

f(τ, v) = Sn(τ, v) − (2mπ, 0).

It is easy to see that f is an area-preserving homeomorphism homotopic to the inclu-
sion and f̃ satisfies the boundary twist condition. Thus the conclusion of Theorem 1.2
follows by a direct application of Theorem 2.1. Note that in any case we get two fixed
points of Sn(τ, v) − (2mπ, 0). However, if the number of bouncings n is greater than
or equal to 2, these two fixed points provided by Theorem 2.1 may correspond to the
same bouncing solution, so we can only assure the existence of two different 2mπ-
periodic bouncing solutions when there is only one impact in each period.

3. Twist property for the successor map. The aim of this section is to
provide the necessary properties for the application of the Poincaré–Birkhoff theorem
yet done in section 2. Basically, our goal is to prove that the rotation for some iteration
of the successor map is slow for small velocities and fast for large velocities. This will
be done through some auxiliary lemmas concerning the asymptotic dynamics of the
solutions for (1.1). Lemma 3.1 gives a second-order differential inequality to be used
later. Lemma 3.2 shows that S is well defined for v � 1, Lemma 3.3 shows that the
impact velocity v̂ is small if the initial velocity v is small enough and in consequence,
Lemma 3.4 gives the slow rotation for some iteration of S for small initial velocities.
Lemma 3.5 discusses, under the assumption that the successor map is well defined,
the fast rotation of S for large velocities by using the Sturm comparison theorem.
This fact implies (Lemma 3.6) the fast rotation for some iteration of S for large initial
velocities. At the end of this section, we discuss, in Lemmas 3.7 and 3.8, when the
successor map S is well defined by using some oscillatory properties of the solutions
of the Hill’s equation.

Lemma 3.1. Suppose that x1(t) is a solution of the equation x′′ = Mx for t ∈ I,
where M > 0, and x2(t) satisfies the differential inequality x′′ ≤ Mx for t ∈ I, with
the same initial conditions x1(τ) = x2(τ), x′

1(τ) = x′
2(τ). Then x1(t) ≥ x2(t) for

t ∈ I.
Proof. Let zn(t) = xn(t)−x2(t), where xn(t) is the solution of x′′ = Mx with the

initial condition xn(τ) = x2(τ), x′
n(τ) = x′

2(τ) + 1
n . Then zn(τ) = 0, z′n(τ) = 1

n > 0
which implies that zn(t) > 0 for t > τ and t close to τ . Moreover, z′′n(t) ≥ Mzn(t)
for t > τ . Thus z′n(t) > z′n(τ) > 0 and zn(t) increases strictly for t > τ . Hence
xn(t) > x2(t) for t > τ . Let n → ∞. Then xn(t) → x1(t) in any compact interval
by using the continuous dependence on initial values. Therefore, x1(t) ≥ x2(t) for
t ∈ I.

Lemma 3.2. If p(t) ≤ 0 and p = 1
2π

∫ 2π

0
p(t)dt < 0, then every solution x(t; τ, v)

of (1.1) starting from x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0 does not satisfy x(t; τ, v) =
x′(t; τ, v) = 0 for any t in its domain. Moreover, S is well defined and one to one for
v � 1.

Proof. Note that every solution of (1.1) starting from x(τ ; τ, v) = 0, x′(τ ; τ, v) =
v > 0 satisfies

x′ = y, y′ = −a(t)x + p(t)

in (x, y)-plane before it meets x = 0 again. Then x′(t; τ, v) > 0 when it is in the
half-plane y > 0 which implies that x(t; τ, v) > 0 for t > τ and close to τ . Moreover,
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if there are τ1, τ2 such that

x′(τ1; τ, v) = x′(τ2; τ, v) = 0, x′(s; τ, v) > 0 for s ∈ (τ1, τ2),

then

x(τ2; τ, v) > x(τ1; τ, v).(3.1)

If x′(τ3; τ, v) = 0 and x′(s; τ, v) < 0 for s ∈ (τ3, t), then by using polar coordinates

x = r cos θ, y = r sin θ

in the half-plane y ≤ 0 we get

r′ = (1 − a(t))r cos θ sin θ + p(t) sin θ ≥ −Kr,

where K = max0≤t≤2π |1 − a(t)|. Thus

r(t) ≥ r(τ3) exp(−K(t− τ3)).(3.2)

Therefore, either x(t; τ, v) has no any impact in t > τ or x(t; τ, v) has its next impact
at t = τ̂ . In this case, (3.1), (3.2) imply that

x′(τ̂ ; τ, v) ≤ −x(τ̃ ; τ, v) exp(−K(τ̂ − τ)) < 0,

where t = τ̃ is the first time x(t; τ, v) meets y = 0 after τ . The conclusion of the first
part of the lemma is thus proved.

Next, note that when x(t; τ, v) is remaining in half-plane x > 0,

x′′(t; τ, v) = −a(t)x(t; τ, v) + p(t) ≤ Mx(t; τ, v),

where M = max0≤t≤2π |a(t)|. Then Lemma 3.1 implies that

x(t; τ, v) ≤ M0 =
v

2
√
M

(exp(2π
√
M) − exp(−2π

√
M))(3.3)

for t ∈ (τ, τ + 2π). Thus,

x′(t; τ, v) = v −
∫ t

τ

(a(s)x(s; τ, v) − p(s))ds ≤ O(v) +

∫ t

τ

p(s)ds.

Because p̄ < 0, there must be τ̃ ∈ (τ, τ + 2π) such that

x(τ̃ ; τ, v) > 0, x′(τ̃ ; τ, v) = 0, x′(s; τ, v) > 0 for s ∈ (τ, τ̃),

provided that v � 1. Moreover, for t ∈ (τ̃ , τ + 2π), we have

x(t; τ, v) = x(τ̃ ; τ, v) −
∫ t

τ̃

∫ w

τ̃

(a(s)x(s; τ, v) − p(s))dsdw = O(v) +

∫ t

τ̃

∫ w

τ̃

p(s)dsdw

from which it follows that there exists τ̂ ∈ (τ̃ , τ + 2π) such that

x(τ̂ ; τ, v) = 0, x′(τ̂ ; τ, v) < 0, x(t; τ, v) > 0 for t ∈ [τ̃ , τ̂),

provided that v � 1 and p̄ < 0. The lemma is thus proved.
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The next lemma clarifies the behavior of the next impact velocity v̂ for small v.
Lemma 3.3. If p(t) ≤ 0 and p < 0, then the next velocity v̂ of the successor map

satisfies

lim
v→0+

v̂(τ, v) = 0

uniformly for τ ∈ [0, 2π).
Proof. As it is shown in Lemma 3.2, for v > 0 small enough, we have a well-defined

τ̂ ∈ (τ, τ + 4π). Moreover,

max
τ≤t≤τ̂

x(t; τ, v) = O(v) as v → 0+.(3.4)

By contradiction, let us assume that there exist {τn} belonging to [0, 2π) and {vn}
with vn → 0+ as n → ∞, such that v̂(τn, vn) ≤ −δ < 0. Then there exist tn ∈
(τn, τ̂(τn, vn)) satisfying

x′(tn; τn, vn) = −δ

2
, x′(s; τn, vn) ≤ −δ

2
for s ∈ [tn, τ̂(τn, v)].

Denote by P = ‖p‖∞, then

−δ

2
≥ v̂(τn, vn) − x′(tn; τn, vn) = −

∫ τ̂(τn,vn)

tn

(a(s)x(s; τn, vn) − p(s))ds

≥ −(M + P )(τ̂(τn, vn) − tn),

provided that maxtn≤t≤τ̂(τn,vn) x(t; τn, vn) ≤ 1 (this is guaranteed for vn small by
(3.4)). Thus we can estimate

max
τn≤t≤τ̂n

x(t; τn, vn) ≥ x(tn; τn, vn) − x(τ̂(τn, vn); τn, vn)

= −
∫ τ̂(τn,vn)

tn

x′(s; τn, vn)ds ≥ δ

2
· (τ̂(τn, vn) − tn) ≥ δ2

4(M + P )
,

which contradicts (3.4). The result is thus proved.
Let us recall that we write Sn(τ, v) = (τ̂n(τ, v), v̂n(τ, v)) and we will use the

abbreviation τ̂n = τ̂n(τ, v), v̂n = v̂n(τ, v). Then, it is deduced from Lemma 3.3 that
for all n ∈ N and vn > 0, there exists v0 > 0, such that

|x′(t; τ, v)| ≤ vn for v ∈ (0, v0], t ∈ [τ, τ̂n].

Now, suppose that there are c > 0 and δ > 0 such that p(t) ≤ −c for t ∈ [τ0 − 2δ, τ0 +
2δ]. Then,

τ̂n − τ < δ for v � 1 and τ ∈ [τ0 − δ, τ0 + δ].(3.5)

Actually,

|v̂j+v̂j−1| = |x′(τ̂ j ; τ, v)−x′(τ̂ j−1; τ, v)| =

∫ τ̂j

τ̂j−1

(a(t)x(t; τ, v)−p(t))dt ≥ c

2
(τ̂ j−τ̂ j−1),

provided that (3.4) and [τ̂ j−1, τ̂ j ] ⊂ [τ0 − 2δ, τ0 + 2δ]. Then

τ̂n − τ ≤ 4

c

n∑
j=1

v̂j < δ(3.6)



LINEAR IMPACT OSCILLATOR 1717

if we choose v � 1 and τ ∈ [τ0 − δ, τ0 + δ].
Now, we can prove the twist property of the successor map for v � 1.
Lemma 3.4. Let us suppose that p(t) ≤ 0 and p̄ < 0. Then, for all n,m ∈ N,

there exists vn > 0 such that

Π1(Sn(τ, v)) − τ < 2mπ for v ∈ (0, vn] and τ ∈ [0, 2π].

Proof. Since p(·) is continuous and p̄ < 0, there are c > 0, δ > 0, and τ0 ∈ [0, 2π]
such that p(t) ≤ −c for t ∈ [τ0 − 2δ, τ0 + 2δ]. Then, there exists v � 1 such that

τ̂n(τ, v) − τ < δ for τ ∈ [τ0 − δ, τ0 + δ].(3.7)

For τ ∈ (τ0 + δ, 2π + τ0 − δ) either τ̂n(τ, v) ≤ 2π + τ0 − δ which implies that

τ̂n − τ < 2π − 2δ,(3.8)

or there exists t ∈ (τ̂ j−1, τ̂ j) ∩ [2π + τ0 − δ, 2π + τ0] for some j ∈ {1, 2, . . . , n}. Then,
by estimating like in (3.6) it is proved that, if v small enough, τ̂ j − t ≤ δ

n . From here
it is deduced that

τ̂ j ∈
(

2π + τ0 − δ, 2π + τ0 +
δ

n

]
(3.9)

and then τ̂n − τ̂ j < n−1
n δ which implies that

τ̂n − τ = τ̂n − τ̂ j + τ̂ j − t + t− τ <
n− 1

n
δ +

δ

n
+ 2π + τ0 − (τ0 + δ) = 2π.(3.10)

Since S is continuous on R × R
+ (this is a consequence of the uniqueness of the

solution for the initial value problem for linear equation), the above estimations are
uniform for the compact interval [0, 2π]. Therefore, (3.7)–(3.10) complete the proof
of the lemma.

Under the assumption that the successor map S is well defined, our next result
proves the twist property for large velocities.

Lemma 3.5. Assume that S : (τ, v) → (τ̂ , v̂) for (τ, v) ∈ R × R
+ is well defined

and p(t) ≤ 0, p̄ < 0. Then

lim inf
v→+∞

[τ̂(τ, v) − τ ] ≥ π√
‖a‖∞

(3.11)

uniformly for τ ∈ [0, 2π). If a(t) ≡ 0, then

lim
v→+∞

[τ̂(τ, v) − τ ] = +∞(3.12)

uniformly for τ ∈ [0, 2π).
Proof. Suppose firstly that ‖a‖∞ > 0 and there are τn ∈ [0, 2π) and vn > 0 with

vn → +∞ as n → ∞ such that τ̂(τn, vn)−τn ≤ π/
√
‖a‖∞−γ with γ > 0. Then there

are τ∗ ∈ [0, 2π] and τ̂∗ ∈ (τ∗, τ∗+π/
√
‖a‖∞−γ] such that τn → τ∗ and τ̂(τn, vn) → τ̂∗

as n → ∞. Moreover, yn(t) = x(t; τn, vn)/vn is the solution of the equation

x′′ + a(t)x =
1

vn
p(t)
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with the initial conditions yn(τn) = 0, y′n(τn) = 1. By continuous dependence of the
solutions with respect to initial value and parameters we have that

lim
n→∞

yn(t) = y0(t) and lim
n→∞

y′n(t) = y′0(t)(3.13)

uniformly on compact intervals, where y0(t) is the solution of Hill’s equation (1.5) with
the initial condition y0(τ∗) = 0, y′0(τ∗) = 1. Thus y0(τ̂∗) = 0 due to the continuous
dependence of the solutions with respect to initial values and parameters. On the
other hand, by using Sturm comparison theorem, it is proved that

τ ′ − τ ≥ π√
‖a‖∞

,

where τ ′ and τ are two consecutive zeros of y0(t), so in consequence τ̂∗ − τ∗ ≥
π/

√
‖a‖∞. This is a contradiction. If a(t) ≡ 0, then any solution x(t; τ, v) of the

equation x′′ = p(t) has the derivative x′(t; τ, v) = v +
∫ t

τ
p(s)ds. Hence, for any

fixed v > 0 there exists a τ̂ > τ such that x(τ̂ ; τ, v) =
∫ τ̂

τ
(v +

∫ t

τ
p(s)ds)dt = 0 and

limv→+∞(τ̂ − τ) = +∞. Therefore, the lemma is proved.
From the above estimation we can prove the twist property of successor map for

v � 1. Recall that r(t) = (x2(t; τ, v) + (x′(t; τ, v))2)1/2 satisfies

−Kr(t) − P ≤ r′(t) ≤ Kr(t) + P for t ∈ (τ, τ̂),

where K = max0≤t≤2π |1 − a(t)| and P = max0≤t≤2π |p(t)|. Then, by using Gronwall
inequality, (

v +
P

K

)
exp(−KT ) ≤ v̂ +

P

K
≤

(
v +

P

K

)
exp(KT ),(3.14)

provided that τ̂ − τ ≤ T . Suppose that Π1(Sn(τ, v)) − τ ≤ 2mπ, then

Π1(Si+1(τ, v)) − Π1(Si(τ, v)) ≤ 2mπ for i = 0, 1, . . . , n− 1.

This implies that(
Π2(Si(τ, v)) +

P

K

)
exp(−2mπK) ≤ Π2(Si+1(τ, v)) +

P

K

≤
(

Π2(Si(τ, v)) +
P

K

)
exp(2mπK)

for i = 0, 1, . . . , n− 1. Thus for a given v+
0 > 0 we have v+

n,m > 0 such that

if v > v+
n,m and Π1(Sn(τ, v)) − τ ≤ 2mπ, then Π2(Si(τ, v)) > v+

0(3.15)

for i = 0, 1, . . . , n− 1. Hence, the following result is obtained.
Lemma 3.6. Let us suppose that p(t) ≤ 0 and p̄ < 0. Let n,m ∈ N be such that

n > 2m(
√
‖a‖∞). Then, there exists v+

n,m > 0 such that

Π1(Sn(τ, v)) − τ > 2mπ for v ≥ v+
n,m and τ ∈ [0, 2π].

Proof. From Lemma 3.5 we know that there exists v+
0 > 0 such that

Π1(S(τ, v)) − τ ≥ π√
‖a‖∞

for v ≥ v+
0 and τ ∈ [0, 2π).(3.16)
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By the periodicity of the equation, it is verified that

S(τ + 2π, v) = S(τ, v) + (2π, 0).

This means that the function f(τ) = Π1(S(τ, v))− τ is 2π-periodic. Therefore, (3.16)
holds for all τ ∈ R. Taking v+

n,m as in (3.15), if v > v+
n,m then either Π1(Sn(τ, v))−τ >

2mπ or Π1(Sn(τ, v)) − τ ≤ 2mπ. In the second case, it follows from (3.15) that
Π2(Si(τ, v)) > v+

0 for i = 0, 1, . . . , n− 1, and in consequence for every i = 1, . . . , n− 1
we have

Π1(Si+1(τ, v)) − Π1(Si(τ, v)) ≥ π√
‖a‖∞

for v ≥ v+
n,m and τ ∈ [0, 2π).

Adding the previous inequalities for i = 1, . . . , n− 1 with (3.16),

Π1(Sn(τ, v)) − τ ≥ n
π√
‖a‖∞

.

Now, taking into account that n > 2m(
√
‖a‖∞), the result is done.

The rest of this section is devoted to the discussion of the conditions implying that
the successor map is well defined. At first we can prove as in the proof of Lemma 3.2
that successor map is well defined if p(t) ≤ 0 for all t, p̄ < 0 and a(t) ≡ 0. We will
prove in the following that ā > 0 is also enough to assure that the successor map is
well defined. With this, the proofs of Corollaries 1.3 and 1.4 are completed.

Consider the solution x(t; τ, v) of the impact oscillator (1.1) starting from

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Lemma 3.2 implies that either there exists τ̂ > τ such that x(τ̂ ; τ, v) = 0 and
x(t; τ, v) > 0 for t ∈ (τ, τ̂), or

x(t; τ, v) > 0 for all t > τ,(3.17)

and in consequence x(t; τ, v) is a (classical) solution of the equation x′′ +a(t)x = p(t),
with t > τ . If (3.17) holds, we will show that there is a constant δ > 0 such that
x(t; τ, v) ≥ δ for sufficiently large t > τ . Actually, we will show firstly that (3.17)
implies that

|x(t; τ, v)| + |x′(t; τ, v)| ≥ 2δ.(3.18)

By contradiction, let us suppose that there exists τ1 > τ such that x(τ1; τ, v) = α ≥ 0,
x′(τ1; τ, v) = β with |α| + |β| < 2δ. Then as in Lemma 3.2 it is shown that

x(t; τ, v) ≤ 1

2
√
M

((
√
Mα + β) exp(2π

√
M) + (

√
Mα− β) exp(−2π

√
M))

for t ∈ (τ1, τ1 + 2π), being M = ‖a‖∞. Thus,

x(t; τ, v) = α +

∫ t

τ1

(
β +

∫ s

τ1

(−a(ξ)x(ξ; τ1, v) + p(ξ)dξ)ds

)

= O(|α| + |β|) +

∫ t

τ1

∫ s

τ1

(p(ξ))dξds.
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This implies that, using p̄ < 0, if δ is small enough, then there must be some τ̂ ∈
(τ1, τ1 + 2π) such that x(τ̂ ; τ, v) = 0. This contradicts (3.17).

Note that (3.18) implies that v ≥ 2δ. Moreover, there exists t1 > τ such that
x(t1; τ, v) ≥ δ. We claim that

x(t; τ, v) ≥ δ for t ≥ t1.(3.19)

If (3.19) is not true, let t2 = inf{t : t ≥ t1, x(t; τ, v) < δ}. Then x′(t2; τ, v) ≤ 0. If
x′(t; τ, v) ≤ 0 for t ≥ t2, then x(t; τ, v) ≤ x(t2; τ, v) ≤ δ for t ≥ t2, and (3.18) implies
that x′(t; τ, v) < −δ for t ≥ t2. Thus

x(t; τ, v) = x(t2; τ, v) +

∫ t

t2

x′(s; τ, v)ds ≤ −δ(t− t2) + δ < 0

for t > t2 + 1 which contradicts (3.17). Hence, we can define t3 = inf{t : t ≥
t2, x′(t; τ, v) > 0}. Clearly, x′(t3; τ, v) = 0 and

x(t3; τ, v) = x(t2; τ, v) +

∫ t3

t2

x′(s; τ, v)ds ≤ x(t2; τ, v) ≤ δ

which contradicts (3.18). Therefore, we have proved the following result.
Lemma 3.7. There exists δ > 0 independent of (τ, v) such that if S is not defined

for some (τ, v) ∈ R × R
+, then x(t; τ, v) ≥ δ for t � 1.

Now we assume that Hill’s equation is oscillatory, that is, all nonzero solution
of Hill’s equation have infinitely many zeros. It is a known fact (see [26]) that these
zeros correspond to a sequence tending to +∞.

Lemma 3.8. Let us assume that Hill’s equation (1.5) is oscillatory. Then there
exist β0 > 0 and ε0 > 0 such that any solution x(t; τ, v) of (1.1) such that x(τ1; τ, v) =
α, x′(τ1; τ, v) = β with β ≥ β0 and 0 ≤ α ≤ ε0β will have a next zero τ̂ > τ1.

Proof. Let yβ(t) := 1
βx(t; τ, v). Then, yβ(t) is a solution of the equation

x′′ + a(t)x =
1

β
p(t)

for t > τ1 and yβ(s) > 0 for s ∈ (τ1, t) with initial conditions

yβ(τ1) =
α

β
, y′β(τ1) = 1.

If y0(t) is the solution of the Hill’s equation x′′ + a(t)x = 0 with initial conditions
y0(τ1) = 0, y′0(τ1) = 1, by continuous dependence of the solutions with respect to
initial value and parameters we have that

lim
β→+∞

yβ(t) = y0(t) and lim
β→+∞

y′β(t) = y′0(t)(3.20)

uniformly on compact interval. Let τ̂0(τ1) be the next zero of y0(t) after τ1 (that is,
y0(τ̂0) = 0 and y0(t) > 0 for all τ1 < t < τ̂0). Then, τ̂0(τ1) is a simple zero with
y′0(τ̂0) < 0 independent of β. Thus (3.20) implies that for β large enough and α

β small

enough there exists τ̂(τ1) such that yβ(τ̂) = 0. The lemma is thus proved.
A direct consequence of the above lemma is that the successor map S for the

impact oscillator (1.1) is well defined for v � 1. As shown in [26], the condition
ā > 0 implies that Hill’s equation (1.5) is oscillatory. This condition is also enough to
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assure that our successor map is well defined. Actually, if S is not defined for some
(τ, v) with v > 0, then by using Lemmas 3.7 and 3.8, the solution x(t; τ, v) will satisfy

x(t; τ, v) ≥ δ and |x
′(t;τ,v)
x(t;τ,v) | < max{β0

δ , 1
ε0
} for t large enough. Now, by integrating

(1.1) in [2lπ, 2kπ] for l, k ∈ N we have

∫ 2kπ

2lπ

(
x′′

x

)
dt + 2π(k − l)ā ≤ 0,

but this implies that

2π(k − l)ā +

∫ 2kπ

2lπ

(x′)2

x2
dt− 2 max

{
β0

δ
,

1

ε0

}
≤ 0.

It is clear that this is not possible if k is large enough. Therefore the successor map
S is well defined for all (τ, v) with v > 0, provided that p(t) ≤ 0 for all t, p̄ < 0 and
ā > 0.

4. Asymptotically linear impact oscillators. Finally, we discuss the case
of the asymptotically linear impact oscillator (1.8). Throughout this section, it is
understood that the assumptions of Theorem 1.8 hold. Such assumptions imply that
there exist M,P > 0 such that |a(t)x + g(t, x) − p(t)| ≤ Mx + P for x ≥ 0 and
for all t. Moreover, the successor map S of the problem (1.8) is well defined for all
(τ, v) ∈ R × R

+ and p(t) ≤ 0 for all t, p̄ < 0. Then, by using similar arguments as in
Lemmas 3.2 and 3.3, it is easy to prove that the conclusions of Lemma 3.4 are still
valid for the successor map of problem (1.8). Roughly speaking, Lemma 3.4 means
that the rotation of some iteration of the successor map is slow for small velocities.
On the other hand, it is necessary to control the behavior of the successor map for
large velocities (that is, an analogous to Lemma 3.6). To this purpose, some lemmas
are needed. For the moment, let us assume that ‖a‖∞ > 0.

Lemma 4.1. The solution x(t; τ, v) of problem (1.8) with initial conditions
x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0 satisfies

(
r(τ1) +

P

M + 1

)
exp(−(M + 1)(τ2 − τ1))≤ r(τ2) +

P

M + 1

≤
(
r(τ1) +

P

M + 1

)
exp((M + 1)(τ2 − τ1))(4.1)

for τ2 − τ1 ≥ 0, where r(t) = ((x(t; τ, v))2 + (x′(t; τ, v))2)1/2.
Proof. This inequality is proved by using the Gronwall lemma as in (3.14).
Let n,m ∈ N be such that n > 2m(

√
‖a‖∞). Then, there exists σ > 0, such that

n > 2m(
√

‖a‖∞ + 2σ). Let us fix the positive numbers T = nπ√
‖a‖∞

and

δ =
1

2

∣∣∣∣∣
π√

‖a‖∞ + 2σ
− π√

‖a‖∞ + σ

∣∣∣∣∣ .

Note that σ (and in consequence δ) can be chosen arbitrarily small. By using the
assumption (1.7), it is possible to take d > 0 (depending on σ) such that

max
0≤t≤2π

|a(t)x + g(t, x) − p(t)| ≤ (‖a‖∞ + σ)x for x ≥ d.
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The following estimation is obtained by using the previous lemma.
Lemma 4.2. Let x(t; τ, v) be the solution of (1.8) with initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Then for d, δ, and T > 0 as given before, there exists vδ > 0 such that if v ≥ vδ, then
there exists τ+

d > τ such that x(τ+
d ; τ, v) = d and x(t; τ, v) < d for t ∈ (τ, τ+

d ), and
moreover |τ+

d − τ | < δ. Besides, if there exists τ−d > τ+
d such that x(τ−d ; τ, v) = d,

x′(τ−d ; τ, v) < 0, and |τ−d − τ | < T , then there exists τ̂ > τ+
d such that x(τ̂ ; τ, v) = 0

and |τ̂ − τ−d | < δ. Moreover, if δ is small enough, then

v+
d

2
≤ v ≤ 2v+

d .(4.2)

Proof. Firstly, the global existence of x(t; τ, v) right to τ is assured from the
assumptions. Suppose there is no time t ∈ (τ, τ + 1) such that x(t; τ, v) = d, that is,
0 < x(t; τ, v) < d for t ∈ (τ, τ + 1). Then

x′(t; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)) − d− P

M + 1
,

so an integration gives

x(τ + 1; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)) − d− P

M + 1
> d

if v is large enough. Thus we have proved the existence of τ+
d . Moreover,

v+
d = x′(τ+

d ; τ, v) >

(
v +

P

M + 1

)
exp(−(M + 1)(τ+

d − τ)) − d− P

M + 1
.

Hence

d =

∫ τ+
d

τ

x′(s; τ, v)ds

≥
[(

v +
P

M + 1

)
exp(−(M + 1)(τ+

d − τ)) − d− P

M + 1

]
(τ+

d − τ)

and in consequence for a given δ we get |τ+
d − τ | < δ by taking v large enough. The

discussion for τ̂ is similar. Finally, if δ is small enough, then
(
v+
d +

P

M + 1

)
exp(−(M + 1)δ) − P

M + 1
≥ v+

d

2

and (
v+
d + d +

P

M + 1

)
exp(−(M + 1)δ) − P

M + 1
≤ 2v+

d .

Now, the estimation (4.2) follows easily from (4.1).
Define now

h(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

a(t)x + g(t, x) − p(t)

x
, x ≥ d;

a(t)d + g(t, d) − p(t)

d
, x < d.
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Then h(t, x) is continuous and 2π-periodic with respect to t and verifies |h(t, x)| ≤
‖a‖∞ + σ for x ≥ 0 and for all t. Let x(t; τ, v) be the solution of the equation
x′′+h(t, x)x = 0 satisfying initial conditions x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0. On the
other hand, let y0(t; τ, v) be the solution of the equation x′′+(‖a‖∞+σ)x = 0 satisfying
the same initial conditions as x(t; τ, v). By using Sturm comparison theorem,

τ̂(h) − τ ≥ π√
‖a‖∞ + σ

,

where τ̂(h) is the next zero of x(t; τ, v) right to τ . Moreover, we have the following
lemma.

Lemma 4.3. Let x(t; τ, v) be the solution of the equation x′′ + h(t, x)x = 0
satisfying the initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Then, there is vδ > 0 such that if v ≥ vδ, then there exist τ+
d , τ−d such that

x(τ+
d ; τ, v) = d, x′(τ+

d ; τ, v) = v+
d > 0, x(t; τ, v) < d for t ∈ (τ, τ+

d ) and x(τ−d ; τ, v)= d,
x′(τ−d ; τ, v) = v−d < 0, x(t; τ, v) > 0 for t ∈ (τ, τ−d ), respectively. Moreover,

τ−d − τ+
d >

π√
‖a‖∞ + 2σ

.

Proof. Recall that |h(t, x)x| ≤ (‖a‖∞ + σ)x for x ≥ 0 and for all t, so the
conclusion of Lemmas 4.1 and 4.2 are valid for x(t; τ, v) if v > 0 is sufficiently large,
thus we have τ+

d − τ < δ. Note that h(t, x)x = a(t)x+ g(t, x)− p(t) for x ≥ d and for
all t. This implies, under the assumption of Theorem 1.8, that there exists τ−d > τ+

d

such that x(τ−d ; τ, v) = d, x′(τ−d ; τ, v) = v−d < 0, and x(t; τ, v) > 0 for t ∈ (τ, τ−d ). By
contradiction, if

τ−d − τ+
d ≤ π√

‖a‖∞ + 2σ
,

then τ−d − τ < τ−d − τ+
d + δ < T , and Lemma 4.2 implies that the zero τ̂(h) right to τ

exists and τ̂(h) − τ−d < δ. Hence,

τ−d − τ+
d > τ̂(h) − τ − 2δ ≥ π√

‖a‖∞ + σ
− 2δ =

π√
‖a‖∞ + 2σ

.

This contradiction completes the proof of Lemma 4.3.
Finally, let us consider x(t; τ, v) the solution of (1.8) with initial conditions

x(τ ; τ, v) = 0, x′(τ ; τ, v) = v > 0.

Let τ̂ be the first zero right to τ . If v is large enough, then there exist τ−d , τ+
d ∈

(τ, τ̂) such that x(τ±d ; τ, v) = d, v+
d = x′(τ+

d ; τ, v) > 0, v−d = x′(τ−d ; τ, v) < 0, and
x(t; τ, v) < d for t ∈ (τ, τ+

d ) ∪ (τ−d , τ̂). Moreover, |τ+
d − τ | < δ and v+

d is arbitrarily
large by using the estimation (4.2). On the other hand, let xh(t) be the solution of
the equation x′′ + h(t, x)x = 0 satisfying xh(τ+

d ) = d, x′
h(τ+

d ) = v+
d > 0. If τh is

such that xh(τh) = 0, xh(t) > 0 for t ∈ (th, τ
+
d ), then the estimation (4.2) implies

that the initial velocity vh = x′
h(τh) is arbitrarily large. Taking into account that

h(t, x)x = a(t)x + g(t, x) − p(t) for x ≥ d and for all t, Lemma 4.2 implies that the
time in which the solution x(t; τ, v) of the equation x′′ + a(t)x + g(t, x) = p(t) moves
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from (dσ, v
+
d ) to (dσ, v

−
d ) is larger than π√

‖a‖∞+2σ
. In consequence, if v large enough

(more explicitly, v ≥ vδ), then we have

τ̂ − τ ≥ π√
‖a‖∞ + 2σ

.(4.3)

Looking for the estimation of Π1(Sn(τ, v)) − τ , note that by using the argument
leading to (3.15), it results that for a given vδ > 0 there is v+

n,m(δ) > 0 such that

if v > v+
n,m(δ) and Π1(Sn(τ, v)) − τ ≤ 2mπ, then Π2(Si(τ, v)) > vδ(4.4)

for i = 0, 1, . . . , n− 1. Hence, following the arguments of section 3, we can prove that
the conclusions of Lemma 3.6 are true for the successor map of the problem (1.8) under
the assumptions of Theorem 1.8. Note that if a(t) ≡ 0, then T is not well defined, but
it is easy to prove, by using similar arguments as before, that Π1(S(τ, v))− τ ≥ 2mπ
for v sufficiently large. Now, Theorem 1.8 can be proved by mimicking the arguments
of sections 2 and 3 with minor modifications.

The property that the successor map S is well defined is not easy to check. For
example, consider the equation x′′ − x = −1. It has a singular point (1, 0) in x − x′

phase plane and the solution x(t; τ, 1) starting from x(τ ; τ, 1) = 0, x′(τ ; τ, 1) = 1 will
tend to (1, 0) in x − x′ phase plane as t → +∞. Thus we can construct an equation
by modifying the above equation such that the new equation is asymptotically linear
and the successor map S of this equation is well defined for v sufficiently small and
sufficiently large but S is not well defined for v = 1. In spite of that, in the following
we show that a(t)x + g(t, x) ≥ 0 is a sufficient condition to have S well defined.
Actually, let us note that

x′(t; τ, v) = v −
∫ t

τ

(a(s)x + g(s, x))ds +

∫ t

τ

p(s)ds

≤ v +

∫ t

τ

p(s)ds → −∞ as t → +∞.

Thus, for any fixed v > 0, there exists a τ̂ > τ such that x(τ̂ ; τ, v) = 0 which implies
that S is well defined for (τ, v). Hence Corollary 1.9 is proved.

Acknowledgments. The authors thank Prof. R. Ortega for his help in under-
standing the bouncing problem. Finally, they thank the referees for their help and
valuable suggestions.

REFERENCES

[1] V.M. Alekseev, Quasirandom dynamical systems. II. One-dimensional nonlinear oscillations
in a field with periodic perturbation, Sb. Math., 6 (1968), pp. 506–560.

[2] T.W. Arnold and W. Case, Nonlinear effects in a simple mechanical system, Amer. J. Phys.,
50 (1982), pp. 220–224.

[3] V.I. Babitsky, Theory of Vibro-Impact Systems, Springer-Verlag, Berlin, 1998.
[4] C.N. Bapat, Periodic motions of an impact oscillator, J. Sound Vibration, 209 (1998), pp. 43–

60.
[5] C.N. Bapat, S. Sankar, and N. Popplewell, Repeated impacts on a sinusoidally vibrating

table reappraised, J. Sound Vibration, 108 (1986), pp. 99–115.
[6] D. Bonheure and C. Fabry, Periodic motions in impact oscillators with perfectly elastic

bouncing, Nonlinearity, 15 (2002), pp. 1281–1298.
[7] P. Boyland, Dual billiards, twist maps and impact oscillators, Nonlinearity, 9 (1996), pp. 1411–

1438.



LINEAR IMPACT OSCILLATOR 1725

[8] L. Brindeu, Stability of the periodic motions of the vibro-impact systems, Chaos Solitons
Fractals, 11 (2000), pp. 2493–2503.

[9] M. Corbera and J. Llibre, Periodic orbits of a collinear restricted three body problem, Ce-
lestial Mech. Dynam. Astronom., 86 (2003), pp. 163–183.

[10] K. Czolczynski and T. Kapitaniak, Influence of the mass and stiffness ratio on a periodic
motion of two impacting oscillators, Chaos Solitons Fractals, 17 (2003), pp. 1–10.

[11] W. Ding, A generalization of the Poincaré-Birkhoff theorem, Proc. Amer. Math. Soc., 88
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