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Abstract

It is proved that the Neumann boundary value problem, which Mays and Norbury have
recently connected with a certain fluid dynamics equation, has a positive solution for any
positive value of a particular parameter. Uniform bounds for the solutions and symmetry
on a given range of the parameter are also introduced. The proofs include Krasnoselskii's
classical fixed-point theorem on cones of a Banach space and basic comparison techniques.

1. Introduction

In a recent paper by Mays and NorbuB},[the Neumann boundary value problem
Lu = —u" 4 g°u = u?(1 + sinx),
v =0=uU(m),

was studied using analytical and numerical methods. This problem was considerec
as a simplified version of a fluid dynamics equation introduced by Benjdthiithe
results in B] are mostly of a numerical nature and show the existence of a solution if
g? € (0, 10). Itis important to obtain analytical results which could confirm and/or
complement the numerical understanding of this probl&m [This is the aim of

this note. In Sectior? the existence of a solution for any value of the parameter

g > Ois rigorously proved. The proof relies on a fixed-point theorem for completely
continuous Krasnoselskii operators and the positivity of the Green'’s function of the
linear part of the problem, as has already been observe]. il Section3 uniform
bounds for the solutions are deduced as well as symmetry for a certain range of value:
of g, by using basic comparison arguments. All these results confirm the numerical
evidence from 3], although the range where symmetry appears is more conservative
and uniqueness remains an open problem.

(1.1)
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2. Existence of solutions

The main result is the following.

THEOREM 2.1. Problem(1.1) has a positive solution for any positige

The proof is based on the following fixed-point theorem for cones in a Banach
space 2, p. 148] and some arguments recently developed]in |

THEOREM 2.2. Let.Z be a Banach space and |68 ¢ % be a cone in. Assume
Q1, 2, are open subsets & with 0 € ;, Q; C Q, and letA: 2 N (Q,/Qy) — P
be a completely continuous operator such that one of the following conditions is
satisfied

(1) IAull < flul,ue Z NoQ and|Aull > |lull, u e & NIy;
(2) AUl = full,ue Z NoQand||Aull < |lull,u e £ NIQy.

ThenA has at least one fixed point i#? N (Q,/ Q).

As was observed in3], the Green'’s functiok(x, y) of the operatot. with Neu-
mann conditions is a positive and continuous function[0nz] x [0, 7]. Thus
problem (L.1) can be written as the fixed-point problem

u(x) = /ﬂ K(X, Y)U?(y)(1 + siny) dy = Au. (2.1)
0

ProOF OFTHEOREM 2.1 We follow along the lines of4, Section 3]. If we denote
m = mink(x,y), M =maxk(x,y), X,ye][0,x],

then evidentlyM > m > 0. In order to apply Theoreth2, let us consider the Banach
spaceZ = C([0, 7]) with theL*>°-norm|| - ||, and define the following cone i#:

. m
Py = {u S ngol’g]U(X) > MIIUIIOQ} .
Let us prove thal 2, C Z,. For a giveru € %, we have
min AU > / ME(y)(1 + siny) dy
xelU,m 0

= m/ﬂ KX, YUA(Y) (L + siny) dy = — Au(x)
= ke v :

for all x € [0, ], so in particular mig. ,; Au(x) > (m/M)| Aulw.
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Now let us define the open balls

. 1 _ M?2
Q= ue£.||u||m<m and Q, = ue£.||u||m<m .

Clearly, 0e ©,. On the other hand, observe that the radiuofs less than that of
Q,, S0Q; C .
Now, if u e Z,N 3Ry,

2
[Aullee < 27 MIUlIS, = (Ul

whereas ifu € 22, N 92y,
e ] e m3
IAU > m/ W(y)(L + siny) dy > m/ () dy = Ul = ull.
0 0

Therefore 2.1), and in consequence problefin), has a solutiom € 225N (Q,/ Q).

3. Uniform bounds and symmetry of the solutions

Note that from the proof of Theorethl the following bounds of the solution are
deduced:

2

2amz = U0 =

However, these bounds are valid only for this particular solution; in principle there
may exist other solutions outside these limits. Our following goal is to get uniform
bounds for every solution of probler.().

THEOREM 3.1. There exist constants, C (only depending om) such that any
solution of problen{1.1) verifies

e <ux)<C, xel0m]

PROOF. First, itis important to consider that, as was observe@Jirgvery solution
of (1.1) is positive. An integration of the equation gives

Q?llully = / u*(1+ sinx) dx > [|ull3,
0
and by the Cauchy-Schwartz inequality||, < g°./7. Moreover,
u'(x) = / u’(s)ds = / (9Pu(s) — u*(s)(1 +sins)) ds < g|lully < g,
0 0

—u(x) = /ﬂ u’(s)ds = /ﬂ (9Pu(s) — u*(s)(1 +sins)) ds < g|lull; < g,
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so in consequendpl' || < q*r.

On the other hand, any non-constant solutionlof)(must have an inflexion point,
that is, there existgq € 10, [ such thau”(x,) = 0. From this equation, it is easy to
deduce that

0?/2 < u(X) < g

We can now deduce the upper bouddas follows:
u(X) = u(%o) +/ u'(s)ds < g* + n%q* =: C. (3.1)

We still need to obtain the lower bourd It will be done by comparison af with
solutiont of the autonomous initial value problem

_G// + qZG — 02’
G0 =€, (@O =0.

By continuous dependence of the solution on the initial conditions it is easy to realise

that if € is small enoughii is positive, increasing, convex afid< g*/4,x € [0, ].
Evidentlye depends og. By contradiction, let us assume thik,,,)= minu(x) <e.

Without loss of generality, it can be assumed thak = (if x,, = 7, we can continue

the argument withw(x) = u(r — x), which is also a solution ofL(1)). Let us define

Z(X) = u(x) — G(x). Note that

U(Xm) < € <U(Xn), U (Xy) =0 <0 (Xn),

S0z(Xn) < 0, Z(Xyn) < 0. Evidently,z cannot be identically zero. We are going to
prove thatz(x) < 0 for all x > x,. [f this is not true, there exists; > X, such
thatz(x;) < 0, Z(xy) = 0 andz’(x;) > 0 (z(x,) would be a local minimum o).
Subtracting the equations,

—Z' (1) = Z(X) (U(X) + TU(X1) — %) + Sin(x)Uu*(X,) > O,

becausei(x;) < (X)) < g?/4. This is a contradiction and hence it is proved that
zZ(x) < Oforall x > Xp.

As a consequencei(x) < g?/4 for all x > X,. Now, in order to finish the
reasoning we only have to point out that there must be an inflexion p@ig)
with x,, < X, < 7, and as was observed befotg/2 < u(x,) < g2 leading to a
contradiction. The consequence is thét,,) > ¢, and the proof is finished.

Note that constart is explicitly defined in 8.1). This information can be used to
prove the symmetry of the solutions (thatigx) = u(x — X)) on a certain range of
values ofg.
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THEOREM 3.2. Let us suppose thatis a positive constant such that
39%+4r%q* < L. (3.2)
Then any solution of probleiii.1) is symmetric.

PrROOF. Letu; be a solution, then it is easy to verify that = u;(r — X) is also
a solution. Our purpose is to prove that= u, under condition$.2). Let us define
Z=Uu; — Uy. Thenzis a solution of the problem

Z’+a(X)z=0,
z/(o;r=(o)= Z(m), (33)
wherea(x) = (1 + sinx)(u; + U,) — g%. Observe that by Theorefl,
u(x) <C=0’+n%q*, xel0n],i=12
Therefore, using conditiorB(2),
a(x) <1, xel0r] (3.4)

Let us prove that is identically zero. Let us suppose theis not the trivial solution
of (3.3). Let us change to polar coordinatess r cosf, Z = —r sing. By deriving
zandZ we get respectively

r’'cosf —r sin(@)d = —r sind,
—r’sin® —r co960)f = —a(X)r cosy.

Multiplying the first equation by sif, the second one by césand adding, we obtain
the equation

0" = a(X) cog 6 + Sirfo. (3.5)

Now, an integration in the interv@0, x] and @.4) give
6(x) — 6(0) =/ (a(s)cog 6 + sinfh) ds < / (co$6 +sird)ds=x, (3.6)
0 0

forall x € (0, 7].

On the other hand, note thatx) = —z(x — x), and therefore(r/2) = 0. By the
Sturm comparison theorem (compare witht- z = 0), this is the unique zero dfin
the interval[0, w]. Besidesz(0)z(7) < 0 because is not the trivial solution. We
can assume without loss of generality tkéd) > O (if z(0) < 0 we work with—2z).
Thend(0) = 0 sincez(0) = 0. Moreoverz(x/2) = 0 andZ(w/2) < 0 (remember
thatzis not the trivial solution and(rr/2) is the unique zero), s&(r/2) = /2. But
by (3.6), /2 = 6(x/2) — 6(0) < /2. This is a contradiction. The conclusion is
thatz = 0 and therefore the proof is finished.
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A numerical computation of conditiorB(2) providesqg € 10, 0.354444. As a
final remark, the uniqueness of a positive solution on a given range of values of the

parameteq is strongly suggested by numerical calculations. The analytical proof
remains an open problem.
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