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Abstract

It is proved that the Neumann boundary value problem, which Mays and Norbury have
recently connected with a certain fluid dynamics equation, has a positive solution for any
positive value of a particular parameter. Uniform bounds for the solutions and symmetry
on a given range of the parameter are also introduced. The proofs include Krasnoselskii’s
classical fixed-point theorem on cones of a Banach space and basic comparison techniques.

1. Introduction

In a recent paper by Mays and Norbury [3], the Neumann boundary value problem

Lu ≡ −u′′ + q2u = u2.1 + sinx/;

u′.0/ = 0 = u′.³/;
(1.1)

was studied using analytical and numerical methods. This problem was considered
as a simplified version of a fluid dynamics equation introduced by Benjamin [1]. The
results in [3] are mostly of a numerical nature and show the existence of a solution if
q2 ∈ .0;10/. It is important to obtain analytical results which could confirm and/or
complement the numerical understanding of this problem [3]. This is the aim of
this note. In Section2 the existence of a solution for any value of the parameter
q > 0 is rigorously proved. The proof relies on a fixed-point theorem for completely
continuous Krasnoselskii operators and the positivity of the Green’s function of the
linear part of the problem, as has already been observed in [3]. In Section3 uniform
bounds for the solutions are deduced as well as symmetry for a certain range of values
of q, by using basic comparison arguments. All these results confirm the numerical
evidence from [3], although the range where symmetry appears is more conservative
and uniqueness remains an open problem.
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2. Existence of solutions

The main result is the following.

THEOREM 2.1. Problem(1.1) has a positive solution for any positiveq.

The proof is based on the following fixed-point theorem for cones in a Banach
space [2, p. 148] and some arguments recently developed in [4].

THEOREM 2.2. LetB be a Banach space and letP ⊂ B be a cone inB. Assume
�1,�2 are open subsets ofB with 0 ∈ �1, S�1 ⊂ �2 and letA :P ∩ .�2=S�1/ → P
be a completely continuous operator such that one of the following conditions is
satisfied:

(1) ‖Au‖ ≤ ‖u‖, u ∈P ∩ @�1 and‖Au‖ ≥ ‖u‖, u ∈P ∩ @�2;
(2) ‖Au‖ ≥ ‖u‖, u ∈P ∩ @�1 and‖Au‖ ≤ ‖u‖, u ∈P ∩ @�2.

ThenA has at least one fixed point inP ∩ .S�2=�1/.

As was observed in [3], the Green’s functionk.x; y/ of the operatorL with Neu-
mann conditions is a positive and continuous function on[0; ³] × [0; ³]. Thus
problem (1.1) can be written as the fixed-point problem

u.x/ =
∫ ³

0

k.x; y/u2.y/.1 + siny/dy ≡ Au: (2.1)

PROOF OFTHEOREM 2.1. We follow along the lines of [4, Section 3]. If we denote

m = mink.x; y/; M = maxk.x; y/; x; y ∈ [0; ³];

then evidentlyM > m> 0. In order to apply Theorem2.2, let us consider the Banach
spaceB = C.[0; ³]/ with theL∞-norm‖ · ‖∞, and define the following cone inB:

P0 =
{

u ∈ B : min
x∈[0;³ ]

u.x/ ≥ m

M
‖u‖∞

}
:

Let us prove thatAP0 ⊂P0. For a givenu ∈P0, we have

min
x∈[0;³ ]

Au.x/ ≥
∫ ³

0

mu2.y/.1 + sin y/dy

≥ m

M

∫ ³

0

k.x; y/u2.y/.1 + sin y/dy = m

M
Au.x/;

for all x ∈ [0; ³], so in particular minx∈[0;³ ] Au.x/ ≥ .m=M/‖Au‖∞.
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Now let us define the open balls

�1 =
{

u ∈ B : ‖u‖∞ <
1

2³M

}
and �2 =

{
u ∈ B : ‖u‖∞ <

M2

³m3

}
:

Clearly, 0∈ �1. On the other hand, observe that the radius of�1 is less than that of
�2, soS�1 ⊂ �2.

Now, if u ∈P0 ∩ @�1,

‖Au‖∞ ≤ 2³M‖u‖2
∞ = ‖u‖∞;

whereas ifu ∈P0 ∩ @�2,

‖Au‖∞ ≥ m
∫ ³

0

u2.y/.1 + siny/dy ≥ m
∫ ³

0

u2.y/dy ≥ m3

M2
³‖u‖2

∞ = ‖u‖∞:

Therefore (2.1), and in consequence problem (1.1), has a solutionu ∈P0 ∩ .S�2=�1/.

3. Uniform bounds and symmetry of the solutions

Note that from the proof of Theorem2.1 the following bounds of the solution are
deduced:

m

2³M2
≤ u.x/ ≤ M2

³m3
:

However, these bounds are valid only for this particular solution; in principle there
may exist other solutions outside these limits. Our following goal is to get uniform
bounds for every solution of problem (1.1).

THEOREM 3.1. There exist constantsž, C (only depending onq) such that any
solution of problem(1.1) verifies

ž ≤ u.x/ ≤ C; x ∈ [0; ³]:
PROOF. First, it is important to consider that, as was observed in [3], every solution

of (1.1) is positive. An integration of the equation gives

q2‖u‖1 =
∫ ³

0

u2.1 + sinx/dx ≥ ‖u‖2
2;

and by the Cauchy-Schwartz inequality,‖u‖2 ≤ q2√³ . Moreover,

u′.x/ =
∫ x

0

u′′.s/ds =
∫ x

0

(
q2u.s/ − u2.s/.1 + sins/

)
ds< q2‖u‖1 ≤ q4³;

−u′.x/ =
∫ ³

x

u′′.s/ds =
∫ ³

x

(
q2u.s/ − u2.s/.1 + sins/

)
ds< q2‖u‖1 ≤ q4³;
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so in consequence‖u′‖∞ < q4³ .
On the other hand, any non-constant solution of (1.1) must have an inflexion point,

that is, there existsx0 ∈ ]0; ³[ such thatu′′.x0/ = 0. From this equation, it is easy to
deduce that

q2=2< u.x0/ < q2:

We can now deduce the upper boundC as follows:

u.x/ = u.x0/+
∫ x

x0

u′.s/ds< q2 + ³2q4 =: C: (3.1)

We still need to obtain the lower boundž. It will be done by comparison ofu with
solutionũ of the autonomous initial value problem

−ũ′′ + q2ũ = ũ2;

ũ.0/ = ž; ũ′.0/ = 0:

By continuous dependence of the solution on the initial conditions it is easy to realise
that if ž is small enough,̃u is positive, increasing, convex andũ < q4=4, x ∈ [0; ³].

Evidentlyž depends onq. By contradiction, let us assume thatu.xm/= minu.x/<ž.
Without loss of generality, it can be assumed thatxm < ³ (if xm = ³ , we can continue
the argument withw.x/ = u.³ − x/, which is also a solution of (1.1)). Let us define
z.x/ = u.x/− ũ.x/. Note that

u.xm/ < ž ≤ ũ.xm/; u′.xm/ = 0 ≤ ũ′.xm/;

so z.xm/ < 0, z′.xm/ ≤ 0. Evidently,z cannot be identically zero. We are going to
prove thatz.x/ < 0 for all x > xm. If this is not true, there existsx1 > xm such
that z.x1/ < 0, z′.x1/ = 0 andz′′.x1/ ≥ 0 (z.x1/ would be a local minimum ofz).
Subtracting the equations,

−z′′.x1/ = z.x1/.u.x1/+ ũ.x1/ − q2/+ sin.x1/u
2.x1/ > 0;

becauseu.x1/ ≤ ũ.x1/ < q2=4. This is a contradiction and hence it is proved that
z.x/ < 0 for all x > xm.

As a consequence,u.x/ < q2=4 for all x > xm. Now, in order to finish the
reasoning we only have to point out that there must be an inflexion pointu.x0/

with xm < x0 < ³ , and as was observed before,q2=2 < u.x0/ < q2, leading to a
contradiction. The consequence is thatu.xm/ ≥ ž, and the proof is finished.

Note that constantC is explicitly defined in (3.1). This information can be used to
prove the symmetry of the solutions (that is,u.x/ = u.³ − x/) on a certain range of
values ofq.
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THEOREM 3.2. Let us suppose thatq is a positive constant such that

3q2 + 4³2q4 ≤ 1: (3.2)

Then any solution of problem(1.1) is symmetric.

PROOF. Let u1 be a solution, then it is easy to verify thatu2 = u1.³ − x/ is also
a solution. Our purpose is to prove thatu1 ≡ u2 under condition (3.2). Let us define
z = u1 − u2. Thenz is a solution of the problem

z′′ + Þ.x/z = 0;

z′.0/ = 0 = z′.³/;
(3.3)

whereÞ.x/ = .1 + sinx/.u1 + u2/− q2. Observe that by Theorem3.1,

ui .x/ < C = q2 + ³2q4; x ∈ [0; ³]; i = 1;2:

Therefore, using condition (3.2),

Þ.x/ < 1; x ∈ [0; ³]: (3.4)

Let us prove thatz is identically zero. Let us suppose thatz is not the trivial solution
of (3.3). Let us change to polar coordinates,z = r cos� , z′ = −r sin� . By deriving
z andz′ we get respectively

r ′ cos� − r sin.�/�′ = −r sin�;

−r ′ sin� − r cos.�/�′ = −Þ.x/r cos�:

Multiplying the first equation by sin� , the second one by cos� and adding, we obtain
the equation

� ′ = Þ.x/ cos2 � + sin2 �: (3.5)

Now, an integration in the interval[0; x] and (3.4) give

�.x/ − �.0/ =
∫ x

0

.Þ.s/ cos2 � + sin2 �/ds<
∫ x

0

.cos2 � + sin2 �/ds = x; (3.6)

for all x ∈ .0; ³].
On the other hand, note thatz.x/ = −z.³ − x/, and thereforez.³=2/ = 0. By the

Sturm comparison theorem (compare withz′′ + z = 0), this is the unique zero ofz in
the interval[0; ³]. Besides,z.0/z.³/ < 0 becausez is not the trivial solution. We
can assume without loss of generality thatz.0/ > 0 (if z.0/ < 0 we work with−z).
Then�.0/ = 0 sincez′.0/ = 0. Moreover,z.³=2/ = 0 andz′.³=2/ < 0 (remember
thatz is not the trivial solution andz.³=2/ is the unique zero), so�.³=2/ = ³=2. But
by (3.6), ³=2 = �.³=2/ − �.0/ < ³=2. This is a contradiction. The conclusion is
thatz ≡ 0 and therefore the proof is finished.
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A numerical computation of condition (3.2) providesq ∈ ]0;0:354446]. As a
final remark, the uniqueness of a positive solution on a given range of values of the
parameterq is strongly suggested by numerical calculations. The analytical proof
remains an open problem.
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