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Abstract

A new stability criterion is proved for second-order differential equations with symmetries in
of the coefficients of the expansion of the nonlinearity up to the third order. Such a criterion pr
solutions of twist type, which are Lyapunov-stable solutions with interesting dynamical prop
This result is connected with the existence of upper and lower solutions of a Dirichlet proble
applied to a known equation which model the planar oscillations of a satellite in an elliptic
giving an explicit region of parameters for which there exists a Lyapunov-stable solution.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

In this paper we are going to study the existence and stability of solutions of the pe
boundary value problem

(mx ′)′ + f (t, x)= 0,

x(0)= x(T ), x ′(0)= x ′(T ), (1)

wheref ∈ C0,4(R/TZ × R,R), m ∈ C(R/TZ,R+) holds the symmetry conditions

f (−t, x)= −f (t, x), m(t)=m(−t) (2)
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for all t . This type of symmetries appears with some frequency in nature. For instanc
planar oscillations of a satellite in an elliptic orbit is modeled by the equation(

1+ e cos(t)
)
x ′′ − 2e sin(t)x ′ + λsinx = 4e sin(t),

wheree ∈ (0,1) is the eccentricity of the ellipse,λ > 0 is the inertial parameter of th
satellite,t is the true anomaly of the position of the satellite on the orbit, andx is the
doubled angle between the radius vector to the mass center and one of its axis of
Note that it can be written as((

1+ e cos(t)
)2
x ′)′ + λ(1+ e cos(t)

)
sinx = 4e

(
1+ e cos(t)

)
sint,

so it is of the form (1).
This equation was introduced by Beletskii in 1959 (see [3] and also [4] and refer

therein) and has been used, for instance, to describe the oscillations of Hyperio
a natural satellite of Saturn.

There exist a wide number of articles devoted to this study. Concerning existen
periodic solutions, some steps were performed by Kill [9], Torzhevskii [19], and S
pak [17], but a major advance was done by Petrhysyn and Yu [16] by using Galerkin
finite-dimensional approximations. Finally, the problem of existence was solved by H
without additional restrictions over the parameterse,λ. The proof is of variational nature
obtaining the solution as a minimum of the action functional on certain ball center
zero. In the second paper [8], the second solution is proved to exist by using the mo
pass theorem.

Concerning the stability of the solutions, the number of references is conside
fewer. Some numerical calculations [2,23] strongly suggest stability in some regio
parameters. In fact, some explicit criteria for linear stability were derived in [21].
main object of this paper is to rigorously prove Lyapunov stability in a given regio
parameters(λ, e). More concretely, the existence of a 2π -periodic solution of twist type
is proved. A periodic solutionϕ of a general second-order periodic solution is said
be 4-elementary if it is linearly stable with Floquet’s multipliers which are not root
the unity up to the fourth order. Then, the solutionϕ is called of twist type [13,14] if
it is 4-elementary and the first Birkhoff’s coefficient of the associated Poincaré m
different to zero. This fact has many important consequences from the dynamica
of view. Moser’s invariant curve theorem implies that a periodic solution of twist typ
always Lyapunov stable [10,18]. Moreover, Poincaré–Birkhoff’s fixed point theorem
KAM theory [1,18] imply the existence of subharmonics of arbitrary order, quasi-per
solutions, and a chaotic behavior in the surroundings of the twist solutions. This
accordance with the numerical results [2,23].

This paper can be seen as the natural continuation of [12], where a simpler eq
modeling of the motion of a satellite in a circular orbit is studied [22].

To conclude this section, we describe briefly the structure of the paper. In Sect
a general stability criterion based on the results in [11] is provided. In Section 3
criterion is applied to equations with symmetries and connected with upper and
solutions of the Dirichlet problem. Finally, Section 4 is devoted to a detailed study o
satellite equation. In particular, it is proved that the solution obtained in [7] is unstable
a region of parameters for which there exists a solution of twist type is explicitly desc
This region is drawn in Fig. 1.
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Fig. 1. Region of stability for the satellite equation.

2. Stability criterion

From now on, let us denotef+ = max{f,0}, f− = max{−f,0} the positive and
negative part of a given functionf . Letϕ(t) be a solution of problem (1). After a translatio
to the origin and a Taylor expansion, the equation can be written as(

m(t)x ′)′ + a(t)x + b(t)x2 + c(t)x3 +R(t, x)= 0, (3)

wherea, b, c areT -periodic andR denote the remaining terms. For the particular c
m(t)= 1, the main result of [11] provides a stability criterion that it is reformulated in
following for reader’s convenience.

Theorem 1 [11, Theorem 2.2].Assume that there exist positive numbers σ,γ such that

σ 2 � a(t)� γ 2 �
(
π

3T

)2

.

Then the equilibrium x ≡ 0 of (3) is of twist type if the following condition holds:

σ 6

T∫
0

c−(t) dt − σ 2γ 4

T∫
0

c+(t) dt > 2γ 5

T∫
0

b+(t) dt
T∫

0

b−(t) dt.

For a generalm ∈ C(R/TZ,R+), let us denote

µ= 1

T

T∫
0

ds

m(s)
.

Then, we can prove the following result.
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Theorem 2. Assume that there exist positive numbers σ,γ such that

σ 2 �m(t)a(t)� γ 2 �
(
π

3µT

)2

. (4)

Then, the equilibrium x ≡ 0 of (3) is of twist type if the following condition holds:

σ 6

T∫
0

c−(t) dt − σ 2γ 4

T∫
0

c+(t) dt > 2γ 5

T∫
0

b+(t) dt
T∫

0

b−(t) dt. (5)

Proof. After the change on the independent variable

t → τ (t)=
t∫

0

ds

µm(s)
,

Eq. (3) reads

y ′′ +µ2m
(
t (τ )

)
a
(
t (τ )

)
y +µ2m

(
t (τ )

)
b(t)y2 +µ2m

(
t (τ )

)
c(t)y3 +R(t, y)= 0,

wherey(τ)= x(t (τ )). Now, the result follows from the previous result and the identity

T∫
0

g
(
t (τ )

)
m
(
t (τ )

)
µ2dτ = µ

T∫
0

g(s) ds,

which holds for everyg ∈ C(R/TZ). ✷
Note that in this section it is not necessary to assume condition (2).

3. Odd periodic solutions and upper and lower solutions

From now on, let us assume that the symmetry condition (2) is satisfied.
In the rest of the paper, we shall often use the following diffeomorphism:

t → τ (t)=
t∫

0

ds

µm(s)
. (6)

From condition (2), it is easy to check thatτ (t)= τ (−t) for all t ∈ R andτ (T /2)= T/2,
τ (T ) = T . Besides, diffeomorphism (6) transforms Eq. (1) into a Newtonian equatio
the form

y ′′ + g(τ, y)= 0

with g verifying g(−τ,−y)= −g(τ, y).
We begin the section with the following proposition. Taking into account (2), the p

is immediate.
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Proposition 1. The odd extension of a solution of the Dirichlet problem

(mx ′)′ + f (t, x)= 0, x(0)= x(T /2)= 0 (7)

is an odd solution of problem (1).

A common device in order to solve a Dirichlet problem is the method of upper
lower solutions. This technique has the advantage that provide bounds on the so
which will be useful in order to apply the result of Section 2. The classical definitio
upper and lower solution for the Dirichlet problem (7) is the following

Definition 1. A functionα ∈ C2(]0,2π[)∩C([0,2π]) is a lower solution of (7) if

(mα′)′ + f (t, α)� 0, t ∈ ]0,2π[,
α(0)� 0, α(T /2)� 0.

A functionβ ∈C2(]0,2π[)∩C([0,2π]) is an upper solution of (7) if

(mβ ′)′ + f (t, β)� 0, t ∈ ]0,2π[,
β(0)� 0, β(T /2)� 0.

It is well known (see, for instance, [6]) that a coupleα < β provides a solution of (7
between them. Hence, we have the following consequence.

Proposition 2. If α,β is a couple of lower and upper solutions of (7) such that α(t)� β(t)
for all t ∈ [0, T /2], problem (1) has an odd solution ϕ such that

α(t)� ϕ(t)� β(t) (8)

for all t ∈ [0, T /2].

Proof. Performing the change (6), equation(mx ′)′ + f (t, x)= 0 is transformed into the
Newtonian equation

y ′′ +µ2m
(
t (τ )

)
f
(
t (τ ), y

)= 0,

wherey(τ)= x(t (τ )). Evidently,α,β are also upper and lower solutions of the Dirich
problem or this equation, and we can apply the classical result (see, for instance, [6
rem 1.4]). ✷

Following the notation of [11], we define the so-called auxiliary functions

A∗ = maxt∈[0,T /2]m(t)U
(
∂xf (t, ·)

)
, A∗ = mint∈[0,T /2]m(t)L

(
∂xf (t, ·)

)
,

B+(t)=U
(

1

2

[
∂2
xf (t, ·)

]+)
, B−(t)=U

(
1

2

[
∂2
x f (t, ·)

]−)
,

C+(t)=U
(

1

6

[
∂3
xf (t, ·)

]+)
, C−(t)= L

(
1

6

[
∂3
x f (t, ·)

]−)
,

where the operatorsL,U :C([0, T /2] × R)→C([0, T /2]) are defined by
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L(f )(t)= inf
{
f (t, ξ): α(t)� ξ � β(t)

}
,

U(f )(t)= sup
{
f (t, ξ): α(t)� ξ � β(t)

}
.

Now, we can state and prove the main result of this section.

Theorem 3. Let α,β be a couple of lower and upper solutions of (7) such that α(t)� β(t)
for all t ∈ [0, T /2]. In addition, let us suppose that

(i) 0<A∗ �A∗ �
(
π

3µT

)2

,

(ii) A3∗

T/2∫
0

C−(t) dt −A∗(A∗)2
T/2∫
0

C+(t) dt > 4(A∗)5/2
( T/2∫

0

B+(t) dt
)2

.

Then, problem (1) has an odd solution ϕ verifying (8) which is of twist type.

Proof. The existence ofϕ is given by Proposition 2. A computation of the coefficients
the expansion (3) gives

a(t)= ∂xf
(
t, ϕ(t)

)
, b(t)= 1

2
∂2
xf
(
t, ϕ(t)

)
, c(t)= 1

6
∂3
xf
(
t, ϕ(t)

)
.

Note that because of the property (2) and the oddness ofϕ, we have thatb(t) is odd and
c(t) is even. In any case, functionsb+, b−, c+, c− are even, so in consequence,

T∫
0

b+(t) dt =
T∫

0

b−(t) dt = 2

T/2∫
0

b+(t) dt,

T∫
0

c+(t) dt = 2

T/2∫
0

c+(t) dt,
T∫

0

c−(t) dt = 2

T/2∫
0

c−(t) dt.

Therefore, condition (5) of Theorem 2 reads

σ 6

T/2∫
0

c−(t) dt − σ 2γ 4

T/2∫
0

c+(t) dt > 4γ 5

( T/2∫
0

b+(t) dt
)2

.

Now, using (i) we can takeσ 2 = A∗, γ 2 = A∗, and then the result is an easy corollary
Theorem 2. ✷

4. Stability of solutions of a satellite equation

In this section we are going to focus our attention on the equation(
1+ e cos(t)

)
x ′′ − 2e sin(t)x ′ + λsinx = 4e sin(t), (9)
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(9) is multiplied byp(t)= 1+ e cos(t), it can be written as(

p2(t)x ′)′ + λp(t)sinx = 4ep(t)sint, (10)

which is of the form (1) withm(t)= p2(t) andf (t, x)= λp(t)sinx − 4ep(t)sint . These
functions verify the symmetry condition (2). From now on we will work with this l
formulation.

Our first result proves that the solution found in [7] is unstable.

Theorem 4. Let e ∈ (0,1) and λ any real number. Then Eq. (10)has a 2π -periodic solution
which is unstable.

Proof. LetH be the Hilbert space of absolutely continuous 2π -periodic functionsu such
thatu′ ∈ L2(0,2π) with the inner product

(u, v)= u(0)v(0)+
2π∫
0

p2(t)u′v′ dt,

wherep(t) = 1 + e cos(t). The method of proof in [7] is to find a minimum in a certa
ball of the action functionalΦ :H → R defined as

Φ(x)=
2π∫
0

[
p2(t)

x ′2

2
+ λp(t)cosx + 4ep(t)sin(t)x

]
dt. (11)

Such a minimum is a 2π -periodic solution of (10). At this point it is important to mentio
that Dancer and Ortega have proved that the minimizers of the action functiona
periodic Newtonian equation with analytic potential are always unstable (see [5,15])

Performing the change (6) yet used in Section 3 (remember thatµ = (1/T )
∫ T

0
ds
m(s)

),
Eq. (10) is transformed in the Newtonian equation

y ′′ +µ2λp3(t (τ ))siny = 4eµ2p3(t (τ ))sin
(
t (τ )

)
,

wherey(τ)= x(t (τ )), whose action functional is

Ψ (y)=
2π∫
0

[
y ′2

2
+µ2λp3(t (τ ))cosy + 4eµ2p3(t (τ ))sin

(
t (τ )

)
x

]
dτ.

The relation betweenΦ andΨ is simply

Φ(x)= 1

µ
Ψ (y).

As µ > 0, a minimum ofΦ is also a minimum ofΨ (note that the operatorx → x ◦ τ−1

is a homeomorphism with the usual topologies, so the image of a ball is a ball), a
application of [15, Theorem 3.4] concludes the proof.✷
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From the point of view of the application in consideration, it is desirable to ob
the existence of stable solutions, so we will look for a region of parameters of Lyap
stability.

Let us define

M(λ, e) := (8e+ λπ)π
(1− e2)3/2

.

Our main result is as follows.

Theorem 5. Let us assume that

(H1) M(λ, e)� π

2
,

(H2)
λ

(1− e)3 � 1

36
,

(H3) 0< λ<
(1− e)18

36π2(1+ e)15

cos8M(λ, e)

sin4M(λ, e)
.

Then, Eq. (10)has a 2π -periodic solution which is of twist type.

Proof. It is clear thatβ(t)≡ 0 is an upper solution of the Dirichlet problem(
p2(t)x ′)′ + λp(t)sinx = 4ep(t)sint,

x(0)= x(π)= 0. (12)

On the other hand, the unique solution of the linear problem(
p2(t)α′)′ = p(t)(λ+ 4e sint),

α(0)= α(π)= 0

is a lower solution of problem (12). From a trivial manipulation of the previous equa
one realizes that each local extrema ofα(t) has to be a minimum, and in consequen
α(t) < 0 for all t ∈ ]0,π[.

Therefore,α < β is a couple of ordered lower and upper solutions of problem (12)
Proposition 2, Eq. (10) has an odd 2π -periodic solutionϕ such that

α(t)� ϕ � 0

for all t ∈ ]0,π[.
Having in mind to apply Theorem 3, our next step will be to obtain an estima

of ‖α‖∞. By direct integration on[0,π], it results in∥∥(p2(t)α′)′∥∥
1 = 8e+ λπ.

It is clear that there existst0 ∈ ]0,π[ such thatα′(t0)= 0. Then,

p2(t)α′ =
t∫ (
p2(s)α′)′ ds < ∥∥(p2(t)α′)′∥∥

1 = 8e+ λπ.

t0
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he
In consequence,

0<−α(t)=
π∫
t

α′(s) ds < (8e+ λπ)
π∫

0

ds

p2(s)
= (8e+ λπ)π
(1− e2)3/2

=M(λ, e)

for all t ∈ ]0,π[. In conclusion,

‖α‖∞ <M(λ, e).

The next step is to compute the auxiliary functions of Theorem 3. In this case,

f (t, x)= λp(t)sinx − 4ep(t)sint .

Hence,

A∗ = max
t

[
p2(t)U

(
λp(t)cosx

)]
� λ(1+ e)3,

and by hypothesis(H1),

A∗ = min
t

[
p2(t)L

(
λp(t)cosx

)]
> λ(1− e)3 cosM(λ, e).

Note thatµ can be explicitly obtained as

µ= 1

2π

2π∫
0

ds

(1+ e coss)2
= 1

(1− e2)3/2
.

Therefore, by using(H1) and(H2) we get

0<A∗ <A∗ � λ(1+ e)3 � (1+ e)3(1− e)3
36

= (1− e2)3

36
= 1

36µ2
,

so condition (i) of Theorem 3 is verified. On the other hand,

B+(t)=U
(

1

2

[−λp(t)sinx
]+)= 1

2
λp(t)sinM(λ, e),

C+(t)=U
(

1

6

[−λp(t)cosx
]+)= 0,

C−(t)= L
(

1

6

[−λp(t)cosx
]−)= λ

6
p(t)cosM(λ, e).

In consequence, condition (ii) of Theorem 3 is reduced to

A3∗

T/2∫
0

C−(t) dt > 4(A∗)5/2
( T/2∫

0

B+(t) dt
)2

,

and by using hypothesis(H3) it is not hard to verify that this inequality holds. Then, t
proof is finished by using Theorem 3.✷
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