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INTRODUCTION

In this paper we shall consider a general class of equations with a
restoring force of attractive type that includes

1
Y Xx q cx q s p t , 1Ž . Ž .ax

where c G 0, a ) 0, and p is a continuous T-periodic function for some
T ) 0. We are interested in the existence and stability of positive T-

Ž .periodic solutions of 1 .
The existence of T-periodic solutions of this class of equations where

the restoring force is a singular nonlinearity that becomes infinite in zero
w xhas been proved by Lazer and Solimini 2 for the case without friction

Ž . w xc s 0 and by Habets and Sanchez 1 for the damped case. However, the´
stability properties of these solutions have been less studied. It is well

Ž Ž . .known that for the autonomous case p t ' p ) 0 , this equation has a0
unique saddle point. In this paper we prove that the dynamics of the

Ž .periodic equation 1 is similar to the autonomous case. For our study is
n w xfundamental a Massera’s convergence theorem in R given by Smith in 6 .

The paper is divided in three sections. In Section 1, the main results are
Ž .stated. It is seen that 1 has a unique unstable periodic solution w.
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Moreover, for the damped case it is proved that there exists a global stable
manifold of this periodic solution which is determined by a strictly decreas-

q Ž q w ..ing map h: R ª R being R s 0, q` such that this graph divides the0 0
Ž .plane of initial conditions in two open sets, one of them set A in Fig. 1

corresponds to the solutions that tend to q` as t ª q`, and the other
Ž .set B to the solutions that goes to zero in finite time, that is, the ones

Ž .that are ‘‘absorbed’’ by the singularity. When the potential V x is infinite
q Ž . q Ž q Ž ..as x ª 0 case a G 1 , we have that h: R ª R being R s 0, q` is

Ž . q Ž .a homeomorphism, whereas if V x is finite as x ª 0 case 0 - a - 1
Ž .there exists ¨ g R such that h ¨ s 0.s s

Similar results are showed for the unstable manifold. As a consequence,
there are no homoclinic points.

We prove these results in Section 2. For this, the study of the behavior
of the solutions and its derivatives according to its maximal interval of

Ž y q. y qexistence w , w , y` F w - w F q`, is fundamental. Some proper-
ties of comparison of solutions are given which are needed in the proofs.

Finally, in Section 3, we remark that the previous results are true for the
undamped case.

1. MAIN RESULTS

Let us consider the forced Lienard equation,´

xY t q f x t xX t q g x t s p t , 2Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .

where f , g : Rqª Rq are continuous and p: R ª R is continuous and
T-periodic. Moreover, we assume that f and g have continuous derivative.

FIG. 1. The semiplane of initial conditions.
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w x w xIn 2 for f s 0 and in 1 for arbitrary f and under the condition

lim g x s q`, lim g x s 0 3Ž . Ž . Ž .
q xªq`xª0

the method of upper and lower solutions has been used to prove that a
necessary and sufficient condition for the existence of positive T-periodic

TŽ . Ž . Ž .solutions of 2 is that the mean value p s 1rT H p t dt ) 0.0
The study of the stability can be done by using the topological degree as
w x Ž .in 5 . However, we shall use the following lemma of linearization of 2 at

a periodic solution.
1Ž . Ž .LEMMA 1. Let r g C R , q g C R T-periodic functions such that

r t G 0, q t - 0 ; t g R.Ž . Ž .

If m , m are the characteristic multipliers of the equation1 2

XYy q r t y q q t y s 0Ž . Ž .Ž .

then 0 - m - 1 - m .2 1

Proof. Multipliers verify

m2 y Dm q W s 0,

yH0
T r Ž t . dt Ž xwhere D is the discriminant and W s e g 0, 1 . We must prove

that D ) 1 q W.
Let r, q the mean values of r and q, and

w xr t s lr q 1 y l r t , q t s lq q 1 y l q t ;l g 0, 1 .Ž . Ž . Ž . Ž . Ž . Ž .l l

Consider the equation

XYy q r t y q q t y s 0.Ž . Ž .Ž .l l

Ž .D s D l is continuous by continuous dependence theorem, and clearly
Ž . Ž . w xD 1 ) 1 q W, so we will prove that D l / 1 q W, ;l g 0, 1 . If it is

false, then there exists a nontrivial T-periodic solution c . If c ) 0,
Ž .integrating Eq. 1 obtains a contradiction, so c must change sign. In

Ž . Ž . Ž .consequence, we can fix t - t such that c t s c t s 0, c t ) 0,0 1 0 1
Ž . Ž .; t g t , t . Integrating in t , t we have0 1 0 1

t1X X0 ) c t y c t q q s c s ds s 0,Ž . Ž . Ž . Ž .H1 0 l
t0

another contradiction.
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Ž .This lemma shows that if 2 has a unique T-periodic solution then this
w xsolution must be unstable. A result of this type was given in 3 for

Y Ž .equations of the form x s g t, x under some conditions on g. In this
context we have the following result.

Ž .THEOREM 1. Assume that f G 0 and 3 hold. If p ) 0 and g is strictly
Ž .decreasing then 2 has a unique positï e T-periodic solution which is unstable.

Ž .Proof. By Lemma 1, it is enough to prove that 2 has a unique
T-periodic solution. Suppose, by contradiction, that x and x are two1 2

Ž . Ž . Ž . Ž .different T-periodic solutions of 2 . If z t s x t y x t does not change1 2
w xof sign in 0, T , we have a contradiction only subtracting the respective

Ž . Ž . w xequations and integrating in 0, T . If z t vanishes at some t g 0, T0
Ž . w xthen there must be at least other zero of z t on 0, T . Indeed, if

Ž . Ž . XŽ .z t s 0 and z t ) 0 for t / t , z has a minimum at t and z t s 0.0 0 0 0
Ž . Ž . w xHence x t s x t , t g 0, T , by uniqueness.1 2

w xSo, let t and t be two successive zeros of z on 0, T and assume that0 1
Ž . Ž .z t - 0 over t , t . Using the monotonicity of g we obtain0 1

zY t q f x t xX t y f x t xX t - 0, t g t , t .Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž .1 1 2 2 0 1

XŽ . XŽ . Ž .Since z t - 0 and z t ) 0, an integration over t , t gives a contra-0 1 0 1
diction.

Ž . w xThe same conclusion is obtained if z t - 0, t g t , t .0 1

From now we assume that all the conditions in Theorem 1 hold and that
Ž .w t is the T-periodic solution given in this theorem. The following

Ž .theorem describes the asymptotic behavior of trajectories of 2 .

THEOREM 2. Assume that

0 - m s inf f F sup f s M - q` 4Ž .

and

'2 q 2
M F m. 5Ž .'2 y 2

Ž . Ž . w .If x t is a solution of 2 defined on t , q` then0

X Xlim x t y w t s 0, lim x t y w t s 0,Ž . Ž . Ž . Ž .
tªq` tªq`

or

lim x t s q`.Ž .
tªq`
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w xProof. We show first that the assumptions of Theorem 2 in 6 are
X Ž . XŽ . Ž .satisfied. Making the change of variable y s x q F x , where F x s f x ,

and taking

1 c y1P s , c ) 0,ž /y1 02

Ž . w x Ž w x.one can see that condition H3 in 6 see 4 is equivalent to the matrix

f x q cŽ .
Xg x y cf x q lc y lŽ . Ž .

2
A s , l ) 0,

f x q cŽ .� 0y l y1
2

be negative definite for some l and c, that is,

gX x y cf x q lc - 0Ž . Ž .
and

2f x q cŽ .
Xdet A s yg x q cf x y lc y y l ) 0.Ž . Ž . Ž . ž /2

XŽ .Since g x - 0, these inequalities hold if and only if

'c q 2l q 2 lc G M ,

'c q 2l y 2 lc F m ,

and

l F m.

Ž .Now, taking c s Kl and maximizing K, these inequalities hold if 4
Ž .and 5 are satisfied.

w x w Ž . Ž .x w XŽ .From 6 it follows that lim x t y w t s 0, lim x t yt ªq` t ªq`
XŽ .x � 4w t s 0 or that there exists a sequence t ª q` such that some of then

following cases hold:

Xa x t ª 0; b x t ª q`, c x t ª q`.Ž . Ž . Ž . Ž . Ž . Ž .n n n

Ž . YŽ . Ž Ž .. XŽ .If a holds, from the equation we obtain that x t q f x t x t ª y`n n n
as t ª q`. Suppose that there exists a sequence t ª q` such thatn n
Ž . � 4 � 4 Ž .x t ª K ) 0. One can interlace t and t and take t such that x tn n n n

XŽ . YŽ . YŽ .has a local minimum at t . Then x t s 0 and x t G 0, so x tn n n n
Ž .cannot tend to y` as t ª q`. Hence x t ª 0 as t ª q`. Now, by then
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� 4mean value theorem, there exists other sequence that we call again tn
XŽ . XŽ .such that x t ª 0. As above, we get lim x t s 0. A new applica-n t ªq`

� 4tion of the mean value theorem gives a sequence, called t , such thatn
YŽ .x t ª 0. Evaluating the equation in t and taking limits we have an n

contradiction.
Ž . XŽ . Ž .If a does not hold and x t ª q` resp. y` as t ª q` thenn n

YŽ . Ž Ž .. Ž .x t q g x t ª y` resp. q` as t ª q`. Supposing that theren n n
XŽ . Ž .exists a sequence t ª q` such that x t ª K - q` resp. K ) y`n n

YŽ . Ž Ž .. Ž .we can take x t s 0 and then g x t ª q` resp. y` , which is notn n
< XŽ . < Ž .possible. Hence lim x t s q`. Since lim x t / 0, we havet ªq` t ªq`

Ž Ž .. XŽ .that g x t is bounded for t G t and if lim x t s "` then0 t ªq`
YŽ .lim x t s .`, a contradiction.t ªq`

Ž . Ž .If c holds, we are going to prove that lim x t s q`. There existst ªq`

Ž . Ž . Ž . Žsome t such that z t s x t y w t ) 0 for all t ) t see Proposition 10 0
. Ž . Ž .of Section 2 . As w t is bounded, we have that lim x t s q` ist ªq`

Ž .equivalent to lim z t s q`. If this is not true, then there existt ªq`

� Ž .4 � Ž .4sequences z t of maxima of z and z t of minima of z such thatn n

lim z t s q`, lim z t s K - q`,Ž . Ž .n n
t ªq`t ªq` nn

with t - t - t for all n. Since g is strictly decreasing, we have thatn n nq1

zY t q f x t xX t y f w t wX t s g w t y g x t ) 0Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .
; t ) t .0

x wHence, integrating over t , t ,n n

Ž . Ž . Ž . Ž .x t w t x t x tn n n nf s ds y f s ds s f s ds y f s ds ) 0,Ž . Ž . Ž . Ž .H H H H
Ž . Ž . Ž . Ž .x t w t w t w tn n n n

Ž . Ž .so Mz t ) mz t , and we have a contradiction when n ª q`.n n

Ž . w q. qWhen the solution x t is defined on t , w , w - q`, there exists a0
q w q.sequence t ª w , t g t , w such that some of the following casesn n 0

hold:
X X X Xa x t ª q`, b x t ª q`, c x t ª 0.Ž . Ž . Ž . Ž . Ž . Ž .n n n

Ž X. Ž .qAs above, one can show that only c holds and that then lim x t s 0.t ª w
w xFrom Corollary 2.1 in 6 we can use the same reasonings for the

Ž x Ž y x ysolutions defined on y`, t or on w , t , w ) y`.0 0
So, we have the following description of the behavior of the solutions of

Ž .2 according to its maximal interval of existence:

Ž . Ž . w Ž . Ž .x Ž .i On y`, q` , lim x t y w t s 0 or lim x t s q`t ªq` t ªq`

w Ž . Ž .x Ž .and, on the other hand, lim x t y w t s 0 or lim x t s q`.t ªy` t ªy`
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Ž . Ž y . Ž . w Ž . Ž .xyii On w , q` , lim x t s 0 and either lim x t y w tt ª w t ªq`

Ž .s 0 or lim x t s q`.t ªq`

Ž . Ž q. Ž . w Ž . Ž .xqiii On y`, w , lim x t s 0 and either lim x t y w tt ª w t ªy`

Ž .s 0 or lim x t s q`.t ªy`

Ž . Ž y q. Ž . Ž .y qiv On w , w , lim x t s 0 s lim x t .t ª w t ª w

XŽ .The behavior of x t is given by the following lemma.

LEMMA 2. According to the maximal inter̈ al of existence of the solution
Ž . XŽ . XŽ .q yx t , we ha¨e that lim x t - 0, lim x t ) 0, and these limitst ª w t ª w

Ž . 1 Ž . qare finite if and only if the potential V x s H g s ds is finite as x ª 0 .x
XŽ . XŽ .Moreo¨er, lim sup x t and lim inf x t are finite for any poten-t ª "` t ª "`

tial.

Proof. We only show the first assertion. Integrating the equation over
w q xt , w y e with e ) 0, we obtain0

q Ž q .w ye x w yeX Xqx w y e s x t q p s ds y f s dsŽ . Ž . Ž . Ž .H H0
Ž .t x t0 0

wqye
y g x s ds.Ž .Ž .H

t0

XŽ q .It is then clear that lim x w y e exists and must be negative.e ª 0
Ž q.Further, this limit is finite if and only if V 0 is finite.

Ž . Ž . Ž .Denote by x t, x , ¨ the solution of 2 such that x 0, x , ¨ s x ,0 0 0
XŽ .x 0, x , ¨ s ¨ . The main results of this paper describe the global dynam-0

Ž .ics of Eq. 2 and its proofs are given in the next section.

Ž . Ž .THEOREM 3. Assume that the conditions of Theorem 1 and 4 , 5 are
Ž q.satisfied and that V 0 s q`. Then there exists a strictly decreasing continu-

q Ž Ž . . Ž .ous function h: R ª R such that x t, h ¨ , ¨ ª w t as t ª q`. If
Ž . Ž . Ž . Ž .qx - h ¨ then lim x t s 0 and if x ) h ¨ then lim x t s0 t ª w 0 t ªq`

Ž . Ž .q`. Moreo¨er, lim h ¨ s q` and lim h ¨ s 0.¨ ªy ` ¨ ªq `

Ž . Ž .THEOREM 4. Assume that the conditions of Theorem 1 and 4 , 5 are
Ž q. Ž x qsatisfied and that V 0 - q`. Then there exists a function h: y`, ¨ ª Rs 0

in the same conditions of the pre¨ious theorem, but now there exists a ‘‘critical
Ž .¨elocity’’ ¨ such that h ¨ s 0.s s

Remark 1. Theorems 3 and 4 give a function such that its graph has the
Ž .property that the solutions of 2 with initial conditions in the graph
Ž .approach the periodic solution w t as t ª q`. This graph is the section
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Ž .on t s 0 of the global stable manifold of w t , that can be defined as

W s w s F graph h ,Ž . Ž .Ž .D t
tgR

Ž .where F denotes the flow generated by 2 andt

graph h s x , ¨ g Rq= R: h ¨ s x .� 4Ž . Ž . Ž .0 0 0

The existence of the stable manifold can be obtained from general results
Ž .of hyperbolic manifolds via the Poincare map since w t is a hyperbolic´

Ž w x.solution see 5 in the sense that the Floquet multipliers have modulus
different from 1.

Ž .However, our proofs are done working directly on the Eq. 2 and,
moreover, we describe the geometry of these hyperbolic manifolds.

Ž .Remark 2. Note that the choice of the initial time 0 in our case is not
essential in the proofs. So, for any other initial time, that is, any other

sŽ Ž ..section of the global stable manifold W w t , the plane of initial condi-
tions has the same structure.

Analogous results can be proved looking towards the past. In this case,
we have the following theorem.

Ž . Ž .THEOREM 5. Assume that the conditions of Theorem 1 and 4 , 5 are
Ž q.satisfied and that V 0 s q`. Then the set

x , ¨ g Rq= R: x t , x , ¨ y w t ª 0; as t ª y`� 4Ž . Ž . Ž .0 0

Ž .is the set of initial conditions the section on t s 0 of the global unstable
Ž . qmanifold of w t and is the graph of a strictly increasing function j : R ª R

Ž . Ž . Ž .such that lim j ¨ s 0, lim j ¨ s q`. Moreo¨er, if x - j ¨¨ ªy ` ¨ ªq ` 0
Ž . y Ž . Ž .then x t, x , ¨ ª 0 as t ª w and if x ) j ¨ then x t, x , ¨ ª q` as0 0 0

t ª y`.
Ž q. Ž .When V 0 is finite, the function j ¨ has the property that there exists

Ž .¨ g R such that j ¨ s 0.u u

Note that the intersection of h and j determine the initial conditions of
the periodic solution.

2. PROOFS

To prove the theorems of Section 1 we need to point out some facts.
Ž .The first is a comparison result of two solutions of 2 . In this section we

shall assume that all the conditions on f , g in Theorems 1 and 2 hold.



DYNAMICS OF A PERIODIC EQUATION 1035

Ž .PROPOSITION 1. Any couple of different solutions of 2 has at most one
point in common.

Ž . Ž . Ž .Proof. Suppose x t , x t are two different solutions of 2 such that1 2

x t s x t , x t s x tŽ . Ž . Ž . Ž .1 0 2 0 1 1 2 1

Ž . Ž . x w Ž . Ž . Ž .and x t ) x t for all t g t , t . Then, z t s x t y x t satisfies1 2 0 1 1 2

zY t q f x t xX t y f x t xX t s g x t y g x t ) 0Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž . Ž . Ž . Ž .1 1 2 2 2 1

x w; t g t , t ,0 1

x w XŽ . XŽ .so integrating over t , t we have that z t ) z t , a contradiction0 1 1 0
Ž . x wbecause z t ) 0 for any t g t , t .0 1

Ž . Ž . Ž . Ž .PROPOSITION 2. Let x t s x t, x , ¨ , x t s x t, x , ¨ be solutions0 0 1 1 1
Ž . Ž .of 2 such that x - x . If x y x G ¨ y ¨ rm then0 1 1 0 0 1

x t - x t ; t G 0.Ž . Ž .1

Proof. If the conclusion fails to hold, then there must be some t ) 01
Ž . Ž . Ž . Ž . Ž . Ž . w .such that x t s x t . Set z t s x t y x t . Then z t - 0, t g 0, t1 1 1 1 1

Ž .and z t s 0. As in the proof of Theorem 1 we have1

Y X Xz t q f x t x t y f x t x t - 0 ; t g 0, tŽ . Ž . Ž . Ž . Ž . .Ž . Ž .1 1 1

w .and an integration over 0, t gives1

Ž . Ž .x t x tX 1 1 1z t y ¨ q ¨ q f s ds y f s ds - 0.Ž . Ž . Ž .H H1 0 1
x x0 1

XŽ . x1 Ž . Ž .So z t - ¨ y ¨ y H f s ds F ¨ y ¨ y m x y x F 0, but it is not1 0 1 x 0 1 1 00

possible.

Remark 1. By Proposition 1, Proposition 2 holds true if x s x and0 1
¨ - ¨ .0 1

Remark 2. The same conclusion is obtained for t F 0 if x y x F1 0
Ž .¨ y ¨ rM.0 1

Ž .The following lemma asserts that two solutions of 2 with the same
initial velocity cannot be very close.

Ž . Ž . Ž . Ž .LEMMA 3. Let x t s x t, x , ¨ , x s x t, x , ¨ be solutions of 20 1 1
w .defined on 0, q` . Gï en d ) 0, there exists e ) 0 such that if x y x ) d ,1 0

Ž . Ž .then there exists a sequence t ª q` such that x t y x t ) e for large n.n 1 n n
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Ž . Ž . Ž . Ž .The same conclusion is true for x t s x t, x , ¨ and x t s x t, x , ¨0 0 1 0 1
with ¨ y ¨ ) d .1 0

Ž . Ž . Ž . Ž . w .Proof. Set z t s x t y x t . Then z t ) 0 ; t g 0, q` , by Proposi-1
Ž .tion 2. If the conclusion is not true, z t ª 0 when t ª q`. By the mean

XŽ .value theorem there must be a sequence t ª q` such that z t ª 0n n
XŽ . Ž .and z t - 0. As in the previous proof, an integration on 0, t givesn n

Ž . Ž .x t x tX X 1 n nz t y z 0 q f s ds y f s ds ) 0.Ž . Ž . Ž . Ž .H Hn
x x1 0

XŽ .Since z 0 s 0, we get for large n
xŽ . 1x t1 n f s ds G f s dsŽ . Ž .H H

Ž .x t xn 0

Ž Ž . Ž .. Ž .and, hence, M x t y x t G m x y x . Taking e - d mrM we are1 n n 1 0
done.

Ž . Ž . Ž . Ž . Ž .If x t s w t and x t y w t ª 0 as t ª q`, we get 0 G m x y x ,1 0
but this is not possible.

Ž Ž . Ž ..When x s x and ¨ y ¨ ) d we obtain M x t y x t G ¨ y ¨0 1 1 0 1 n n 1 0
and it is enough to take e - drM.

LEMMA 4. Fixed ¨ g R, the set

A s x g Rq: lim x t , x , ¨ s q`Ž .½ 50 0
tªq`

is a nonempty open inter̈ al.

Proof. If A is empty then, we can choose x g Rq such that x y1 1
Ž . Ž XŽ . .w 0 G w 0 y ¨ rm, and applying Proposition 2 and Theorem 2 we

obtain a contradiction.
Ž .If x g A and x ) x then x t, x , ¨ ª q` as t ª q`, by Proposi-0 1 0 1

tion 2. Hence A is an interval.
To prove that A is open, let x g A and0

C s lim sup xX t , x , ¨ , c s lim inf xX t , x , ¨ .Ž . Ž .0 0
tªq`tªq`

Ž . Ž .Given R ) ¨ y c q 1 rm q x , we have x nT , x , ¨ ) R and c y 1 -0 0
XŽ .x nT , x , ¨ - C q 1 for some positive integer n. By continuous depen-0

< < Ž .dence there exists d ) 0 such that if x y x - d then x nT , x , ¨ ) R0 1 1
XŽ . Ž . Ž .and c y 1 - x nT , x , ¨ - C q 1. If we define x t s x t q nT , x , ¨1 1 1

then

¨ y c q 1 ¨ y xX 0Ž .1
x 0 y x ) R y x ) ) .Ž .1 0 0 m m

Ž .Hence, by Proposition 2, x t ª q` as t ª q` and x g A.1 1
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LEMMA 5. Fixed ¨ g R, the set

B s x g Rq: lim x t , x , ¨ s 0Ž .½ 50 0qtªw

Ž q.is an open inter̈ al. Moreo¨er, if V 0 is infinite then B is nonempty.

Ž . Ž .Proof. Let p s max p t and x ) 0 such that g x s p .M t gw0, T x M M M
Ž . Ž .We claim that a local minimum of any solution x t of 2 is larger than

Ž . Ž .x . If not, x t would have a minimum at t s t with x t - x , thenM 0 0 M
XŽ . YŽ . Ž Ž ..x t s 0, x t G 0 and g x t ) p . But this is impossible, because0 0 0 M

xY t q f x t xX t q g x t s p t F p .Ž . Ž . Ž . Ž . Ž .Ž . Ž .0 0 0 0 0 M

Ž .Now, if x g B, for R ) 0 there exists t such that x t , x , ¨ - R and0 0 0 0
XŽ .x t , x , ¨ - 0. By continuous dependence, there exists d ) 0 such that if0 0

< < Ž . XŽ .x y x - d then x t , x , ¨ - R and x t , x , ¨ - 0. Taking R s x0 1 0 1 0 1 M
Ž .we obtain that x t, x , ¨ has not a minimum for t ) t and, hence,1 0

Ž . qx t, x , ¨ ª 0 as t ª w . So B is open.1
xM Ž .To prove that B is nonempty we see that if we have H g s ds ) p xx M M02 Ž . qq ¨ r2 then x t ª 0 as t ª w . In fact, if this is not the case, let t ) 00

Ž . XŽ . Ž .be such that x t - x , x t ) 0 ; t g 0, t . SinceM 0

p t y g x t y xY tŽ . Ž . Ž .Ž .Xx t s ) 0 ; t g 0, t ,Ž . Ž .0f x tŽ .Ž .
YŽ . Ž Ž .. Ž . w xwe have x t q g x t - p , t g 0, t . An integration over 0, t afterM 0 0

XŽ .multiplying by x t gives
2X 2 2x x t ¨ ¨Ž .M 0

g s ds - p x y x y q - p x qŽ . Ž .H M M 0 M M2 2 2x0

and we get a contradiction.

In a similar way, one can obtain that for a fixed x g Rq, the set0

A s ¨ g R: lim x t , x , ¨ s q`Ž .½ 51 0
tªq`

is a nonempty open interval.

ŽCOROLLARY 1. If the potential is infinite, for any fixed ¨ g R resp.
q. q Ž . Ž .x g R there exists a unique x g R resp. ¨ g R such that x t, x , ¨ y0 0 0

Ž .w t ª 0 as t ª q`.

Proof. By Lemmas 4 and 5, A and B are nonempty open intervals, and
w xby Proposition 2 we have that sup B F inf A. If we take x g sup B, inf A ,0

Ž .then x t, x , ¨ is bounded and defined until q`, so using Theorem 2 we0
Ž . Ž .conclude that x t, x , ¨ y w t ª 0 as t ª q`. Moreover, by Lemma 3,0

sup B s inf A, so x exists and it is unique.0
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Proof of Theorem 3. Using the previous lemmas, the function
h: R ª Rq defined by

h ¨ s sup B s inf AŽ .

w Ž Ž . . Ž .xis well defined and lim x t, h ¨ , ¨ y w t s 0.t ªq`

Let see that h is strictly decreasing. If it is not true, there exists ¨ - ¨0 2
Ž . Ž . Ž . w Ž .such that h ¨ F h ¨ . Let x s h ¨ . Then lim x t, x , ¨ y0 2 0 0 t ªq` 0 0

Ž .x Ž . Žw t s 0 and since x - h ¨ the equality is not possible because of0 2
. Ž .qCorollary 1 , lim x t, x , ¨ s 0, a contradiction with Proposition 1.t ª w 0 2

Ž q. Ž y.If h is not continuous at ¨ , let x such that h ¨ - x - h ¨ . By0 0
Ž . ŽCorollary 1, there exists ¨ g R such that h ¨ s x . If ¨ - ¨ resp.0 0 0 0

. Ž . Ž y. Ž Ž . Ž q. .¨ ) ¨ then h ¨ ) h ¨ ) x resp. h ¨ - h ¨ - x , a contradic-0 0 0 0 0
tion.

Ž .h is decreasing and bounded below, so 'lim h ¨ , and it is zero¨ ªq `

because in the other case A would be empty for any x minor that this1 0
limit.

Ž .In the same way the limit lim h ¨ exists, and modifying slightly¨ ªy `

Lemma 3, we see that it is infinite.

Finally, for the proof of Theorem 4 we prove that if the potential is
finite in zero then there exists ¨ g R such that for all ¨ G ¨ we have thats s
B is empty.

Ž . q Ž .In fact, let x , ¨ g R = R be the initial conditions of w t at t s 0.1 1
Ž . y1Ž .Take x - x such that x y x F ¨ y ¨ rM, where ¨ s h x , ¨0 1 1 0 0 1 0 0 1

y1Ž . Ž . Ž . Ž .s h x . By Proposition 2, x t, x , ¨ - w t , t F 0. Hence x t, x , ¨1 0 0 0 0
yŽ .ª 0 as t ª w x , ¨ .0 0

By continuation of solutions theorem, we have that

lim sup wy x , hy1 x F wy x , ¨ s y`.Ž . Ž .Ž . 1 1
yxªx1

yŽ . Ž .Hence, there exists ¨ and x s h ¨ such that w x , ¨ s ykT , a0 0
multiple of T.

Now, if we take a sequence ¨ ª ¨ as n ª q` with ¨ - ¨ , for then n
Ž Ž . .solutions x t, h ¨ , ¨ we haven n

lim sup wy h ¨ , ¨ F ykT .Ž .Ž .n n
nªq`

Ž Ž . . XŽ Ž . .So, the points x ykT , h ¨ , ¨ , x ykT , h ¨ , ¨ are the initial condi-n n n n
Ž Ž . .tions at t s 0 of x t y kT , h ¨ , ¨ andn n

x t , x ykT , h ¨ , ¨ , xX ykT , h ¨ , ¨ y w tŽ . Ž . Ž .Ž . Ž .Ž .n n n n

s x t y kT , h ¨ , ¨ y w t ª 0Ž . Ž .Ž .n n
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as t ª q`. Hence, if we take limits in n, by continuous dependence of
XŽ Ž . Ž .. Ž .initial conditions, the point x ykT , x , ¨ , x ykT , x , ¨ is on graph h .0 0

XŽ . Ž .But x ykT , x , ¨ s 0 and x ykT , x , ¨ is finite by Lemma 2, so if we0 0
XŽ . Ž .let x ykT , x , ¨ s ¨ , then h ¨ s 0 and, consequently, for all ¨ G ¨0 s s s

the set B is empty.

3. CASE WITHOUT FRICTION

All the previous results can be obtained for the case without friction
Ž .f ' 0 by similar reasonings. For the sake of brevity, we will not repeat all
the proofs because they are very similar; for example, in Theorem 1 we
only have to take

0 y1
l s 0, P s ž /y1 0

w xand we have the assumptions of Theorem 1 in 6 .
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