Premio Euler - 2009/10 Problemas

Problema 1. A un congreso asisten 9 personas que, en cada una de las cuatro reuniones que hacen juntas, se sientan alrededor de una misma mesa redonda. ¿Pueden sentarse de forma que ninguna tenga a la misma persona a su lado más que en una de las cuatro ocasiones?

Problema 2. Encontrar todos los números $\lambda \in \mathbb{R}$ para los que la ecuación

$$(x^{2} - 2\lambda x - 4\lambda(1 + \lambda^{2}))(x^{2} - 4x - 2\lambda(1 + \lambda^{2})) = 0$$

 $tiene\ exactamente\ tres\ soluciones\ complejas\ distintas.$

Problema 3. Definamos la función $f: \mathbb{R} \to \mathbb{R}$ como

$$f(x) = \begin{cases} x & \text{si } x \le e \\ xf(\log(x)) & \text{si } x \ge e \end{cases}$$

donde $\log(x)$ representa el logaritmo neperiano de x. Determinar si la siguiente serie es o no convergente:

$$\sum_{n=1}^{\infty} \frac{1}{f(n)}$$

Problema 4 (propuesto por J.M. Urbano). Sea P(x) un polinomio con coeficientes reales. Demostrar que las siquientes afirmaciones son equivalentes:

- i) $P(x) \geq 0$ para cualquier $x \in \mathbb{R}$.
- ii) Existen polinomios $Q_1(x)$ y $Q_2(x)$ con coeficientes reales tales que $P(x) = Q_1(x)^2 + Q_2(x)^2$ para cualquier $x \in \mathbb{R}$.

Problema 5. Dado un número real a > -1, decidir si la siguiente serie es o no convergente.

$$\sum_{n>1} \frac{a^n(a+1)^n}{((a+1)^{n+1} - a^{n+1})((a+1)^n - a^n)}$$

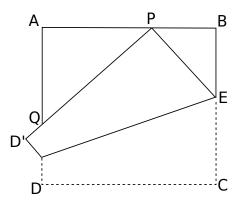
En caso de serlo, calcular el valor de la suma.

Problema 6. Consideremos el polinomio $p(x) = 3x^2 + 7x + 2$. Determinar si existe otro polinomio q(x) con coeficientes reales cumpliendo las siguientes propiedades:

- i) q(0) = 1 (en particular, q(x) es distinto de p(x)).
- ii) La suma de los cuadrados de los coeficientes de los polinomios $p(x)^n$ y $q(x)^n$ es la misma para todo número natural $n \in \mathbb{N}$.

Problema 7. Consideremos un cuadrado de papel de vértices A, B, C, D en ese orden y un punto P sobre el lado AB. A continuación doblemos el papel de forma que el vértice C coincida con el punto P como se muestra en la figura. Sea Q el corte del nuevo segmento PD' con AD y tomemos el cociente $\mu(P) = QD/AD$. En esta situación,

- a) Demostrar que si P es el punto medio de AB, entonces $\mu(P) = 1/3$.
- b) ¿Es cierto que si escogemos P de forma que $AP/AB = \frac{a}{2^n}$, entonces $\mu(P)$ recorre todos los racionales en]0,1[al variar $a \in \{1,2,3,\ldots,2^n-1\}$ $y n \in \mathbb{N}$?.



Problema 8. Calcular el siguiente máximo común divisor:

$$\operatorname{mcd}\left(\left(2^{2009}+1\right)^{2009},2^{2009^{2009}}+1\right)$$

Problema 9. ¿Existe algún número real a > 0 de forma que $E(a^n)$ tenga la misma paridad que n para cualquier número natural n?

Nota: E(x) denota la parte entera de un número real x, esto es, el mayor número entero menor o igual que x.

Problema 10. La manecilla de las horas de un reloj mide 3cm mientras que la de los minutos mide 4cm.

- a) ¿Cuál es la velocidad máxima a la que se separan las puntas de las agujas?
- b) ¿Cuál es la distancia en ese momento?
- c) Indicar una hora del día a la que se alcance tal velocidad máxima (se admite una solución aproximada si esta no pudiera darse de forma exacta).

Problema 11. Consideremos S_n el conjunto de todas las permutaciones de los números $\{1, 2, ..., n\}$. Para cada permutación $\sigma \in S_n$, definimos $f(\sigma)$ como el número de elementos $i \in \{1, ..., n\}$ para los

que $\sigma(i) > \sigma(j)$ para todo j > i. Hallar la media de $f(\sigma)$ cuando σ recorre todas las permutaciones de S_n .

Problema 12. Todos los coeficientes de un cierto polinomio p(x) son cero o uno y p(0) = 1. ¿Cuál es la máxima constante $a \ge 0$ para la que podemos asegurar que $|z| \ge a$ para toda raíz compleja z de p(x)?

Problema 13. Dado un número natural $n \in \mathbb{N}$, hallar el número de pares de números naturales (a,b) que cumplen

$$\frac{ab}{a+b} = n$$

Problema 14. Dados números reales $a, b, c \ge 0$ tales que a + b + c = 1, probar que

$$0 \le ab + ac + bc - 2abc \le \frac{7}{27}$$

Analizar en qué casos se alcanza la igualdad en cada una de las dos desigualdades.

Problema 15 (propuesto por J. M. Urbano). Sean $A = \{1, 2, 3, \dots, 20\}$ y la aplicación $f: A \to A \ dada \ por$

$$f(1) = 2$$
, $f(2) = 3$, $f(3) = 4$, $f(4) = 5$, $f(5) = 1$, $f(6) = 7$, $f(7) = 8$, $f(8) = 9$, $f(9) = 10$, $f(10) = 6$, $f(11) = 12$, $f(12) = 13$, $f(13) = 14$, $f(14) = 15$, $f(15) = 11$, $f(16) = 17$, $f(17) = 18$, $f(18) = 19$, $f(19) = 20$, $f(20) = 16$.

Hallar el número de aplicaciones $q: A \to A$ tales que $q^4 = f$.

Problema 16. ¿Es primo $2009^4 + 4^{2009}$?

Problema 17. Consideremos un polígono regular de n lados inscrito en una circunferencia de radio unidad y denotemos, en sentido horario, por P_1, P_2, \ldots, P_n a sus vértices. Demostrar que

$$P_1P_2 \cdot P_1P_3 \cdots P_1P_n = n$$

Problema 18. Calcular el valor de la siguiente integral

$$\int_0^{\pi/2} \log(\operatorname{sen}(x)) \, dx$$

Problema 19. A cada punto del plano se le asigna un número real de forma que los números asignados a los vértices de cualquier cuadrado tienen suma cero. Demostrar que a todos los puntos se les ha asignado el valor cero.

Problema 20. El conjunto $\{1, 2, 3, ..., 49\}$ se divide en tres subconjuntos disjuntos. Demostrar que al menos uno de estos tres subconjuntos contiene tres elementos distintos a, b, c tales que a + b = c.