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Interplay between Randers metrics and stationary
spacetimes

L1=Observer

↘
lightlike geodesic (t, x)

S

↖
Fermat geodesic x

(R× S , l) is a standard sta-
tionary spacetime

S is naturally endowed with
a Randers metric F called
the Fermat metric
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Interplay between Randers metrics and stationary
spacetimes

L1=Observer

↘
lightlike geodesic (t, x)

S

↖
Fermat geodesic x

Causal properties of
(R× S , l)

m

Hopf-Rinow proper-
ties of (S ,F )
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Interplay between Randers metrics and stationary
spacetimes

L1=Observer

↘
lightlike geodesic (t, x)

S

↖
Fermat geodesic x

Global hyperbolicity
of (R× S , l)

m

B̄+(p, r)∩B̄−(p, r) compact
∀p ∈ S and ∀r > 0 in (S ,F )
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Interplay between Randers metrics and stationary
spacetimes

A

H+(A)

Cauchy horizons of a
subset A contained in
a slice {t0} × S

⇓

are the graph of the distance
function to the complemen-
tary Ac in (S ,F )
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Interplay between Randers metrics and stationary
spacetimes

A

H+(A)

Differential proper-
ities of the Cauchy
horizons in (R× S , l)

m

Differential properties of the
distance function to a subset
in (S ,F )
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Program of the talk

Preliminaries:

Causality (the causal ladder)
Standard stationary spacetimes and Fermat metrics
Randers and Finsler metrics

First application of the Interplay: Causal properties in terms of
Hopf-Rinow properties of the Fermat metric

Second application: equivalence of differentiability of Cauchy horizons
and the distance function to a subset.
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The causal ladder

Causal properties classify spacetimes depending
on the behaviour of causal cones. A spacetime is:

Chronological if p 6∈ I +(p) for every p ∈ M.

Distinguishing if I +(p) = I +(q) or
I−(p) = I−(q) implies p = q

Causally continuous if it is distinguishing and
the Chronological cones I±(p) are
continuous in p ∈ M

Causally simple if the causal cones J±(p) are
closed for every p ∈ M

Globally hyperbolic if it admits a Cauchy
hypersurface (a subset S that meets exactly
once every inextendible timelike curve)

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Standard Stationary spacetimes

A spacetime is Stationary if it admits a timelike Killing field.

Standard Stationary means that M = R× S and

g((τ, y), (τ, y)) = g0(y , y) + 2g0(δ, y)τ − β(x)τ2,

where (S , g0) is Riemannian and β(x) > 0.

How restrictive is to consider standard stationary spacetimes rather
than stationary?

M. A. J. and M. Sánchez, A note on the existence of standard
splittings for conformally stationary spacetimes,
Classical Quantum Gravity, 25 (2008), pp. 168001, 7.
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Causal condition to have a standard splitting

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime L is distinguishing and the
timelike Killing field is complete, then it is causally
continuous and standard

Sketch of the proof:

A result of S. Harris ⇒ L = R× Q (maybe
{t0} × Q is never spacelike)

timelike Killing field complete ⇒ L is reflecting
(I +(p) ⊆ I +(q) iff I−(p) ⊇ I−(q))

Reflecting+Distinguishing ⇔ Causally continuous

Causally continuous ⇒ Stably causal

⇒ there exists a temporal function t : L→ R
t−1(0) is a section (it crosses all the orbits of the
timelike Killing field

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Fermat principle in standard stationary spacetimes

Relativistic Fermat Principle: lightlike pregeodesics
are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

If you consider as observer s → L1(s) = (s, x1) in
(R× S , g), given a lightlike curve γ = (t, x), the
arrival time AT(γ) is

t(b)=t(a)+
R b
a

“
1
β

g0(ẋ ,δ)+
q

1
β

g0(ẋ ,ẋ)+ 1
β2 g0(ẋ ,δ)2

”
ds.

because g0(ẋ , ẋ) + 2g0(δ(x), ẋ)ṫ − β(x)ṫ2 = 0
(g(γ̇, γ̇) = 0)

Let us define the Fermat (Finslerian) metric in S as

F (x ,v)= 1
β

g0(v ,δ)+
q

1
β

g0(v ,v)+ 1
β2 g0(v ,δ)2,
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lightlike curves

S

Pierre de Fermat (1601-1665)
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(g(γ̇, γ̇) = 0)

Let us define the Fermat (Finslerian) metric in S as

F (x ,v)= 1
β

g0(v ,δ)+
q

1
β

g0(v ,v)+ 1
β2 g0(v ,δ)2,

L1=Observer

↘
lightlike curves

S

Pierre de Fermat (1601-1665)

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics 7 / 26



Fermat metric and lightlike geodesics

Theorem

A curve s → γ(s) = (s, x(s)) is a lightlike
pregeodesic of (R× S , g) iff s → x(s) is a
Fermat geodesic with unit speed.

Consequences:

Gravitational lensing can be studied from
geodesic connectedness in Fermat metric
Existence of t-periodic lightlike geodesics is
equivalent to existence of Fermat closed
geodesics (Biliotti-M.A.J. to appear in
Houston J. Math.)
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Randers metrics

Randers metrics in a manifold M is a function
R : TM → R defined as:

R(x , v) =
√

h(v , v) + ωx [v ]

where h is Riemannian and ω a 1-form with
‖ωx‖h < 1 ∀x ∈ M,
are basic examples of non-reversible Finsler
metrics: R(x ,−v) 6= R(x , v).

Named after the norwegian physicist Gunnar
Randers (1914-1992):

Randers, G.: On an asymmetrical metric in
the fourspace of General Relativity.
Phys. Rev. (2) 59, 195–199 (1941)
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the fourspace of General Relativity.
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Gunnar Randers with Albert Einstein
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Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction to
Riemann-Finsler geometry.

DEFINITION: F : TM → [0,+∞) continuous and

1 C∞ in TM \ {0}
2 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =
[

1
2
∂2(F 2)
∂y i∂y j (x , y)

]
is positively defined.

It can be showed that this implies:

F is positive in TM \ {0}
Triangle inequality holds in the fibers

F 2 is C 1 on TM.
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Non-symmetric “distance”

We can define the length of a curve: L(γ) =
∫ b
a F (γ, γ̇)ds

and then the distance between two points:
dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of its
reverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness
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Causality through the Fermat metric

Let d be the non-symmetric distance in S
associated to the Fermat metric

B+(x0, s) = {p ∈ S : d(x0, p) < s} forward
balls

B−(x0, s) = {p ∈ S : d(p, x0) < s}
backward balls

Define the symmetrized distance

ds(p, q) =
1

2
(d(p, q) + d(q, p))

and Bs(x , r) = {p ∈ S : ds(x , p) < r}
Let (R× S , g) be a standard stationary
spacetime. Then

I±(t0, x0) = ∪s>0{t0 ± s} × B±(x0, s),
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Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) (R× S , g) is causally simple iff the associated
Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics 13 / 26



Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) (R× S , g) is causally simple iff the associated
Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics 13 / 26



Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) (R× S , g) is causally simple iff the associated
Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious

E. Caponio, M. A. Javaloyes, M. Sánchez (*) Interplay between Lorentzian and Randers metrics 13 / 26



Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) (R× S , g) is causally simple iff the associated
Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.
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Randers metrics with the same geodesics

Let R and R ′ be Randers metrics. They are associated to
the same stationary spacetime if and only if R ′ = R + df .

Moreover, if R× S is the splitting associated to R, the
splitting associated to R ′ is R× Sf , where

Sf = {(f (x), x) : x ∈ S}

.
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Generalized Hopf-Rinow theorem

Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S ,R) a Randers manifold and given a function
f : S → R define Rf (x , v) = R(x , v)− dfx(v). The
following conditions are equivalent:

(A) the intersection B̄+(x , r) ∩ B̄−(x , r) of (S ,R) is
compact for every r > 0 and x ∈ S

(B) the symmetrized closed balls B̄s(x , r) of (S ,R) are
compact for every r > 0 and x ∈ S

(C) there exists f such that Rf is geodesically complete

(D) there exists f and p ∈ S such that the forward and
the backward exponentials of Rf are defined in TpS

(E) there exists f such that the quasi-metric df associated
to Rf is forward and backward complete

In such a case, (S ,R) is convex.
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Convexity of Finsler metrics

In fact, condition (A) generalizes forward and backward
completeness for any Finsler metric and it is enough to
prove Palais-Smale condition of the energy functional

“(A) ⇒ Convexity” holds for any Finsler metric

Morse theory can be developed assuming condition (A)

E. Caponio, M. A. J. and A. Masiello,Morse
theory of causal geodesics in a stationary spacetime via
Morse theory of geodesics of a Finsler metric.
arXiv:0903.3519v2 [math.DG]

As an application we obtain Morse theory for lightlike
geodesics and timelike geodesics with fixed proper time
from a point to a vertical line.
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Cauchy developments and Cauchy horizons

A subset A of a spacetime M is achronal if
no x , y ∈ A satisfy x � y

the future (resp. past) Cauchy development
of A is

D±(A) = {p ∈ M : every past (resp. future)
inextendible causal curve
through p meets A}

the future (resp. past) Cauchy horizon is

H±(A) = {p ∈ D±(A) : I±(p) does not meet D±(A)}
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Cauchy developments and distance function to a subset

Theorem

Let (R× S , g) be a standard stationary
spacetime such that {t0} × S is Cauchy, and
At0 = {t0} × A. Then

D+(At0) = {(t, y) : d(x , y) > t − t0

∀x /∈ A and t ≥ t0},

D−(At0) = {(t, y) : d(y , x) > t − t0

∀x /∈ A and t ≤ t0},

H+(At0) = {(t, y) : infx /∈A d(x , y) = t − t0}
H−(At0) = {(t, y) : infx /∈A d(y , x) = t − t0}

Cauchy horizons
can be seen as the
graph of the
distance function
to a subset!!!!
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infx /∈A d(x ,y)=d(Ac ,y)

infx /∈A d(y ,x)=d(y ,Ac )
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Li-Nirenberg theorem

(S ,F ) Finsler and Ω ⊂ S open with ∂Ω of class C 2,1
loc

Σ the subset of points with more than one minimizing
geodesic, and `(y) the length of the normal geodesic
from y ∈ ∂Ω to the first m(y) ∈ Σ, then

Theorem (Li-Nirenberg)

The function ∂Ω 3 y → min(N, `(y)) ∈ R+ is
Lipschitz-continuous on any compact subset. As a
consequence hn−1(Σ ∩ B) < +∞, being B bounded.

Y. Li and L. Nirenberg, The distance function to
the boundary, Finsler geometry, and the singular set of
viscosity solutions of some Hamilton-Jacobi equations,
Comm. Pure Appl. Math.,(2005).
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Measure of the crease set

any point in H+(A) admits a “generator”: a
lightlike geodesic segment contained in
H+(A) which is past-inextedible or has a
past endpoint in the boundary of A.

Let H+
mul(A) be the set of points

p ∈ H+(A) \ A admitting more than one
generator.

Theorem

(R× S , g) (n + 1)-standard stationary, with S
Cauchy an Ω ⊂ S, open connected with
C 2,1

loc -boundary ∂Ω. If At0 = {t0} × A and B is
bounded then

hn−1((R× B) ∩ H+
mul(A)) < +∞
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Achronal curve γ
J−(γ)

Cauchy surface S

A = J−(γ) ∩ S
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Cut loci of Randers metrics

(S ,R) Randers and C ⊂ S closed

ρC : S → R+ the distance function from C to p (the
infimum of the length of curves joining C to p)

A minimizing segment is a unit speed geodesic such
that ρC (γ(s)) = s

CutC is the cut locus, the points x ∈ S \ C where the
minimizing segment do not minimize anymore

This function is studied when C is a C 2,1
loc boundary in:

Y. Li and L. Nirenberg, The distance function to
the boundary, Finsler geometry, and the singular set of
viscosity solutions of some Hamilton-Jacobi equations,
Comm. Pure Appl. Math.,(2005).
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Cauchy horizons

Construct a standard stationary spacetime with R̃ (the reverse metric
of R) as Fermat metric

If R̃ =
√

h + ω ⇒
g0(v ,w) = h(v ,w)− ω(v)ω(w), β(x) = 1, g0(δ(x), v) = ω(v)

H = {(−ρC (x), x) : x ∈ S \ C} is a future horizon, that is, an
achronal, closed, future null geodesically ruled topological
hypersurface.

There are several results for the differentiability of future horizons:

J. K. Beem and A. Królak, Cauchy horizon end points and
differentiability,
J. Math. Phys., 39 (1998), pp. 6001–6010.

P. T. Chruściel, J. H. G. Fu, G. J. Galloway, and
R. Howard, On fine differentiability properties of horizons and
applications to Riemannian geometry,
J. Geom. Phys., 41 (2002), pp. 1–12.
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Cut loci of Randers metrics via Cauchy horizons

Putting all together we obtain:

Theorem

ρC is differentiable at p ∈ S \ C iff it is crossed by exactly one minimizing
segment.

Corollary

The n-dimensional Haussdorf measure of CutC is zero.
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Open problems

(1) Is there any relation between the flag curvature of the Fermat metric
and the Weyl tensor of the spacetime?:

(2) In the paper

G. W. Gibbons, C. A. R. Herdeiro, C. M. Warnick, M.
C. Werner, Stationary Metrics and Optical
Zermelo-Randers-Finsler Geometry.,
Phys.Rev.D79: 044022,2009

the authors show that Fermat metrics with constant flag curvature
correspond with locally conformally flat stationary spacetimes, but the
converse is not true.

(3) Which is the condition in the Fermat metric that characterizes
conformally flatness for the stationary spacetime?

(4) Does Generalized Hopf-Rinow theorem hold for any Finsler metric?

(5) and the results for the distance ρC from a closed subset?
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