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Interplay between Randers metrics and stationary
spacetimes

Every splitting (R× S , g) of a stationary spacetimes determines a Randers
metric R in S

Causal properties of the spacetime ⇒ Hopf-Rinow properties of the
Randers metric

There are many splittings
associated to the same spacetime

⇒

The Randers metrics associated
to different splittings have
the same pregeodesics

and common properties

Global hyperbolicity is equivalent
to the following condition

(A) : B̄+(p, r) ∩ B̄−(p, r) compact
∀p ∈ S and ∀r > 0

for the Randers metric R

⇒

Condition (A) implies:
(a) convexity of R
(b) the existence of f : S → R

such that Rf = R + df
is forward and backward
complete
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Interplay between Randers metrics and stationary
spacetimes

Cauchy horizons of spt are
related with the distance function

to or from a subset
⇒

Differentiability properties
of the distance function to
a subset are deduced
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Randers metrics

Randers metrics in a manifold M is a function
R : TM → R defined as:

R(x , v) =
√

h(v , v) + ωx [v ]

where h is Riemannian and ω a 1-form with
‖ωx‖h < 1 ∀x ∈ M,
are basic examples of non-reversible Finsler
metrics: R(x ,−v) 6= R(x , v).

Named after the norwegian physicist Gunnar
Randers (1914-1992):

Randers, G.: On an asymmetrical metric in
the fourspace of General Relativity.
Phys. Rev. (2) 59, 195–199 (1941)
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Named after the norwegian physicist Gunnar
Randers (1914-1992):

Randers, G.: On an asymmetrical metric in
the fourspace of General Relativity.
Phys. Rev. (2) 59, 195–199 (1941)

Gunnar Randers with Albert Einstein
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Stationary spacetimes

A Lorentzian manifold (M, g) with index 1
(−,+, · · · ,+)

v ∈ TM is


timelike if g(v , v) < 0

lightlike if g(v , v) = 0

causal if g(v , v) ≤ 0

spacelike if g(v , v) > 0

A spacetime is a Lorentzian manifold endowed
with a time-orientation

The time-orientation is determined by a timelike
vector field T

A causal vector v ∈ TM is future-pointing if
g(v ,T ) < 0 (if g(v ,T ) > 0 is past-pointing)

A stationary spacetime (M, g) is a Lorentzian
manifold endowed with a timelike Killing vector
field
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Kerr spacetime
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Lorentzian Causality

Causality studies if given two points
p, q ∈ M they are joined by a causal curve

p, q ∈ M are chronologically related, and
write p � q if there exists a future-pointing
timelike curve γ from p to q

p, q ∈ M are causally related p < q) if there
exists a future-pointing causal curve γ from
p to q

The chronological future of p ∈ M is defined
as I +(p) = {q ∈ M : p � q}
The causal future of p ∈ M is defined as
J+(p) = {q ∈ M : p ≤ q}
Analogously we define the chronological past
I−(p) and the causal past J−(p).
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The causal ladder

Causal properties classify spacetimes depending
on the behaviour of causal cones. A spacetime is:

Chronological if p 6∈ I +(p) for every p ∈ M.

Distinguishing if I +(p) = I +(q) or
I−(p) = I−(q) implies p = q

Causally continuous if it is distinguishing and
the Chronological cones I±(p) are
continuous in p ∈ M

Causally simple if the causal cones J±(p) are
closed for every p ∈ M

Globally hyperbolic if it admits a Cauchy
hypersurface (a subset S that meets exactly
once every inextendible timelike curve)

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Standard Stationary spacetimes

Standard Stationary means that M = R× S
and

g((τ, y), (τ, y)) = g0(y , y)+2g0(δ(x), y)τ−β(x)τ2,

where (S , g0) is Riemannian and β(x) > 0.

If a stationary spacetime is distinguishing
and the Killing field is complete, then it is
causally continuous and standard

M. A. J. and M. Sánchez, A note
on the existence of standard splittings
for conformally stationary spacetimes,
Classical Quantum Gravity, 25 (2008),
pp. 168001, 7.
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Fermat principle in standard stationary spacetimes

Relativistic Fermat Principle: lightlike
pregeodesics are critical points of the arrival
time function corresponding to an observer
in a suitable class of lightlike curves

If you consider as observer
s → L1(s) = (s, x1) in (R× S , g), given a
lightlike curve γ = (t, x), the arrival time
AT(γ) is

t(b)=t(a)+
R b
a

“
1
β

g0(ẋ ,δ)+
q

1
β

g0(ẋ ,ẋ)+ 1
β2 g0(ẋ ,δ)2

”
ds.

Thi is just because g(γ̇, γ̇) = 0, that is

g0(ẋ , ẋ) + 2g0(δ(x), ẋ)ṫ − β(x)ṫ2 = 0
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β2 g0(ẋ ,δ)2

”
ds.

Thi is just because g(γ̇, γ̇) = 0, that is
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Fermat metric and lightlike geodesics

Let us define the Fermat metric in S as

F (x ,v)= 1
β

g0(v ,δ)+
q

1
β

g0(v ,v)+ 1
β2 g0(v ,δ)2,

Theorem

A curve s → γ(s) = (s, x(s)) is a lightlike
pregeodesic of (R× S , g) iff s → x(s) is a
Fermat geodesic with unit speed.

Consequences:

Gravitational lensing can be studied from
geodesic connectedness in Fermat metric
Existence of t-periodic lightlike geodesics is
equivalent to existence of Fermat closed
geodesics
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Causality through the Fermat metric

Let d the non-symmetric distance in S
associated to the Fermat metric

B+(x0, s) = {p ∈ S : d(x0, p) < s} forward
balls

B−(x0, s) = {p ∈ S : d(x0, p) < s}
backward balls

Define the symmetrized distance

ds(p, q) =
1

2
(d(p, q) + d(q, p))

and Bs(x , r) = {p ∈ S : ds(x , p) < r}
Let (R× S , g) be a standard stationary
spacetime. Then

I±(t0, x0) = ∪s>0{t0 ± s} × B±(x0, s),
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Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) the following assertions become equivalent:

(i) (R× S , g) is causally simple,
(ii) J+(p) is closed for all p,
(iii) J−(p) is closed for all p and
(iv) the associated Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Randers metrics with the same geodesics

Let R and R ′ Randers metrics and g and g ′ standard
stationary metrics. Define the relations

R ∼ R ′ ⇐⇒ R − R ′ = df for some f ,

where f is always a smooth real function on S .

Then R ∼ R ′ if and only if the associated stationary
metrics are different splittings of the same spacetime
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Generalized Hopf-Rinow theorem

Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S ,R) a Randers manifold and given a function
f : S → R define Rf (x , v) = R(x , v)− dfx(v). The
following conditions are equivalent:

(A) the intersection B̄+(x , r) ∩ B̄−(x , r) of (S ,R) is
compact for every r > 0 and x ∈ S

(B) the symmetrized closed balls B̄s(x , r) of (S ,R) are
compact for every r > 0 and x ∈ S

(C) there exists f such that Rf is geodesically complete
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Convexity of Finsler metrics

In fact, condition (A) generalizes forward and backward
completeness for any Finsler metric and it is enough to
prove Palais-Smale condition of the energy functional

“(A) ⇒ Convexity” holds for any Finsler metric

Morse theory can be developed assuming condition (A)
(Remember the talk by Erasmo Caponio)

Condition (A) implies that the symmetrized distance is
complete

The converse is not true

Does symmetrized distance completeness imply
convexity?
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Cut loci of Randers metrics

(S ,R) Randers and C ⊂ S closed

ρC : S → R+ the distance function from C to p (the
infinum of the length of curves joining C to p

A minimizing segment is a unit speed geodesic such that
ρC (γ(s)) = s

CutC is the cut locus, the points x ∈ S \ C where the
minimizing segment do not minimize anymore

This function is studied when C is a C 2,1
loc boundary in:

Y. Li and L. Nirenberg, The distance function to the
boundary, Finsler geometry, and the singular set of
viscosity solutions of some Hamilton-Jacobi equations,
Comm. Pure Appl. Math.,(2005).
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Cauchy horizons

Construct a standard stationary spacetime with R̃ (the reverse
metric of R) as Fermat metric

H = {(−ρC (x), x) : x ∈ S \ C} is a future horizon, that is, an
achronal, closed, future null geodesically ruled topological
hypersurface.

There are several results for the differentiability of future
horizons:

J. K. Beem and A. Królak, Cauchy horizon end points and
differentiability,
J. Math. Phys., 39 (1998), pp. 6001–6010.

P. T. Chruściel, J. H. G. Fu, G. J. Galloway, and
R. Howard, On fine differentiability properties of horizons and
applications to Riemannian geometry,
J. Geom. Phys., 41 (2002), pp. 1–12.
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Cut loci of Randers metrics via Cauchy horizons

Putting all together we obtain:

Theorem

ρC is differentiable at p ∈ S \ C iff it is crossed by exactly one minimizing
segment.

Corollary

The n-dimensional Haussdorf measure of CutC is zero.
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Open problems

(1) Does it hold Generalized Hopf-Rinow theorem for any Finsler metric?

(2) and the results for the distance ρC from a closed subset?

More information in:

E. Caponio, M. A. Javaloyes and M. Sánchez, The interplay
between Lorentzian causality and Finsler metrics of Randers type.,
arxiv: 0903.3501, preprint 2009.

E. Caponio, M. A. Javaloyes and A. Masiello, On the
energy functional on Finsler manifolds and applications to stationary
spacetimes,
arxiv: 0702323, preprint 2007.

Thank you for your attention!!!!!!
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