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Interplay between Randers metrics and stationary
spacetimes

L1=Observer

S

↘
lightlike geodesic (t, x)

(R× S , l) is a standard sta-
tionary spacetime

l((τ,y),(τ,y))=g0(y ,y)+

2g0(δ,y)τ−β(x)τ2,

where β(x) > 0.
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Interplay between Randers metrics and stationary
spacetimes

L1=Observer

S

↘
lightlike geodesic (t, x)

↖
Fermat geodesic x

(R× S , l) is a standard sta-
tionary spacetime

l((τ,y),(τ,y))=g0(y ,y)+

2g0(δ,y)τ−β(x)τ2,

where β(x) > 0.

S is naturally endowed with
a Randers metric F called
the Fermat metric F (x ,v)=

1
β

g0(v ,δ)+
q

1
β

g0(v ,v)+ 1
β2 g0(v ,δ)2
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↘
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↖
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(R× S , l) is a standard sta-
tionary spacetime

l((τ,y),(τ,y))=g0(y ,y)+

2g0(δ,y)τ−β(x)τ2,

where β(x) > 0.

This is because arrival time
of lightlike curves is AT (γ)=R 1
0
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g0(ẋ ,δ)+
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g0(ẋ ,ẋ)+ 1
β2 g0(ẋ ,δ)2

”
ds
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↘
lightlike geodesic (t, x)

↖
Fermat geodesic x

Causal properties of
(R× S , l)

m

Hopf-Rinow proper-
ties of (S ,F )
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Interplay between Randers metrics and stationary
spacetimes

A

H+(A)

Differential properties
of the Cauchy hori-
zons in (R× S , l)

m

Differential properties of the
distance function to a subset
in (S ,F )



Causal condition to have a standard splitting

A spacetime is Stationary if it admits a timelike
Killing field.

How restrictive is to consider standard stationary
spacetimes rather than stationary?

M. A. J. and M. Sánchez, A note on the
existence of standard splittings for conformally
stationary spacetimes,
Classical Quantum Gravity, 25 (2008), pp. 168001,
7.

Theorem (M. A. J.- M. Sánchez)

If a stationary spacetime L is distinguishing and the
timelike Killing field is complete, then it is causally
continuous and standard

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Causality through the Fermat metric

Theorem

Let (R× S , g) be a standard stationary spacetime.
Then (R× S , g) is causally continuous and

(a) (R× S , g) is causally simple iff the associated
Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice {t0} × S , t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

B̄+(p, r) = {q : d(p, q) ≤ r} and
B̄−(p, r) = {q : d(q, p) ≤ r} d(p, q) 6= d(q, p)!!!!
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Cauchy developments and distance function to a subset

Theorem

Let (R× S , g) be a standard stationary
spacetime such that {t0} × S is Cauchy, and
At0 = {t0} × A. Then

H+(At0) = {(t, y) : infx /∈A d(x , y) = t − t0}
H−(At0) = {(t, y) : infx /∈A d(y , x) = t − t0}

Cauchy horizons
can be seen as the
graph of the
distance function
to a subset!!!!
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Measure of the crease set

any point in H+(A) admits a “generator”: a
lightlike geodesic segment contained in H+(A)
which is past-inextedible or has a past endpoint in
the boundary of A.

Let H+
mul(A) be the set of points p ∈ H+(A) \ A

admitting more than one generator.

As a consequence of a Theorem for Finsler metrics by
Li and Nirenberg (Comm. Pure Appl. Math. 2005):

Theorem

(R× S , g) (n + 1)-standard stationary, with S Cauchy
an Ω ⊂ S, open connected with C 2,1

loc -boundary ∂Ω. If
At0 = {t0} × A and B is bounded then

hn−1((R× B) ∩ H+
mul(A)) < +∞
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Achronal curve γ
J−(γ)

Cauchy surface S

A = J−(γ) ∩ S

YanYan Li and Louis Nirenberg



Open problems

(1) Is there any relation between the flag curvature of the Fermat
metric and the Weyl tensor of the spacetime?:

(2) In the paper

G. W. Gibbons, C. A. R. Herdeiro, C. M.
Warnick, M. C. Werner, Stationary Metrics and
Optical Zermelo-Randers-Finsler Geometry.,
Phys.Rev.D79: 044022,2009

the authors show that Fermat metrics with constant flag
curvature correspond with locally conformally flat stationary
spacetimes, but the converse is not true.

(3) Which is the condition in the Fermat metric that characterizes
conformally flatness for the stationary spacetime?
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