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Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction to
Riemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is a
continuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ {0}
2 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =
[

1
2
∂2(F 2)
∂y i∂y j (x , y)

]
is positively defined.

It can be showed that this implies:

F is positive in TM \ {0}
Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen
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Non-symmetric “distance”

We can define the length of a curve: L(γ) =
∫ b
a F (γ, γ̇)ds

and then the distance between two points:
dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of its
reverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness
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Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curve
of the energy function

E (γ) =

∫ 1

0
F 2(γ, γ̇)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded
(Matthias 78)
Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.
to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics
(Franks (92) and Bangert (93))
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Chern Connection

π : TM \ {0} → M is the natural projection

now we take the pullback of TM by
dπ = π∗, that is, π∗TM

We have a metric over this vector bundle
given by gij(x , y)dx i ⊗ dx j , where

gij(x , y) =
1

2

∂2(F 2)

∂y i∂y j
(x , y)

S.S. Chern (1911-2004)
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Chern Connection

Given a connection ∇, the connection 1-forms ω i
j : ∇v

∂
∂x j = ω i

j (v) ∂
∂x i

The Chern connection ∇ is the unique linear connection on π∗TM
whose connection 1-forms ωi

j satisfy:

dx j ∧ ωi
j = 0 torsion free (1)

dgij − gkjω
k

i − gikω
k

j =
2

F
Aijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Ns
j dx j ,

and

N i
j (x , y) := γ i

jkyk − 1

F
Ai

jkγ
k
rsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,
and

γ i
jk(x , y) =

1

2
g is

(
∂gsj

∂xk
− ∂gjk

∂x s
+
∂gks

∂x j

)
,Aijk(x , y) =

F

2

∂gij

∂yk
=

F

4

∂3(F 2)

∂y i∂y j∂yk
,
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j = 0 torsion free (1)

dgij − gkjω
k

i − gikω
k

j =
2

F
Aijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Ns
j dx j ,

and

N i
j (x , y) := γ i

jkyk − 1

F
Ai

jkγ
k
rsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,
and

γ i
jk(x , y) =

1

2
g is

(
∂gsj

∂xk
− ∂gjk

∂x s
+
∂gks

∂x j

)
,Aijk(x , y) =

F

2

∂gij

∂yk
=

F

4

∂3(F 2)

∂y i∂y j∂yk
,
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Covariant derivatives

The components of the Chern connection are given by:

Γi
jk(x , y) = γi

jk −
g il

F

(
AljsNs

k − AjksNs
i + AklsNs

j

)
.

that is, ω i
j = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,T )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector T ,

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,W )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26



Covariant derivatives

The components of the Chern connection are given by:

Γi
jk(x , y) = γ i

jk −
g il

F

(
AljsNs

k − AjksNs
i + AklsNs

j

)
.

that is, ω i
j = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,T )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector T ,

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,W )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26



Covariant derivatives

The components of the Chern connection are given by:

Γi
jk(x , y) = γ i

jk −
g il

F

(
AljsNs

k − AjksNs
i + AklsNs

j

)
.

that is, ω i
j = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,T )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector T ,

DT W =

(
dW i

dt
+ W jT kΓi

jk(γ,W )

)
∂

∂x i

∣∣∣∣
γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26



Other connections

Cartan connection: metric compatible but
has torsion

Hashiguchi connection

Berwald connection: no torsion. Specially
good to treat with Finsler spaces of constant
flag curvature

Rund connection: coincides with Chern
connection
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Masao Hashiguchi

Ludwig Berwald 1883 (Prague)-1942
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Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω i
j := dω i

j − ω k
j ∧ ω i

k

It can be expanded as

Ω i
j :=

1

2
R i

j kldxk ∧ dx l + P i
j kldxk ∧ δy l

F
+

1

2
Q i

j kl

δyk

F
∧ δy l

F

From free torsion of the Chern connection Q i
j kl = 0

R i
j kl =

δΓi
jl

δxk −
δΓi

jk

δxk + Γi
hkΓh

jl − Γi
hlΓ

h
jk ( δ

δxk = ∂
∂xk − N i

k
∂
∂y i )

P i
j kl = −F

∂Γi
jk

∂y l
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Bianchi Identities

First Bianchi Identity for R

R i
j kl + R i

k lj + R i
l jk = 0

Other identities:

P i
k jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRu
kl , Ru

kl = y j

F R u
j kl and

Rijkl = gjµR µ
i kl

Rklji − Rjikl =
(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mix
terms in R i

j kl and P i
j kl

Luigi Bianchi (1856-1928)
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Flag Curvature

We must fix a flagpole y and then a
transverse edge V

K (y ,V ) :=
V i (y jRjikly

l)V k

g(y , y)g(V ,V )− g(y ,V )2

We can change V by
W = αV + βy , that is,
K (y ,W ) = K (y ,V ).

We obtain the same quantity
with the other connections
(Cartan, Berwald, Hashiguchi...)
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Computing Flag curvature

G i := γ i
jky jyk (spray coefficients)

2F 2R i
k = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =
Vi (R

i
k )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =
√
〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1
F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 3
4F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it is
scalar
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Finsler metric with constant flag curvature

The complete classification is an open
problem, no Hopf’s theorem!!!

In the class of Randers metrics there does
exist a classification after a long story

In 1977 Yasuda and Shimada publish a
paper with a characterization of Randers
metrics of scalar flag curvature

As a particular case they obtain the Randers
metrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumoto
in 1989 obtain alternative derivations of the
Yasuda-Shimada theorem

In summer 2000, P. Antonelli asks if
Yasuda-Shimada theorem is indeed correct
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Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (a
graduate student) and David Bao begin to work in a
geometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing a
counterexample to Yasuda-Shimada he found when
working with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto find
independently the correct version of Yasuda-Shimada
theorem.

Still no classification (solutions
√

h + h(W , v) must have
a h-Riemannian curvature related with the module of a
h-Killing field W )

Finally they perceive that when considering Zermelo
expression of Randers metrics the geometry comes out
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Flag constant curvature and stationary spacetimes

Zermelo metric:√
1

α
g(v , v) +

1

α2
g(W , v)2 − 1

α
g(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having h
of constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationary
spacetime is of constant flag curvature, then the
spacetime is locally conformally flat

Reciprocal is not true (
√

h + df )

what about scalar flag curvature?
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Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension
≥ 3. If for every point x ∈ M the sectional
curvature does not depend on the plane, then M
has constant sectional curvature.

It was established by Issai Schur (1875-1941)

Generalized to Finsler manifolds by Lilia del
Riego in her Phd. Thesis in 1973.

Issai Schur (1875-1941)
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Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary ∂M. Then∫
M K dA +

∫
∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalized
Gauss-Bonnet to even dimensions using the
Pfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases

Bao-Chern (Ann. Math. 1996) extend it to
a wider class of Finsler manifolds
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Bao-Chern (Ann. Math. 1996) extend it to
a wider class of Finsler manifolds

Carl F. Gauss (1777-1855)
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Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalized
Gauss-Bonnet to even dimensions using the
Pfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases

Bao-Chern (Ann. Math. 1996) extend it to
a wider class of Finsler manifolds

S. S. Chern (1911-2004)

C. Allendoerfer (1911-1974)

André Weil (1906-1998)

M. A. Javaloyes (*) Flag Curvature 17 / 26



Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary ∂M. Then∫
M K dA +

∫
∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalized
Gauss-Bonnet to even dimensions using the
Pfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases

Bao-Chern (Ann. Math. 1996) extend it to
a wider class of Finsler manifolds

André Lichnerowitz (1915-1998)
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Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannian
manifold with boundary ∂M. Then∫
M K dA +

∫
∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalized
Gauss-Bonnet to even dimensions using the
Pfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)
extends the theorem to the Finsler setting in
some particular cases

Bao-Chern (Ann. Math. 1996) extend it to
a wider class of Finsler manifolds

David Bao and S. S. Chern
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Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n − 1)k > 0,
then its diameter is at most π/

√
k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

Myers obtained the generalized version with
Ric curvatures in 1941

Louis Auslander extended the result to the
Finsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26



Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n − 1)k > 0,
then its diameter is at most π/

√
k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

Myers obtained the generalized version with
Ric curvatures in 1941

Louis Auslander extended the result to the
Finsler setting in 1955 (Trans AMS)

Pierre O. Bonnet (1819-1892)

M. A. Javaloyes (*) Flag Curvature 18 / 26



Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n − 1)k > 0,
then its diameter is at most π/

√
k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

Myers obtained the generalized version with
Ric curvatures in 1941

Louis Auslander extended the result to the
Finsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26



Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n − 1)k > 0,
then its diameter is at most π/

√
k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtained
a version bounding from above the sectional
curvatures with a positive constant

Myers obtained the generalized version with
Ric curvatures in 1941

Louis Auslander extended the result to the
Finsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26



Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannian
manifold M is bounded below by (n − 1)k > 0,
then its diameter is at most π/

√
k and the

manifold is compact.

Bao-Chern-Chen assume just forward
completeness in their book “Introduction to
Riemann-Finsler geometry”

Causality reveals that completeness can be
substituted by the condition

B+(x , r)∩B−(x , r) compact for all x ∈ M and r > 0

(see Caponio-M.A.J.-Sánchez, preprint 09)
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Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, complete
and connected manifold, with all the sectional
curvatures bounded by some positive constant,
then M is simply connected.

John Lighton Synge (1897-1995) published
this result in 1936 (Quaterly Journal of
Mathematics).

Louis Auslander(1928-1997) extended the
result for Finsler manifolds in 1955

Again the completeness condition can be
weakened.
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Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connected
Riemannian manifold of non positive sectional
curvature. Then

Geodesics do not have conjugate points

expp : TpM → M is globally defined and a
local diffeorphism

If M simply connected, then expp is a
diffeomorphism

Obtained for surfaces in 1898 by Hadamard

Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.
Auslander
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Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge,
while for small (or negative) curvature, geodesics
tend to spread.

Proved in the 40’s by A. D. Aleksandrov for
surfaces

Generalized to Riemannian manifolds in
1951 by H. E. Rauch

Probably P. Dazord was the first one in
giving the generalized Rauch theorem in
1968
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Sphere Theorem

Theorem

A simply connected connected manifold with
1
4 < K ≤ 1 is homeomorphic to the sphere.

Conjecture by Rauch. First proof by M.
Berger in 1960

Alternative proof by Klingenberg in 1961
(obtaining homotopy equivalence rather than
homeomorphism)

Dazord observes that Klingeberg proof works
for reversible Finsler metrics in 1968
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Sphere theorem

Theorem

A simply connected connected manifold with
1
4 < K ≤ 1 is homeomorphic to the sphere.

In 2004 H. B. Rademacher (Math. Ann.)
extends Klingenberg proof to non-reversible
Finsler metrics using the hypothesis(

1− 1
1+λ

)2
< K ≤ 1, where

λ = max{F (−X ) : F (X ) = 1}
In 2007 S. Brendle and R. Schoen (J. Amer.
Math. Soc 2009) prove by using Ricci-flow
that there exists a diffeomorphism

To obtain Rademacher’s result it is enough
symmetrized compact balls and bounded
reversivility index
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Inextendible theorems

Toponogov theorem? Problems with angles

Submanifold theory (very difficult)

Laplacian theory
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