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We present an evolving network model in which the total numbers of nodes and edges are con-
served, but in which edges are continuously rewired according to nonlinear preferential detachment
and reattachment. Assuming power-law kernels with exponents α and β, the stationary states the
degree distributions evolve towards exhibit a second order phase transition – from relatively homo-
geneous to highly heterogeneous (with the emergence of starlike structures) at α = β. Temporal
evolution of the distribution in this critical regime is shown to follow a nonlinear diffusion equation,
arriving at either pure or mixed power-laws, of exponents −α and 1 − α.
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Complex systems may often be described as a set of
nodes with edges connecting some of them – the neigh-

bours – (see, for instance, Refs.[1–3]). The number of
edges a particular node has is called its degree, k. The
study of such large networks is usually made simpler by
considering statistical properties, e.g., the degree distri-
bution, p(k) (probability of finding a node with a par-
ticular degree). It turns out that a high proportion
of real-world networks follow power-law degree distribu-
tions, p(k) ∼ k−γ – referred to as scale-free due to their
lack of a characteristic size. Also, many of them have
their edges placed among the nodes apparently in a ran-
dom way – i.e., there is no correlation between the degree
of a node and any other of its properties, such as the de-
grees of its neighbours. Barabási and Albert [4] applied
the mechanism of preferential attachment to an evolv-
ing network model and showed how this resulted in the
degree distributions becoming scale-free for long enough
times. For this to work, attachment had to be linear –
i.e., the probability a node with degree k has of receiving
a new edge is π(k) ∼ k + q. This results in scale-free sta-
tionary degree distributions with an exponent γ = 3− q.

Preferential attachment seems to be behind the emer-
gence of many real-world, continuously growing net-
works. However, not all networks in which some nodes
at times gain (or loose) new edges have a continuously
growing number of nodes. For example, a given group of
people may form an evolving social network [5] in which
the edges represent friendship. Preferential attachment
may be relevant here – the more people you know, the
more likely it is that you will be introduced to someone
new – but probabilities are not expected to depend lin-
early on degree. For instance, there may be saturations
(highly connected people might become less accessible),
threshold effects (hermits may be prone to antisocial ten-
dencies), and other non-linearities. The brain may also
be a relevant case. Once formed, the number of neu-
rons does not seem to continually augment, and yet its
structural topology is dynamic [6]. Synaptic growth and
dendritic arborization have been shown to increase with
electric stimulation [7, 8] – and, in general, the more con-

nected a neuron is, the more current it receives from the
sum of its neighbours.

Barabási and Albert showed that both (linear) prefer-
ential attachment and an ever-growing number of nodes
are needed for scaling to emerge in their model. In a
fixed population, their mechanism would result in a fully-
connected network. However, this is not normally ob-
served in real systems. Rather, just as some new edges
sprout, others disappear – less used synapses suffer atro-
phy, unstimulating friendships wither. Often, the num-
bers of both nodes and edges remain roughly constant.
The same authors did therefore extend their model so
as to include the effects of preferential rewiring (which
could be applied to fixed-size networks), although again
probabilities depended linearly on node degree [9]. An-
other mechanism which (roughly) maintains constant the
numbers of nodes and edges is node fusing [10], once
more according to linear probabilities. As to nonlinear
preferential attachment, the (growing) BA model was ex-
tended to take power-law probabilities into account [11],
although the solutions are only scale free for the linear
case.

In this note we present an evolving network model with
preferential rewiring according to nonlinear (power-law)
probabilities. The number of nodes and edges is con-
served but the topology evolves, arriving eventually at
a macroscopically (nonequilibrium) stationary state – as
described by global properties such as the degree dis-
tribution. Depending on the exponents chosen for the
rewiring probabilities, the final state can be either fairly
homogeneous, with a typical size, or highly heteroge-
neous, with the emergence of starlike structures. In the
critical case marking the transition between these two
regimes, the degree distribution is shown to follow a non-
linear diffusion equation. This describes a tendency to-
wards stationary states that are characterized either by
scale-free or by mixed scale-free distributions, depending
on parameters.

Our model consists of a random network with N nodes
of respective degree ki, i = 1, 2, ..., N, and 1

2
N 〈k〉 edges.

Initially, the degrees have a given distribution p(k, t = 0).
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At each time step, one node is chosen with a probabil-
ity which is a function of its degree, ρ(ki). One of its
edges is then chosen randomly and removed from it, to
be reconnected to another node j chosen according to a
probability π(kj). That is, an edge is broken and another
one is created, and the total number of edges, as well as
the total number of nodes, is conserved. The functions
π(k) and ρ(k) are arbitrary, but we shall explicitly illus-

trate here π(ki) ∼ kα
i and ρ(ki) ∼ kβ

i that capture the
essence of a wide class of nonlinear monotonous response
functions and are easy to handle analytically.

The probabilities π and ρ a given node has, at each
time step, of increasing or decreasing its degree can be in-
terpreted as transition probabilities between states. The
expected value of the increment in a given p(k, t) at each
time step, ∆p(k, t), may then be written as

∂p(k, t)

∂t
= (k − 1)α k̄−1

α p(k − 1, t)

+ (k + 1)β k̄−1

β p(k + 1, t) (1)

−
(

kα k̄−1
α + kβ k̄−1

β

)

p(k, t),

where k̄a = k̄a (t) =
∑

k kap(k, t). If it exists, any sta-
tionary solution must satisfy the condition pst(k+1) (k+
1)β k̄st

α = pst(k) kα k̄st
β which, for k ≫ 1, implies that

∂pst(k)

∂k
=

(

k̄st
α

k̄st
β

kα

(k + 1)β
− 1

)

pst(k). (2)

Therefore, the distribution will have an extremum at

ke =
(

k̄st
β /k̄st

α

)
1

α−β

(where we have approximated ke ≃

ke + 1). If α < β, this will be a maximum, signalling the
peak of the distribution. On the other hand, if α > β,
ke will correspond to a minimum. Therefore, most of the
distribution will be broken in two parts, one for k < ke

and another for k > ke. The critical case for α = β
will correspond to a monotonously decreasing stationary
distribution, but such that limk→∞∂pst(k)/∂k = 0. In
fact, Eq. (1) is for this situation (α = β) the discretised
version of a nonlinear diffusion equation,

∂p(k, τ)

∂τ
=

∂2

∂k2
[kαp(k, τ)], (3)

after dynamically modifying the time scale according to
τ = t/k̄α (t). Ignoring, for the moment, border effects,
the solutions of this equation are of the form

pst(k) ∼ Ak−α + Bk−α+1, (4)

with A and B constants. If α > 2, then given A we can
always find a B which allows pst(k) to be normalized in
the thermodynamic limit [12]. For example, if the lower
limit is k ≥ 1, then B = (α−2) [1 − A/(α − 1)]. However,
if 1 < α ≤ 2, then only A can remain non-zero, and pst(k)
will be a pure power law. For α ≤ 1, both constants must
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FIG. 1: (Color online) Degree distribution p(k, t) at four dif-
ferent stages of evolution: t = 102 [(yellow) squares], 103

[(blue) circles], 104 [(red) triangles)] and 105 MCS [(black)
diamonds]. From top to bottom panels, subcritical (α = 0.5),
critical (α = 1) and supercritical (α = 1.5) rewiring expo-
nents. Symbols from MC simulations and corresponding solid
lines from numerical integration of Eq. (1). β = 1, 〈k〉 = 10
and N = 1000 in all cases.

tend to zero as N → ∞. In finite networks, no node can
have a degree larger than N − 1 or lower than 0. In fact,
one would usually wish to impose a minimum nonzero
degree, e.g. k ≥ 1. The temporal evolution of the degree
distribution is illustrated in Fig. 1. This shows the result
of integrating Eq. (1) for k ≥ 1, different times, β = 1,
and three different values of α, along with the respective
values obtained from Monte Carlo simulations.

The main result may be summarized as follows. For
α < β, the network will evolve to have a characteristic
size, centred around 〈k〉. At the critical case α = β, all
sizes appear, according either to a pure or a composite
power law, as detailed above.

If we impose, say, k ≥ 1, then starlike structures will
emerge, with a great many nodes connected to just a few
hubs [21].

Figure 2 illustrates the second order phase transition
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FIG. 2: (Color online) Adjusted variance σ2/〈k〉2 of the de-
gree distribution after 2 × 105 MCS against α, as obtained
from MC simulations, for system sizes N = 800 [(yellow)
squares], 1200 [(blue) circles], 1600 [(red) triangles] and 2000
[(black) diamonds]. Top left inset shows final degree distribu-
tions for α = 0.5 [light gray (blue)], 1 [dark gray (red)] and
1.5 (black), with N = 1000. Bottom right inset shows typi-
cal time series of σ2/〈k〉2 for the same three values of α and
N = 1200. In all cases, β = 1 and 〈k〉 = 10.

undergone by the variance of the final (stationary) degree
distribution, depending on the exponent α, where β is
set to unity. It should be mentioned that this particular
case, β = 1, corresponds to edges being chosen at random
for disconnection, since the probability of a random edge
belonging to node i is proportional to ki.

This topological phase transition is similar to the ones

that have been described in equilibrium network ensem-
bles defined via an energy function, in the so-called syn-

chronic approach to network analysis [14–17]. However,
our (nonequilibrium) model does not come within the
scope of this body of work, since the rewiring rates can-
not, in general, be derived from a potential. Furthermore,
we are here concerned with the time evolution rather than
the stationary states, making our approach diachronic.

Summing up, in spite of its simplicity, our model cap-
tures the essence of many real-world networks which
evolve while leaving the total numbers of nodes and edges
roughly constant. The grade of heterogeneity of the
stationary distribution obtained is seen to depend cru-
cially on the relation between the exponents modelling
the probabilities a node has of obtaining or loosing a
new edge. It is worth mentioning that the heterogene-
ity of the degree distribution of a random network has
been found to determine many relevant behaviours and
magnitudes such as its clustering coefficient and mean
minimum path [18], critical values related to the dynam-
ics of excitable networks [19], or the synchronisability for
systems of coupled oscillators (since this depends on the
spectral gap of the Laplacian matrix) [20].

The above shows how scale-free distributions, with a
range of exponents, may emerge for nonlinear rewiring,
although only in the critical situation in which the prob-
abilities of gaining or loosing edges are the same. We
believe that this non-trivial relation between the micro-
scopic rewiring actions (governed in our case by parame-
ters α and β) and the emergent macroscopic degree dis-
tributions could shed light on a class of biological, social
and communications networks.
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