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On the role of dynamical synapses in coincidence detection
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Abstract

In a number of recent experimental studies it has been reported that synaptic transmission is
activity-dependent process. In this paper we study whether and how the synaptic plasticity, in
particular, short-term depression a!ects coincidence detection. We explore the responses of
a neuron to massive input of Poisson distributed spike trains containing a signal of coincident
presynaptic spikes. Our numerical and analytical results indicate that depressed (dynamic)
synapses are capable of coincidence detection over a larger frequency range than non-depressed
(static) synapses. The conclusion is not particularly dependent on the neuron model and holds
for both integrate-and-"re and Hodgkin}Huxley models. � 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Recent experimental studies of cortical neurons have shown that the postsynaptic
potential is a dynamical quantity that depends on the presynaptic input history
[1,4,7,8,11,13]. After an excitatory postsynaptic potential (EPSP) the synapse needs to
recover before it restores to its original strength. Thus, the EPSP amplitude tends to
decrease with the input frequency of presynaptic spike trains. This behavior is known
as short-term synaptic depression and it is well captured by the dynamical model of
synapses introduced in [13]. Much theoretical work on neural networks has been
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�An equivalent de"nition is to consider �
���

P0.

done with the use of static model which does not provide such a frequency depend-
ence. The fact that synaptic strength is a function of neural activity, greatly a!ects our
traditional view of neural processing such as recurrent excitation, cell assemblies and
memory as attractors.
In this paper we study the responses of a single neuron when Poisson spike trains

stimulate its N synapses. A subset of M(N synapses receives fully correlated inputs
(i.e. identical Poisson spike trains) constituting a `signala term while the remaining
N!M synapses, stimulated by uncorrelated spike trains, act like a `noisea term in
the synaptic input. We have analyzed whether and how coincidence detection of the
signal depends on the type of a synapse, i.e. depressed (dynamic) or non-depressed
(static). Motivation for this analysis arises from physiological evidence indicating that
precise temporal correlation among neurons encodes various stimulus features
[2,3,12,15]. Coincidence detection represents an obvious mechanism to exploit this
fact. We present numerical and analytical results that show the detection abilities of
an integrate-and-"re (IF) [14] neuron with parameters typical for pyramidal cells. We
conclude that the depressed synapses enable the neuron to detect the signal over
a bigger range of input frequencies. The conclusion appears to be model independent
and also is valid for the Hodgkin}Huxley (HH) [5] neuron.

2. Model

We consider a single neuron that receives inputs from N excitatory synapses. All
inputs are modeled as Poisson processes with the same mean "ring rate f. According
to the model introduced in [13], each depressed synapse i is characterized by its
amount of resources distributed in recovered (x

�
), active (y

�
) and inactive (z

�
) state.

Transitions between these states are governed by "rst-order dynamics with time
constants for inactivation (�

��
"3 ms) and recovery (�

���
"800 ms). The postsynaptic

current is proportional to the amount of resources in the active state, that is,
I�
���

(t)"A
��

y
�
(t), where the parameter A

��
represents an absolute strength of the

synapse. A natural and simple way to de"ne static (non-depressed) synapse from this
model is to consider x(t)"1∀t.� Under this assumption it can be shown that the
amplitude of the (static) postsynaptic current does not depend on the frequency of the
input train. For both descriptions, dynamic or static, the total synaptic current is
given by I

���
"��

���
I�
���

.
We use a standard IF neuron, whose membrane potential satis"es

�
�
d</dt"!<#R

��
I
���

. (1)

Parameters have been taken typical for cortical cells [6,13], i.e. an input resistance
R

��
"100M� and membrane time constant �

�
"15 ms. We have considered the

threshold for "ring<
	


"13 mV above the resting potential<
���	

"0. Every time that
EPSP reaches <

	

, an action potential is generated and the membrane potential is
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�Here, it is worth mentioning that the minimal percentage for detection is related to the membrane time
constant �

�
: smaller �

�
allows smaller percentage of coincident spikes.

reset to zero. We choose an absolute refractory period �
���

"5 ms. For dynamic
synapse, we use A

��
"42.5 pA to ensure "ring at <

	

"13 mV with N"1000

excitatory synapses. For static synapse we have adjusted A
��

"8.5 pA to obtain the
same output rate at 10 Hz for both synaptic descriptions.

3. Results

We have analyzed the responses of the neuron with N"1000 and M"200.� To
"nd the parameter regions of good detection we have varied the frequency and
threshold within the ranges 1}90 Hz and 0.003}0.033 V, respectively. For each fre-
quency and threshold, the following quantities have been computed: (a) the total
number of correlated inputs (N

���
	�
), and (b) the number of output spikes occurring

immediately (within the time window of 5 ms) after the correlated inputs, that is, hits
(N


�	�
), (c) the number of output spikes occurring independently of correlated inputs,

that is, false-hits (N
������

), and (d) the number of output spikes that did not appear due
to subthreshold level of voltage and due to membrane's non-excitability during an
absolute refractory period, i.e. failures (N

����
���
). We have de"ned the coincidence

detection error as

Error"
N

������
#N

����
���
N

���
	�

. (2)

Fig. 1(A) (top) shows the coincidence detection error as a function of the frequency
and threshold, computed numerically for the neuron with either dynamic or static
synapses. For static synapse it appears that no matter how low or high the threshold
value is, the frequency window is no wider than about 10 Hz. For dynamic synapse,
however, there is an optimal threshold for which good coincidence detection is
observed for any frequency between 0 and 50 Hz.
To reproduce these phase diagrams analytically, we assume that the input consists

of a constant current due to noise (we can neglect #uctuations in the large N!M
limit) plus a deterministic signal current pulse. From the de"nition of N

������
and the

IF model we obtain

N
������

"

�(<
�����

!<
	

)N

���
	�
f [�

���
#�

�
<

	

/<

�����
]
, (3)

where <
�����

,R
��

I
�����

"�(N!M) f�
��
;

��
�(1#f�

���
;

��
)��R

��
A

��
, �(x) is the step

function, and I
�����

is the mean EPSC due to `noisea [13]. On the other hand,
N

����
���
increases every time the voltage produced by `signala plus `noisea does not

reach the threshold. Thus, when N
���
	�

arrive

N
����
���

"[1!�(<
�����

#<
������

!<
	

)]N

���
	�
(4)
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Fig. 1. Detection abilities of the IF neuron. (A) (Top) the regions of detection found numerically for the IF
neuron with either dynamic (left) or static (right) synapses, respectively, where 20% of the synapses receive
correlated spike trains. The light area lying inside the contour is a region for which the neuron is able to
detect the signal with less than 60% of errors. The black and gray regions are the zones with high
percentage of errors. Color coding is identical in both "gures. (Bottom) Figures represent the analytical
result (Eq. (3)}(5)) showing good agreement with numerical results. (B) The sub"gures (a), (b), (c) show the
typical behavior occurring in areas marked with (a), (b), (c) in the panel (A). From top to bottom, they
represent the synaptic input at 30 Hz, membrane potential for the threshold values of 8 mV (false-hits),
13 mV (hits), 30 mV (failures), respectively.
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Fig. 2. Regions of detection computed analytically for four di!erent values of �
���

and the same values of
other parameters (note that A

��
"42.5 pA in all "gures). The value of �

���
"0 s corresponds to the

non-depressed (static) synapse. The area of good detection (error less than 60%) is between the curves.

�The derivation of Eq. (5) is not straightforward and will be published elsewhere.

with

<
������

"M�
�
�
(1!e������)

�
��
(1!e������� )�

�� �	������ 

R

��
I���� (5)

which is obtained by direct integration of Eq. (1).� Here, I����"A
��
;

��
(1!e�������� )

[1!(1!;
��
)e��������]�� represents the averaged stationary EPSC amplitude of

a single synapse [13]. The analytically computed error is presented in Fig. 1(A)
(bottom) for dynamic as well as static case.
Both, numerical and analytical phase diagrams, show that there are apparent

di!erences between areas of detection for dynamic and static synapse. To examine
how coincidence detection depends on the degree of depression, we have varied �

���
.

Fig. 2 illustrates that �
���

strongly a!ects shape of the (analytical) curves bounding the
region of good detection. It can be noticed that for any �

���
'0, there exists a thre-

shold at which good detection occurs over a large range of frequencies. For increasing
�
���

this threshold moves to smaller values that are determined by
lim

���
<

�����
"�(N!M)�

��
�(�

���
)��R

��
A

��
. In Fig. 3 we show the frequency interval
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Fig. 3. The frequency window of detection (�f ) as a function of the degree of depression, i.e. �
���

. Figure
shows analytically computed �f for the "xed threshold of<

	

"13 mV and di!erent percentages (5%, 10%,

20% and 50%) of coincident spike trains.

for detection (�f ) as a function of �
���

for "xed <
	


"13 mV and di!erent percentages
of coincident spike trains. For each percentage it appears that there is a range of
�
���

allowing a large �f. This range tends to decrease with decreasing percentage of
coincident spikes.

4. Discussion

In this study we have analyzed whether a neuron receiving the massive Poissonian
spike trains is able to distinguish the coincident spikes from a noisy background. We
have shown that short-term depression can have a considerable in#uence on coincid-
ence detection. In [10] it has been reported that static (non-depressed) synapses are
incapable of coincidence detection whereas dynamic (depressed) synapses are. How-
ever, these results depend very much on the parameter settings such as the input
frequency, the number of coincident spikes, the synaptic strength and the threshold
value. Instead, we have shown that for any frequency one can tune the parameters
such that both dynamic and static synapses perform equally well. The main di!erence
is that for "xed realistic threshold the frequency-range of detection appears to be
larger for the dynamic case. This is consistent with the recent results showing that
dynamic synapses can detect relative rate changes over a large frequency range [1].
The above results also stand for the HH neuron for which numerical simulations show
the improved coincidence detection with dynamic synapses [9].
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