FURTHER PROPERTIES OF THE BISHOP-PHELPS-BOLLOBÁS MODULI

MARIO CHICA, VLADIMIR KADETS, MIGUEL MARTÍN, AND JAVIER MERÍ

Abstract

We continue the study of the Bishop-Phelps-Bollobás moduli $\Phi_{X}(\delta)$ and $\Phi_{X}^{S}(\delta)$ initiated in [M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno. J. Math. Anal. Appl. 412 (2014), no. 2, 697-719]. In particular, for a uniformly non-square Banach space X we present a simple proof of the previously known fact that $\Phi_{X}(\delta)<\sqrt{2 \delta}$ for $\delta \in(0,1 / 2)$ and extend this result to the whole range of $\delta \in(0,2)$. We demonstrate also the continuity of Φ_{X} with respect to X.

1. Introduction

In 1970, B. Bollobás [2] gave a refinement of the classical Bishop-Phelps theorem [1] on the density of the set of norm-attaining functionals in the dual of every Banach space. Such a refinement allows to approximate at the same time a functional and a vector in which it almost attains the norm by a norm-attaining functional and a point in which it attains the norm, respectively. This paper deals with two moduli, recently introduced in [5], which measure what is the best possible Bishop-Phelps-Bollobás theorem in a given space. Let us give the necessary definitions. Given a real or complex Banach space X, we write X^{*} to denote the topological dual of X. We write B_{X} and S_{X} to denote respectively the closed unit ball and the unit sphere of the space. We consider the set in $X \times X^{*}$ given by

$$
\Pi(X):=\left\{\left(x, x^{*}\right) \in S_{X} \times S_{X^{*}}: \operatorname{Re} x^{*}(x)=1\right\} .
$$

Definition 1.1 (Bishop-Phelps-Bollobás moduli, [5]).
Let X be a Banach space. The Bishop-Phelps-Bollobás modulus of X is the function $\Phi_{X}:(0,2) \longrightarrow \mathbb{R}^{+}$ such that given $\delta \in(0,2), \Phi_{X}(\delta)$ is the infimum of those $\varepsilon>0$ satisfying that for every $\left(x, x^{*}\right) \in B_{X} \times B_{X^{*}}$ with $\operatorname{Re} x^{*}(x)>1-\delta$, there is $\left(y, y^{*}\right) \in \Pi(X)$ with $\|x-y\|<\varepsilon$ and $\left\|x^{*}-y^{*}\right\|<\varepsilon$.

The spherical Bishop-Phelps-Bollobás modulus of X is the function $\Phi_{X}^{S}:(0,2) \longrightarrow \mathbb{R}^{+}$such that given $\delta \in(0,2), \Phi_{X}^{S}(\delta)$ is the infimum of those $\varepsilon>0$ satisfying that for every $\left(x, x^{*}\right) \in S_{X} \times S_{X^{*}}$ with $\operatorname{Re} x^{*}(x)>1-\delta$, there is $\left(y, y^{*}\right) \in \Pi(X)$ with $\|x-y\|<\varepsilon$ and $\left\|x^{*}-y^{*}\right\|<\varepsilon$.

Many properties of these moduli have been established in the recent papers [4, 5], to which we refer for background. It is clear that $\Phi_{X}(\delta) \geqslant \Phi_{X}^{S}(\delta)$ for every $\delta \in(0,2)$ and every Banach space X, and this inequality can be strict (for instance, this happens when X is a Hilbert space, see [5, §4]). One of the main results of [5] states that $\Phi_{X}(\delta) \leqslant \sqrt{2 \delta}$ for every $\delta \in(0,2)$ and every Banach space X [5, Theorem 2.1] and that this inequality is sharp [5, §4]: for instance, spaces of continuous functions or spaces of integrable functions satisfy $\Phi_{X}(\delta)=\sqrt{2 \delta}$ for every $\delta \in(0,2)$. Conversely, it is shown in [5, §5] and in [4, Corollary 3.4] that if $\Phi_{X}(\delta)=\sqrt{2 \delta}$ for some $\delta \in(0,1 / 2)$, then X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ (i.e. the space \mathbb{R}^{2} endowed with the maximum norm). The proofs of this fact are involved and cannot be extended to larger values of δ. The first aim of this paper is to extend this result to all values of $\delta \in(0,2)$ with a very simple proof. To do so, we provide a new sufficient geometric condition for a Banach space to contain almost isometric copies of the real space $\ell_{\infty}^{(2)}$. This is the content of section 2. Finally, section 3 is devoted to prove the continuity of the two Bishop-Phelps-Bollobás

[^0]moduli in the set of all equivalent norms of a given Banach space (which can be endowed naturally with the structure of metric space).

2. Banach spaces with the greatest possible modulus

Our aim now is to show that a Banach space X with maximum value of $\Phi_{X}(\delta)$ for some $\delta \in(0,2)$ contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$. For $\delta<1 / 2$ this was proved, with a much more complicated proof, in [5, Theorem 5.8] and [4, Corollary 3.4] (in last reference, the result is a consequence of a quantitative approach). Let us first recall the following definition.
Definition 2.1. Let X, E be Banach spaces. X contains almost isometric copies of E if for every $\varepsilon>0$ there exist a subspace $E_{\varepsilon} \subset X$ and a bijective linear operator $T: E \longrightarrow E_{\varepsilon}$ with $\|T\|<1+\varepsilon$ and $\left\|T^{-1}\right\|<1+\varepsilon$.

The unit ball of the real space $\ell_{\infty}^{(2)}$ is the square with the vertexes $u=(1,1), v=(1,-1),-u$ and $-v$, and the vertexes satisfy $\|u-v\|=\|u+v\|=2$. The following easy result, which we state here for future use, is well known and follows from the above description of the shape of the unit ball of $\ell_{\infty}^{(2)}$.
Lemma 2.2. Let X be a Banach space.
(a) X contains the real space $\ell_{\infty}^{(2)}$ isometrically if and only if there are elements $u, v \in S_{E}$ such that $\|u-v\|=\|u+v\|=2$.
(b) X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ if and only if there are elements $u_{n}, v_{n} \in$ $X, n \in \mathbb{N}$ such that $\lim \left\|u_{n}\right\|=\lim \left\|v_{n}\right\|=1$ and $\liminf \left\|u_{n}-v_{n}\right\| \geqslant 2, \liminf \left\|u_{n}+v_{n}\right\| \geqslant 2$.
(c) X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ if and only if X^{*} does (see [7, Corollary 2], for instance).

Our promised result can be stated as follows.
Theorem 2.3. Let X be a Banach space and suppose that there is $\delta \in(0,2)$ satisfying $\Phi_{X}(\delta)=\sqrt{2 \delta}$. Then, X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$.

We need a couple of preliminary results. The first one is a sufficient condition for a Banach space to contains almost-isometric copies of the real space $\ell_{\infty}^{(2)}$ which can be of independent interest.
Lemma 2.4. Let X be a Banach space. Suppose that there exist $k \in(0,1)$ and two sequences $\left(x_{n}\right)$ in S_{X} and $\left(y_{n}\right)$ in $X \backslash\{0\}$ satisfying

$$
\limsup \left\|x_{n}-y_{n}\right\| \leqslant k \quad \text { and } \quad \liminf \left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\| \geqslant 2 k
$$

Then X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$.
We will use the following result which is surely well known, but we include an elementary proof as we have not found any explicit reference.
Remark 2.5. Let X be a Banach space, $k \in(0,1)$ and let $\left(u_{n}\right),\left(v_{n}\right)$ sequences of elements of X such that

$$
\limsup \left\|u_{n}\right\| \leqslant 1, \quad \lim \sup \left\|v_{n}\right\| \leqslant 1 \quad \text { and } \quad \liminf \left\|k u_{n}+(1-k) v_{n}\right\| \geqslant 1
$$

Then $\lim \inf \left\|u_{n}+v_{n}\right\| \geqslant 2$.
Proof. Write $m_{n}=\left\|(1-k) u_{n}+k v_{n}\right\|$, take $f_{n} \in S_{X^{*}}$ such that

$$
\operatorname{Re} f_{n}\left((1-k) u_{n}+k v_{n}\right)=\left\|(1-k) u_{n}+k v_{n}\right\|=m_{n}
$$

and observe that $\limsup \operatorname{Re} f_{n}\left(u_{n}\right) \leqslant 1$ and $\limsup \operatorname{Re} f_{n}\left(v_{n}\right) \leqslant 1$. As

$$
m_{n}=(1-k) \operatorname{Re} f_{n}\left(u_{n}\right)+k \operatorname{Re} f_{n}\left(v_{n}\right)
$$

we have

$$
\operatorname{Re} f_{n}\left(u_{n}\right)=\frac{1}{1-k}\left(m_{n}-k \operatorname{Re} f_{n}\left(v_{n}\right)\right) \quad \text { and } \quad f_{n}\left(v_{n}\right)=\frac{1}{k}\left(m_{n}-(1-k) \operatorname{Re} f_{n}\left(u_{n}\right)\right)
$$

Now,

$$
\lim \inf \operatorname{Re} f_{n}\left(u_{n}\right) \geqslant \frac{1}{1-k}\left(\lim \inf m_{n}-k \lim \sup \operatorname{Re} f_{n}\left(v_{n}\right)\right) \geqslant 1
$$

and

$$
\liminf \operatorname{Re} f_{n}\left(v_{n}\right) \geqslant \frac{1}{k}\left(\liminf m_{n}-(1-k) \limsup \operatorname{Re} f_{n}\left(u_{n}\right)\right) \geqslant 1
$$

Finally,

$$
\lim \inf \left\|u_{n}+v_{n}\right\| \geqslant \liminf \operatorname{Re} f_{n}\left(u_{n}+v_{n}\right) \geqslant \liminf \operatorname{Re} f_{n}\left(u_{n}\right)+\lim \inf \operatorname{Re} f_{n}\left(v_{n}\right) \geqslant 2
$$

Proof of Lemma 2.4. Up to subsequences, we may and do suppose that

$$
\lim \left\|x_{n}-y_{n}\right\| \leqslant k, \quad \lim \left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\| \geqslant 2 k, \quad \text { and } \quad \exists \lim \left\|y_{n}\right\| .
$$

We first observe that since $\left(x_{n}\right)$ lies in S_{X}, using the triangle inequality we have that

$$
\lim \left|1-\left\|y_{n}\right\|\right|=\left|1-\lim \left\|y_{n}\right\|\right| \leqslant k
$$

Now, we have

$$
\begin{aligned}
2 k & \leqslant \lim \left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|=\lim \frac{1}{\left\|y_{n}\right\|}\| \| y_{n}\left\|x_{n}-y_{n}\right\| \\
& =\lim \frac{1}{\left\|y_{n}\right\|}\| \| y_{n}\left\|\left(x_{n}-y_{n}\right)+\left(1-\left\|y_{n}\right\|\right) y_{n}\right\| \\
& \leqslant \lim \left\|x_{n}-y_{n}\right\|+\lim \left|1-\left\|y_{n}\right\|\right| \leqslant k+k=2 k
\end{aligned}
$$

Hence, all the inequalities above are in fact equalities and we have

$$
\begin{equation*}
\lim \left\|x_{n}-y_{n}\right\|=k, \quad \lim \left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|=2 k, \quad \text { and } \quad\left|1-\lim \left\|y_{n}\right\|\right|=k \tag{1}
\end{equation*}
$$

Using Lemma 2.2, it is enough to find two sequences $\left(u_{n}\right),\left(v_{n}\right)$ in X such that $\lim \left\|u_{n}\right\|=1, \lim \left\|v_{n}\right\|=1$, $\liminf \left\|u_{n}+v_{n}\right\| \geqslant 2$ and $\liminf \left\|u_{n}-v_{n}\right\| \geqslant 2$. We distinguish two cases depending on the values of $\lim \left\|y_{n}\right\|$. Suppose first that $\lim \left\|y_{n}\right\|=1-k$ and take

$$
u_{n}=\frac{y_{n}}{1-k} \quad \text { and } \quad v_{n}=\frac{x_{n}-y_{n}}{k} \quad(n \in \mathbb{N})
$$

which satisfy that $\lim \left\|u_{n}\right\|=\lim \left\|v_{n}\right\|=1$. We have $(1-k) u_{n}+k v_{n}=x_{n} \in S_{X}$, and we may apply Remark 2.5 to get that $\lim \inf \left\|u_{n}+v_{n}\right\| \geqslant 2$. On the other hand,

$$
\begin{aligned}
\left\|u_{n}-v_{n}\right\| & =\frac{1}{k}\left\|k u_{n}-\left(x_{n}-y_{n}\right)\right\|=\frac{1}{k}\left\|k u_{n}-x_{n}+(1-k) u_{n}\right\| \\
& =\frac{1}{k}\left\|u_{n}-x_{n}\right\|=\frac{1}{k}\left\|\frac{y_{n}}{1-k}-x_{n}\right\| \\
& \geqslant \frac{1}{k}\left(\left\|\frac{y_{n}}{\left\|y_{n}\right\|}-x_{n}\right\|-\left\|\frac{y_{n}}{1-k}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|\right) \longrightarrow 2 .
\end{aligned}
$$

Therefore, liminf $\left\|u_{n}-v_{n}\right\| \geqslant 2$. This finishes the proof in this case.
If, otherwise, $\lim \left\|y_{n}\right\|=1+k$, take

$$
u_{n}=\frac{y_{n}}{1+k} \quad \text { and } \quad v_{n}=\frac{y_{n}-x_{n}}{k} \quad(n \in \mathbb{N})
$$

which satisfy that $\lim \left\|u_{n}\right\|=\lim \left\|v_{n}\right\|=1$. Observe that

$$
\begin{aligned}
\left\|u_{n}-v_{n}\right\| & =\frac{1}{k}\left\|k \frac{y_{n}}{1+k}+x_{n}-y_{n}\right\|=\frac{1}{k}\left\|x_{n}-\frac{y_{n}}{1+k}\right\| \\
& \geqslant \frac{1}{k}\left(\left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|-\left\|\frac{y_{n}}{1+k}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|\right) \longrightarrow 2
\end{aligned}
$$

Therefore, $\lim \inf \left\|u_{n}-v_{n}\right\| \geqslant 2$. On the other hand,

$$
\begin{aligned}
\left\|(1-k) u_{n}+k v_{n}\right\| & =\left\|(1-k) u_{n}+y_{n}-x_{n}\right\|=\left\|(1-k) u_{n}+(1+k) u_{n}-x_{n}\right\| \\
& =\left\|2 u_{n}-x_{n}\right\| \geqslant 2\left\|u_{n}\right\|-\left\|x_{n}\right\| \longrightarrow 1
\end{aligned}
$$

so $\lim \inf \left\|(1-k) u_{n}+k v_{n}\right\| \geqslant 1$ and we may apply Remark 2.5 to get that $\lim \inf \left\|u_{n}+v_{n}\right\| \geqslant 2$.
Observe that if the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ in Lemma 2.4 are constant, what we get (with much easier proof) is an isometric copy of the real space $\ell_{\infty}^{(2)}$. Let us state this result.
Corollary 2.6. Let X be a Banach space. Suppose that there are $x \in S_{X}, y \in X \backslash\{0\}$ and $k \in(0,1)$ satisfying

$$
\|x-y\|=k \quad \text { and } \quad\left\|x-\frac{y}{\|y\|}\right\|=2 k .
$$

Then the real linear span of $\{x, y\}$ is isometrically isomorphic to the real space $\ell_{\infty}^{(2)}$.
We would like to mention that both Lemma 2.4 and Corollary 2.6 are false for $k=0$ and $k=1$. The case of $k=0$ is immediate, as in every Banach space we may find unit vectors x, y satisfying the requirements of the corollary, and the corresponding constant sequences satisfy the requirements of the lemma. The case of $k=1$ in the corollary cannot happen: if X is a Banach space, $x \in S_{X}$ and $y \in X \backslash\{0\}$ satisfy $\|x-y\|=1$ and $\left\|x-\frac{y}{\|y\|}\right\|=2$, it follows that $\mid 1-\|y\| \|=1$ (see eq. (1)), so $\|y\|=2$; but then

$$
4=\|2 x-y\| \leqslant\|x\|+\|x-y\| \leqslant 2
$$

a contradiction. Finally, hypothesis of Lemma 2.4 for $k=1$ are satisfied in every Banach space X. Indeed, fix $x \in S_{X}$ and consider $x_{n}=x \in S_{X}$ and $y_{n}=\frac{-1}{n} x \in X \backslash\{0\}$. Then, $\left\|x_{n}-y_{n}\right\|=1+\frac{1}{n}$ and $\left\|x_{n}-\frac{y_{n}}{\left\|y_{n}\right\|}\right\|=\|2 x\|=2$.

For the proof of Theorem 2.3 we will also need the following result, which is a particular case of [8, Corollary 2.2], which we state for the sake of clearness.

Lemma 2.7 ([8, Corollary 2.2]). Let X be a Banach space. Suppose that $x^{*} \in S_{X^{*}}, \delta>0$ and $x \in B_{X}$ are such that

$$
\operatorname{Re} x^{*}(x) \geqslant 1-\delta
$$

Then, for every $k \in(0,1)$ there exist $y^{*} \in X^{*}$ and $y \in B_{X}$ such that

$$
\operatorname{Re} y^{*}(y)=\left\|y^{*}\right\|, \quad\|x-y\| \leqslant \frac{\delta}{k}, \quad\left\|x^{*}-y^{*}\right\| \leqslant k
$$

Proof of Theorem 2.3. Consider a strictly increasing sequence $\left(\rho_{n}\right)$ of positive numbers with $\lim \rho_{n}=1$ and such that $\frac{\sqrt{2 \delta}}{2 \rho_{n}}<1$ for every $n \in \mathbb{N}$. By [5, Proposition 3.8] or [4, Theorem 2.1], we have that $\Phi_{X}^{S}(\delta)=\sqrt{2 \delta}$, so for every $n \in \mathbb{N}$ there are $x_{n} \in S_{X}$ and $x_{n}^{*} \in S_{X^{*}}$ satisfying that

$$
\operatorname{Re} x_{n}^{*}\left(x_{n}\right) \geqslant 1-\delta
$$

and such that

$$
\begin{equation*}
\max \left\{\left\|x_{n}-z\right\|,\left\|x_{n}^{*}-z^{*}\right\|\right\} \geqslant \sqrt{2 \delta} \rho_{n+1} \tag{2}
\end{equation*}
$$

for every $\left(z, z^{*}\right) \in \Pi(X)$. Next, we apply Lemma 2.7 with $x_{n}^{*} \in S_{X^{*}}, x_{n} \in B_{X}$, and $k_{n}=\frac{\sqrt{2 \delta}}{2 \rho_{n}} \in(0,1)$ to obtain $y_{n}^{*} \in X^{*}$ and $y_{n} \in S_{X}$ satisfying

$$
\left\|y_{n}^{*}\right\|=\operatorname{Re} y_{n}^{*}\left(y_{n}\right), \quad\left\|x_{n}-y_{n}\right\| \leqslant \frac{\delta}{k_{n}}=\sqrt{2 \delta} \rho_{n}, \quad \text { and } \quad\left\|x_{n}^{*}-y_{n}^{*}\right\| \leqslant k_{n}=\frac{\sqrt{2 \delta}}{2 \rho_{n}}
$$

As $k_{n}<1$ and $\left\|x_{n}^{*}-y_{n}^{*}\right\| \leqslant k_{n}$, we get that $y_{n}^{*} \neq 0$ and so, $\left(y_{n}, \frac{y_{n}^{*}}{\left\|y_{n}^{*}\right\|}\right) \in \Pi(X)$. As we have that $\left\|x_{n}-y_{n}\right\| \leqslant \sqrt{2 \delta} \rho_{n}<\sqrt{2 \delta} \rho_{n+1}$, we get from equation (2) that

$$
\left\|x_{n}^{*}-\frac{y_{n}^{*}}{\left\|y_{n}^{*}\right\|}\right\| \geqslant \sqrt{2 \delta} \rho_{n+1}
$$

Summarizing, we have found two sequences $\left(x_{n}^{*}\right)$ in $S_{X^{*}}$ and $\left(y_{n}^{*}\right) \in X^{*} \backslash\{0\}$ such that

$$
\limsup \left\|x_{n}^{*}-y_{n}^{*}\right\| \leqslant \frac{\sqrt{2 \delta}}{2} \quad \text { and } \quad \liminf \left\|x_{n}^{*}-\frac{y_{n}^{*}}{\left\|y_{n}^{*}\right\|}\right\| \geqslant \sqrt{2 \delta}
$$

Now, Lemma 2.4 gives that X^{*} contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$, and so does X (Lemma 2.2), as desired.

3. Continuity of the moduli

Our next goal is to show that the Bishop-Phelps-Bollobás modulus of a Banach space is continuous in the set of all equivalent norms on a given Banach space endowed with a metric introduced in $[3, \S 18]$.

To do so we need to introduce some notation. Given a Banach space X, we denote $\mathcal{E}(X)$ the set of all equivalent norms to the original norm in $X . \mathcal{E}(X)$ is a metric space when endowed with the following distance:

$$
d(p, q)=\log \left(\min \left\{k \geqslant 1: \frac{1}{k} p \leqslant q \leqslant k p\right\}\right) \quad(p, q \in \mathcal{E}(X))
$$

For $p_{0} \in \mathcal{E}(X)$ and $k>1$ we consider the open set given by $G\left(p_{0}, k\right)=\left\{p \in \mathcal{E}(X): d\left(p, p_{0}\right)<\log k\right\}$. Given $p \in \mathcal{E}(X)$ we also use p to denote the dual norm in X^{*} and we use the notation

$$
\Pi_{p}(X)=\left\{\left(x, x^{*}\right) \in X \times X^{*}: p(x)=p\left(x^{*}\right)=x^{*}(x)=1\right\}
$$

For $\delta \in(0,2)$, we write $\Phi_{(X, p)}$ and $\Phi_{(X, p)}^{S}$ to denote respectively the Bishop-Phelps-Bollobás modulus and the spherical Bishop-Phelps-Bollobás modulus of X when it is endowed with the norm p. Besides, we consider the sets

$$
\begin{aligned}
& A_{p}(\delta)=\left\{\left(x, x^{*}\right) \in X \times X^{*}: p(x) \leqslant 1, p\left(x^{*}\right) \leqslant 1, \operatorname{Re} x^{*}(x)>1-\delta\right\} \\
& A_{p}^{S}(\delta)=\left\{\left(x, x^{*}\right) \in X \times X^{*}: p(x)=1, p\left(x^{*}\right)=1, \operatorname{Re} x^{*}(x)>1-\delta\right\}
\end{aligned}
$$

Finally, we write $d_{p}(A, B)$ to denote the Hausdorff distance between $A, B \subset X \times X^{*}$ associated to the ℓ_{∞}-distance $d_{\infty, p}$ in $X \times X^{*}$ when X and X^{*} are endowed with the norm p. That is, for $\left(x, x^{*}\right),\left(y, y^{*}\right) \in$ $X \times X^{*}$, we write

$$
d_{\infty, p}\left(\left(x, x^{*}\right),\left(y, y^{*}\right)\right)=\max \left\{p(x-y), p\left(x^{*}-y^{*}\right)\right\}
$$

and

$$
d_{p}(A, B)=\max \left\{\sup _{a \in A} \inf _{b \in B} d_{\infty, p}(a, b), \sup _{b \in B} \inf _{a \in A} d_{\infty, p}(a, b)\right\}
$$

Observe that with this notation one has that

$$
\Phi_{(X, p)}(\delta)=d_{p}\left(A_{p}(\delta), \Pi_{p}(X)\right) \quad \text { and } \quad \Phi_{(X, p)}^{S}(\delta)=d_{p}\left(A_{p}^{S}(\delta), \Pi_{p}(X)\right)
$$

Theorem 3.1. Let X be a Banach space and $\delta \in(0,2)$. The functions

$$
\Phi_{(X, \cdot)}(\delta): \mathcal{E}(X) \longrightarrow \mathbb{R} \quad \text { and } \quad \Phi_{(X, \cdot)}^{S}(\delta): \mathcal{E}(X) \longrightarrow \mathbb{R}
$$

are continuous.
To prove this result we need two lemmas which may be of independent interest.

Lemma 3.2. Let X be a Banach space, $\delta \in(0,2), p_{0} \in \mathcal{E}(X)$, and $k>1$. Let $\eta>0$ and $p, q \in G\left(p_{0}, k\right)$ satisfying $d(p, q)<\log (1+\eta)$.
Case 1: If $\delta \in(0,1]$, then

$$
d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)<k \eta+\frac{2 k \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}
$$

Case 2: If $\delta \in(1,2)$ and $(\delta-1)(1+\eta)^{2}<1$, then

$$
d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)<k \eta+2 k \frac{\eta(2+\eta)}{(1+\eta)^{2}}
$$

Proof. We suppose first that $\delta \in(0,1]$ and we write $\delta_{0}=1-\frac{1-\delta}{(1+\eta)^{2}}$. Given $\left(x, x^{*}\right) \in A_{p}(\delta)$, define $x_{0}=\frac{p(x)}{q(x)} x$ and $x_{0}^{*}=\frac{p\left(x^{*}\right)}{q\left(x^{*}\right)} x^{*}$ which obviously satisfy $q\left(x_{0}\right) \leqslant 1$ and $q\left(x_{0}^{*}\right) \leqslant 1$. Besides, it is immediate to check that

$$
x_{0}^{*}\left(x_{0}\right)=x^{*}(x) \frac{p(x) p\left(x^{*}\right)}{q(x) q\left(x^{*}\right)} \geqslant \frac{x^{*}(x)}{(1+\eta)^{2}}>\frac{1-\delta}{(1+\eta)^{2}}=1-\delta_{0}
$$

and so $\left(x_{0}, x_{0}^{*}\right) \in A_{q}\left(\delta_{0}\right)$. Observe that if $\delta<1$ then $\delta_{0}>\delta$ and we can use Case 1 of Lemma 3.3 in [5] for X endowed with the norm q to obtain $\left(y, y^{*}\right) \in A_{q}(\delta)$ satisfying

$$
\max \left\{q\left(x_{0}-y\right), q\left(x_{0}^{*}-y^{*}\right)\right\}<2 \frac{\sqrt{1-\delta}-\sqrt{1-\delta_{0}}}{1-\sqrt{1-\delta_{0}}}=\frac{2 \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}
$$

So we can estimate as follows

$$
p_{0}(x-y) \leqslant p_{0}\left(x-x_{0}\right)+p_{0}\left(x_{0}-y\right) \leqslant p_{0}(x)\left|1-\frac{p(x)}{q(x)}\right|+k q\left(x_{0}-y\right)<k \eta+\frac{2 k \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}
$$

and an analogous argument gives us the same inequality for the number $p_{0}\left(x^{*}-y^{*}\right)$. Therefore, we have that $d_{p_{0}}\left(\left(x, x^{*}\right), A_{q}(\delta)\right)<k \eta+\frac{2 k \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}$ for every $\left(x, x^{*}\right) \in A_{p}(\delta)$. Exchanging the roles of p and q one obtains $d_{p_{0}}\left(\left(z, z^{*}\right), A_{p}(\delta)\right)<k \eta+\frac{2 k \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}$ for every $\left(z, z^{*}\right) \in A_{q}(\delta)$ and hence

$$
d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)<k \eta+\frac{2 k \eta \sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}
$$

In the particular case in which $\delta=1$ it suffices to observe that $x_{0}^{*}\left(x_{0}\right)>0$ and so (x_{0}, x_{0}^{*}) belongs to $A_{q}(\delta)$. Therefore one obtains the estimation $d_{p_{0}}\left(\left(x, x^{*}\right), A_{q}(\delta)\right)<k \eta$.

Suppose now that $\delta \in(1,2)$ and define this time $\delta_{0}=1+(\delta-1)(1+\eta)^{2}$. Given $\left(x, x^{*}\right) \in A_{p}(\delta)$ we consider as in the previous case $x_{0}=\frac{p(x)}{q(x)} x$ and $x_{0}^{*}=\frac{p\left(x^{*}\right)}{q\left(x^{*}\right)} x$ which satisfy $q\left(x_{0}\right) \leqslant 1$ and $q\left(x_{0}^{*}\right) \leqslant 1$. Using the facts that $p(x) / q(x)<1+\eta, p\left(x^{*}\right) / q\left(x^{*}\right)<1+\eta$ and $1-\delta<0$, we can write

$$
x_{0}^{*}\left(x_{0}\right)=x^{*}(x) \frac{p(x) p\left(x^{*}\right)}{q(x) q\left(x^{*}\right)} \geqslant(1-\delta) \frac{p(x) p\left(x^{*}\right)}{q(x) q\left(x^{*}\right)}>(1-\delta)(1+\eta)^{2}=1-\delta_{0},
$$

and so $\left(x_{0}, x_{0}^{*}\right) \in A_{q}\left(\delta_{0}\right)$. Since $2>\delta_{0}>\delta$, we can use Case 2 of Lemma 3.3 in [5] for X endowed with the norm q to obtain $\left(y, y^{*}\right) \in A_{q}(\delta)$ satisfying

$$
\begin{aligned}
\max \left\{q\left(x_{0}-y\right), q\left(x_{0}^{*}-y^{*}\right)\right\} & <2 \frac{2-\delta_{0}}{\delta_{0}} \frac{\delta_{0}-\delta}{\delta_{0}-1+\sqrt{1-2 \delta+\delta \delta_{0}}} \\
& \leqslant 2 \frac{2-\delta_{0}}{\delta_{0}} \frac{\delta_{0}-\delta}{\delta_{0}-1} \leqslant 2 \frac{\delta_{0}-\delta}{\delta_{0}-1}=2 \frac{\eta(2+\eta)}{(1+\eta)^{2}}
\end{aligned}
$$

From this point one can proceed as in the previous case to obtain

$$
d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)<k \eta+2 k \frac{\eta(2+\eta)}{(1+\eta)^{2}}
$$

which finishes the proof.
One can obtain an analogous result for the spherical modulus using the same proof.

Lemma 3.3. Let X be a Banach space, $\delta \in(0,2)$, $p_{0} \in \mathcal{E}(X)$, and $k>1$. Let $\eta>0$ and $p, q \in G\left(p_{0}, k\right)$ satisfying $d(p, q)<\log (1+\eta)$.

Case 1: If $\delta \in(0,1]$, then

$$
d_{p_{0}}\left(A_{p}^{S}(\delta), A_{q}^{S}(\delta)\right)<k \eta+\frac{4 k(1-\delta)\left(2 \eta+\eta^{2}\right)}{\delta+2 \eta+\eta^{2}}
$$

Case 2: If $\delta \in(1,2)$, suppose that $(\delta-1)(1+\eta)^{2}<1$ and $2-\sqrt{1-(\delta-1)(1+\eta)^{2}}<\delta$, then

$$
d_{p_{0}}\left(A_{p}^{S}(\delta), A_{q}^{S}(\delta)\right)<k \eta+2 k\left(2 \eta+\eta^{2}\right) \frac{\delta-1}{2-\delta} .
$$

Proof. The proof follows exactly the same lines as the proof of Lemma 3.2, using Lemma 3.4 in [5] instead of Lemma 3.3 in the corresponding cases. We observe that when $\delta=1$, Lemma 3.4 in [5] cannot be used. In this case it suffices to take into account that the element $\left(x_{0}, x_{0}^{*}\right)$ lies in $A_{q}^{S}(\delta)$ if $\left(x, x^{*}\right)$ is in $A_{p}^{S}(\delta)$ so the estimation $d_{p_{0}}\left(\left(x, x^{*}\right), A_{q}^{S}(\delta)\right)<k \eta$ follows as in the proof of Lemma 3.2.

We are ready to show that the Bishop-Phelps-Bollobás moduli are continuous in the metric space $\mathcal{E}(X)$.

Proof of Theorem 3.1. Fixed $p_{0} \in \mathcal{E}(X)$ and $k>1$, we consider the open set in $\mathcal{E}(X)$ given by $G\left(p_{0}, k\right)=$ $\left\{p \in \mathcal{E}(X): d\left(p, p_{0}\right)<\log k\right\}$. Let $\eta>0$ be such that $(\delta-1)(1+\eta)^{2}<1$ and $p, q \in G\left(p_{0}, k\right)$ satisfying $d(p, q)<\log (1+\eta)$. Then we can estimate as follows

$$
\begin{aligned}
& \Phi_{(X, p)}(\delta)-\Phi_{(X, q)}(\delta) \leqslant d_{p}\left(A_{p}(\delta), \Pi_{p}(X)\right)-d_{q}\left(A_{q}(\delta), \Pi_{q}(X)\right) \\
& \leqslant d_{p}\left(A_{p}(\delta), A_{q}(\delta)\right)+d_{p}\left(A_{q}(\delta), \Pi_{p}(X)\right)-d_{q}\left(A_{q}(\delta), \Pi_{p}(X)\right)+d_{q}\left(\Pi_{p}(X), \Pi_{q}(X)\right) \\
& \leqslant k d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)+(1+\eta) d_{q}\left(A_{q}(\delta), \Pi_{p}(X)\right) \\
& \quad-d_{q}\left(A_{q}(\delta), \Pi_{p}(X)\right)+k d_{p_{0}}\left(\Pi_{p}(X), \Pi_{q}(X)\right) \\
& \leqslant k d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)+k \eta d_{p_{0}}\left(A_{q}(\delta), \Pi_{p}(X)\right)+k d_{p_{0}}\left(\Pi_{p}(X), \Pi_{q}(X)\right) \\
& \leqslant k d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)+2 k \eta+k d_{p_{0}}\left(\Pi_{p}(X), \Pi_{q}(X)\right) .
\end{aligned}
$$

Exchanging the roles of p and q we can write

$$
\left|\Phi_{(X, p)}(\delta)-\Phi_{(X, q)}(\delta)\right| \leqslant k d_{p_{0}}\left(A_{p}(\delta), A_{q}(\delta)\right)+2 k \eta+k d_{p_{0}}\left(\Pi_{p}(X), \Pi_{q}(X)\right)
$$

This, together with Lemma 3.2 and the continuity of $\Pi_{p}(X)$ with respect to p [3, Theorem 18.3], gives the continuity of $\Phi_{(X, \cdot)}(\delta)$.

A completely analogous argument allows to prove the continuity of $\Phi_{(X, \cdot)}^{S}$ from Lemma 3.3.
There is a classical way to measure when two Banach spaces are close, the so-called Banach-Mazur distance, and which is related to our approach using the distance between equivalent norms. Given two isomorphic Banach spaces X and Y, the Banach-Mazur distance between X and Y is defined by

$$
d_{B M}(X, Y)=\log \inf \left\{\|T\|\left\|T^{-1}\right\|: T \text { an isomorphism of } X \text { onto } Y\right\} .
$$

Note that $d_{B M}(X, Y) \geqslant 0$ and $d_{B M}(X, Z) \leqslant d_{B M}(X, Y)+d_{B M}(Y, Z)$. Given a Banach space X, we write $\mathcal{I}(X)$ to denote the set of all Banach spaces isomorphic to X, which is semimetric space when endowed with the Banach-Mazur distance. Then, the result above about the continuity of the Bishop-Phelps-Bollobás moduli on $\mathcal{E}(X)$ can be easily translated to the new setting.
Corollary 3.4. Let X be a Banach space and $\delta \in(0,2)$. The functions from $\mathcal{I}(X)$ to \mathbb{R} given by

$$
Y \longmapsto \Phi_{Y}(\delta) \quad \text { and } \quad Y \longmapsto \Phi_{Y}^{S}(\delta) \quad(Y \in \mathcal{I}(X))
$$

are continuous.

The way to deduce the above result from Theorem 3.1 is given by the next lemma, which is well-known (see [6, Exercise 1.75], for instance) and relates $\mathcal{E}(X)$ and $\mathcal{I}(X)$. We include an easy proof for the sake of completeness.
Lemma 3.5. Let X_{0}, X_{1} be Banach spaces. If $T: X_{1} \longrightarrow X_{0}$ is an isomorphism, there exists a norm $p_{1} \in \mathcal{E}\left(X_{0}\right)$ such that $\left(X_{0}, p_{1}\right)$ is isometrically isomorphic to $\left(X_{1},\|\cdot\|_{X_{1}}\right)$ and satisfying that

$$
\|x\|_{X_{0}} \leqslant p_{1}(x) \leqslant\|T\|\left\|T^{-1}\right\|\|x\|_{X_{0}}
$$

for all $x \in X_{0}$.
Proof. Define $p_{1}(x)=\|T\|\left\|T^{-1}(x)\right\|_{X_{1}}$ for every $x \in X_{0}$. Then, it is clear that (X_{0}, p_{1}) is isometrically isomorphic to $\left(X_{1},\|\cdot\|_{X_{1}}\right.$). Also, for each $x \in X_{0}$ we have

$$
p_{1}(x)=\|T\|\left\|T^{-1}(x)\right\|_{X_{1}} \leqslant\|T\|\left\|T^{-1}\right\|\|x\|_{X_{0}}
$$

and, on the other hand,

$$
\|x\|_{X_{0}}=\left\|T\left(T^{-1}(x)\right)\right\|_{X_{0}} \leqslant\|T\|\left\|T^{-1}(x)\right\|_{X_{1}}=p_{1}(x)
$$

An easy consequence of the continuity of the Bishop-Phelps-Bollobás moduli is that they coincide for Banach spaces which are almost isometric.
Corollary 3.6. Let X and Y be almost isometric Banach spaces (i.e. $d_{B M}(X, Y)=0$). Then $\Phi_{X}(\delta)=$ $\Phi_{Y}(\delta)$ and $\Phi_{X}^{S}(\delta)=\Phi_{Y}^{S}(\delta)$ for every $\delta \in(0,2)$.

References

[1] E. Bishop and R. R. Phelps, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc 67 (1961), 97-98.
[2] B. BollobÁs, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181-182.
[3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Series 10, Cambridge University Press, 1973.
[4] M. Chica, V. Kadets, M. Martín, J. Merí, M. Soloviova, Two refinements of Bishop-Phelps-Bollobás modulus, Banach J. Math. Anal. 9 (2015), no. 4, 296-315.
[5] M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno, Bishop-Phelps-Bollobás moduli of a Banach space, J. Math. Anal. Appl. 412 (2014), no. 2, 697-719.
[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory, CMS Books in Mathematics, Springer, New York, 2011.
[7] M. Kato, L. Maligranda, Y. Takahasi, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, Studia Math. 144 (2001), 275-295.
[8] R. R. Phelps, Support Cones in Banach Spaces and Their Applications, Adv. Math. 13 (1974), 1-19.
(Chica) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: mcrivas@ugr.es
(Kadets) Department of Mathematics and Informatics, Kharkiv V. N. Karazin National University, pl. Svobody 4, 61022 Kharkiv, Ukraine ORCID: 0000-0002-5606-2679

E-mail address: vova1kadets@yahoo.com
(Martín) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
ORCID: 0000-0003-4502-798X
E-mail address: mmartins@ugr.es
(Merí) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
ORCID: 0000-0002-0625-5552
E-mail address: jmeri@ugr.es

[^0]: Date: June 26th, 2015.
 First author partially supported by Junta de Andalucía and FEDER grant FQM-185. Third and fourth authors partially supported by Spanish MINECO and FEDER project no. MTM2012-31755 and by Junta de Andalucía and FEDER grant FQM-185.

