FURTHER PROPERTIES OF THE BISHOP-PHELPS-BOLLOBÁS MODULI

MARIO CHICA, VLADIMIR KADETS, MIGUEL MARTÍN, AND JAVIER MERÍ

ABSTRACT. We continue the study of the Bishop-Phelps-Bollobás moduli $\Phi_X(\delta)$ and $\Phi_X^S(\delta)$ initiated in [M. Chica, V. Kadets, M. Martín, S. Moreno-Pulido, and F. Rambla-Barreno. J. Math. Anal. Appl. 412 (2014), no. 2, 697–719]. In particular, for a uniformly non-square Banach space X we present a simple proof of the previously known fact that $\Phi_X(\delta) < \sqrt{2\delta}$ for $\delta \in (0, 1/2)$ and extend this result to the whole range of $\delta \in (0, 2)$. We demonstrate also the continuity of Φ_X with respect to X.

1. INTRODUCTION

In 1970, B. Bollobás [2] gave a refinement of the classical Bishop-Phelps theorem [1] on the density of the set of norm-attaining functionals in the dual of every Banach space. Such a refinement allows to approximate at the same time a functional and a vector in which it almost attains the norm by a norm-attaining functional and a point in which it attains the norm, respectively. This paper deals with two moduli, recently introduced in [5], which measure what is the best possible Bishop-Phelps-Bollobás theorem in a given space. Let us give the necessary definitions. Given a real or complex Banach space X, we write X^* to denote the topological dual of X. We write B_X and S_X to denote respectively the closed unit ball and the unit sphere of the space. We consider the set in $X \times X^*$ given by

$$\Pi(X) := \{ (x, x^*) \in S_X \times S_{X^*} : \operatorname{Re} x^*(x) = 1 \}.$$

Definition 1.1 (Bishop-Phelps-Bollobás moduli, [5]).

Let X be a Banach space. The Bishop-Phelps-Bollobás modulus of X is the function $\Phi_X : (0,2) \longrightarrow \mathbb{R}^+$ such that given $\delta \in (0,2)$, $\Phi_X(\delta)$ is the infimum of those $\varepsilon > 0$ satisfying that for every $(x,x^*) \in B_X \times B_{X^*}$ with Re $x^*(x) > 1 - \delta$, there is $(y, y^*) \in \Pi(X)$ with $||x - y|| < \varepsilon$ and $||x^* - y^*|| < \varepsilon$.

The spherical Bishop-Phelps-Bollobás modulus of X is the function $\Phi_X^S : (0,2) \longrightarrow \mathbb{R}^+$ such that given $\delta \in (0,2), \Phi_X^S(\delta)$ is the infimum of those $\varepsilon > 0$ satisfying that for every $(x,x^*) \in S_X \times S_{X^*}$ with Re $x^*(x) > 1 - \delta$, there is $(y,y^*) \in \Pi(X)$ with $||x - y|| < \varepsilon$ and $||x^* - y^*|| < \varepsilon$.

Many properties of these moduli have been established in the recent papers [4, 5], to which we refer for background. It is clear that $\Phi_X(\delta) \ge \Phi_X^S(\delta)$ for every $\delta \in (0, 2)$ and every Banach space X, and this inequality can be strict (for instance, this happens when X is a Hilbert space, see [5, §4]). One of the main results of [5] states that $\Phi_X(\delta) \le \sqrt{2\delta}$ for every $\delta \in (0, 2)$ and every Banach space X [5, Theorem 2.1] and that this inequality is sharp [5, §4]: for instance, spaces of continuous functions or spaces of integrable functions satisfy $\Phi_X(\delta) = \sqrt{2\delta}$ for every $\delta \in (0, 2)$. Conversely, it is shown in [5, §5] and in [4, Corollary 3.4] that if $\Phi_X(\delta) = \sqrt{2\delta}$ for some $\delta \in (0, 1/2)$, then X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ (i.e. the space \mathbb{R}^2 endowed with the maximum norm). The proofs of this fact are involved and cannot be extended to larger values of δ . The first aim of this paper is to extend this result to all values of $\delta \in (0, 2)$ with a very simple proof. To do so, we provide a new sufficient geometric condition for a Banach space to contain almost isometric copies of the real space $\ell_{\infty}^{(2)}$. This is the content of section 2. Finally, section 3 is devoted to prove the continuity of the two Bishop-Phelps-Bollobás

Date: June 26th, 2015.

First author partially supported by Junta de Andalucía and FEDER grant FQM-185. Third and fourth authors partially supported by Spanish MINECO and FEDER project no. MTM2012-31755 and by Junta de Andalucía and FEDER grant FQM-185.

CHICA, KADETS, MARTÍN, AND MERÍ

moduli in the set of all equivalent norms of a given Banach space (which can be endowed naturally with the structure of metric space).

2. Banach spaces with the greatest possible modulus

Our aim now is to show that a Banach space X with maximum value of $\Phi_X(\delta)$ for some $\delta \in (0, 2)$ contains almost isometric copies of the **real** space $\ell_{\infty}^{(2)}$. For $\delta < 1/2$ this was proved, with a much more complicated proof, in [5, Theorem 5.8] and [4, Corollary 3.4] (in last reference, the result is a consequence of a quantitative approach). Let us first recall the following definition.

Definition 2.1. Let X, E be Banach spaces. X contains almost isometric copies of E if for every $\varepsilon > 0$ there exist a subspace $E_{\varepsilon} \subset X$ and a bijective linear operator $T : E \longrightarrow E_{\varepsilon}$ with $||T|| < 1 + \varepsilon$ and $||T^{-1}|| < 1 + \varepsilon$.

The unit ball of the real space $\ell_{\infty}^{(2)}$ is the square with the vertexes u = (1, 1), v = (1, -1), -u and -v, and the vertexes satisfy ||u - v|| = ||u + v|| = 2. The following easy result, which we state here for future use, is well known and follows from the above description of the shape of the unit ball of $\ell_{\infty}^{(2)}$.

Lemma 2.2. Let X be a Banach space.

- (a) X contains the real space $\ell_{\infty}^{(2)}$ isometrically if and only if there are elements $u, v \in S_E$ such that ||u-v|| = ||u+v|| = 2.
- (b) X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ if and only if there are elements $u_n, v_n \in X$, $n \in \mathbb{N}$ such that $\lim ||u_n|| = \lim ||v_n|| = 1$ and $\liminf ||u_n v_n|| \ge 2$, $\liminf ||u_n + v_n|| \ge 2$.
- (c) X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$ if and only if X^* does (see [7, Corollary 2], for instance).

Our promised result can be stated as follows.

Theorem 2.3. Let X be a Banach space and suppose that there is $\delta \in (0,2)$ satisfying $\Phi_X(\delta) = \sqrt{2\delta}$. Then, X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$.

We need a couple of preliminary results. The first one is a sufficient condition for a Banach space to contains almost-isometric copies of the real space $\ell_{\infty}^{(2)}$ which can be of independent interest.

Lemma 2.4. Let X be a Banach space. Suppose that there exist $k \in (0,1)$ and two sequences (x_n) in S_X and (y_n) in $X \setminus \{0\}$ satisfying

$$\limsup \|x_n - y_n\| \le k \quad and \quad \liminf \left\|x_n - \frac{y_n}{\|y_n\|}\right\| \ge 2k.$$

Then X contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$.

We will use the following result which is surely well known, but we include an elementary proof as we have not found any explicit reference.

Remark 2.5. Let X be a Banach space, $k \in (0,1)$ and let (u_n) , (v_n) sequences of elements of X such that

 $\limsup \|u_n\|\leqslant 1, \quad \limsup \|v_n\|\leqslant 1 \quad \text{and} \quad \liminf \|ku_n+(1-k)v_n\|\geqslant 1.$ Then $\liminf \|u_n+v_n\|\geqslant 2.$

Proof. Write $m_n = ||(1-k)u_n + kv_n||$, take $f_n \in S_{X^*}$ such that

Re $f_n((1-k)u_n + kv_n) = ||(1-k)u_n + kv_n|| = m_n,$

and observe that $\limsup \operatorname{Re} f_n(u_n) \leq 1$ and $\limsup \operatorname{Re} f_n(v_n) \leq 1$. As

 $m_n = (1-k) \operatorname{Re} f_n(u_n) + k \operatorname{Re} f_n(v_n),$

we have

Re
$$f_n(u_n) = \frac{1}{1-k} (m_n - k \operatorname{Re} f_n(v_n))$$
 and $f_n(v_n) = \frac{1}{k} (m_n - (1-k) \operatorname{Re} f_n(u_n)).$

Now,

$$\liminf \operatorname{Re} f_n(u_n) \ge \frac{1}{1-k} \left(\liminf m_n - k \limsup \operatorname{Re} f_n(v_n)\right) \ge 1$$

and

$$\liminf \operatorname{Re} f_n(v_n) \ge \frac{1}{k} \left(\liminf m_n - (1-k) \limsup \operatorname{Re} f_n(u_n)\right) \ge 1.$$

Finally,

 $\liminf \|u_n + v_n\| \ge \liminf \operatorname{Re} f_n(u_n + v_n) \ge \liminf \operatorname{Re} f_n(u_n) + \liminf \operatorname{Re} f_n(v_n) \ge 2.$

Proof of Lemma 2.4. Up to subsequences, we may and do suppose that

$$\lim ||x_n - y_n|| \leq k, \quad \lim \left| |x_n - \frac{y_n}{||y_n||} \right| \ge 2k, \quad \text{and} \quad \exists \lim ||y_n||.$$

We first observe that since (x_n) lies in S_X , using the triangle inequality we have that

$$\lim |1 - ||y_n|| = |1 - \lim ||y_n|| \le k.$$

Now, we have

$$2k \leq \lim \left\| x_n - \frac{y_n}{\|y_n\|} \right\| = \lim \frac{1}{\|y_n\|} \left\| \|y_n\| x_n - y_n\| \right\|$$
$$= \lim \frac{1}{\|y_n\|} \left\| \|y_n\| (x_n - y_n) + (1 - \|y_n\|) y_n\| \right\|$$
$$\leq \lim \|x_n - y_n\| + \lim |1 - \|y_n\|| \leq k + k = 2k.$$

Hence, all the inequalities above are in fact equalities and we have

(1)
$$\lim ||x_n - y_n|| = k, \quad \lim ||x_n - \frac{y_n}{||y_n||}|| = 2k, \text{ and } ||1 - \lim ||y_n||| = k$$

Using Lemma 2.2, it is enough to find two sequences (u_n) , (v_n) in X such that $\lim ||u_n|| = 1$, $\lim ||v_n|| = 1$, $\lim ||v_n|| = 1$, $\lim ||u_n + v_n|| \ge 2$ and $\lim \inf ||u_n - v_n|| \ge 2$. We distinguish two cases depending on the values of $\lim ||y_n||$. Suppose first that $\lim ||y_n|| = 1 - k$ and take

$$u_n = \frac{y_n}{1-k}$$
 and $v_n = \frac{x_n - y_n}{k}$ $(n \in \mathbb{N}),$

which satisfy that $\lim ||u_n|| = \lim ||v_n|| = 1$. We have $(1 - k)u_n + kv_n = x_n \in S_X$, and we may apply Remark 2.5 to get that $\liminf ||u_n + v_n|| \ge 2$. On the other hand,

$$\begin{aligned} \|u_n - v_n\| &= \frac{1}{k} \|ku_n - (x_n - y_n)\| = \frac{1}{k} \|ku_n - x_n + (1 - k)u_n\| \\ &= \frac{1}{k} \|u_n - x_n\| = \frac{1}{k} \left\| \frac{y_n}{1 - k} - x_n \right\| \\ &\ge \frac{1}{k} \left(\left\| \frac{y_n}{\|y_n\|} - x_n \right\| - \left\| \frac{y_n}{1 - k} - \frac{y_n}{\|y_n\|} \right\| \right) \longrightarrow 2. \end{aligned}$$

Therefore, $\liminf ||u_n - v_n|| \ge 2$. This finishes the proof in this case.

If, otherwise, $\lim ||y_n|| = 1 + k$, take

$$u_n = \frac{y_n}{1+k}$$
 and $v_n = \frac{y_n - x_n}{k}$ $(n \in \mathbb{N}),$

which satisfy that $\lim ||u_n|| = \lim ||v_n|| = 1$. Observe that

$$\|u_n - v_n\| = \frac{1}{k} \left\| k \frac{y_n}{1+k} + x_n - y_n \right\| = \frac{1}{k} \left\| x_n - \frac{y_n}{1+k} \right\|$$
$$\geqslant \frac{1}{k} \left(\left\| x_n - \frac{y_n}{\|y_n\|} \right\| - \left\| \frac{y_n}{1+k} - \frac{y_n}{\|y_n\|} \right\| \right) \longrightarrow 2$$

Therefore, $\liminf ||u_n - v_n|| \ge 2$. On the other hand,

$$\begin{aligned} \left\| (1-k)u_n + kv_n \right\| &= \left\| (1-k)u_n + y_n - x_n \right\| = \left\| (1-k)u_n + (1+k)u_n - x_n \right\| \\ &= \left\| 2u_n - x_n \right\| \ge 2\|u_n\| - \|x_n\| \longrightarrow 1, \end{aligned}$$

so $\liminf \|(1-k)u_n + kv_n\| \ge 1$ and we may apply Remark 2.5 to get that $\liminf \|u_n + v_n\| \ge 2$. \Box

Observe that if the sequences (x_n) and (y_n) in Lemma 2.4 are constant, what we get (with much easier proof) is an isometric copy of the real space $\ell_{\infty}^{(2)}$. Let us state this result.

Corollary 2.6. Let X be a Banach space. Suppose that there are $x \in S_X$, $y \in X \setminus \{0\}$ and $k \in (0, 1)$ satisfying

$$||x - y|| = k$$
 and $||x - \frac{y}{||y||}|| = 2k$.

Then the real linear span of $\{x, y\}$ is isometrically isomorphic to the real space $\ell_{\infty}^{(2)}$.

We would like to mention that both Lemma 2.4 and Corollary 2.6 are false for k = 0 and k = 1. The case of k = 0 is immediate, as in every Banach space we may find unit vectors x, y satisfying the requirements of the corollary, and the corresponding constant sequences satisfy the requirements of the lemma. The case of k = 1 in the corollary cannot happen: if X is a Banach space, $x \in S_X$ and $y \in X \setminus \{0\}$ satisfy ||x - y|| = 1 and $||x - \frac{y}{||y||}|| = 2$, it follows that |1 - ||y||| = 1 (see eq. (1)), so ||y|| = 2; but then

$$4 = ||2x - y|| \le ||x|| + ||x - y|| \le 2,$$

a contradiction. Finally, hypothesis of Lemma 2.4 for k = 1 are satisfied in every Banach space X. Indeed, fix $x \in S_X$ and consider $x_n = x \in S_X$ and $y_n = \frac{-1}{n}x \in X \setminus \{0\}$. Then, $||x_n - y_n|| = 1 + \frac{1}{n}$ and $||x_n - \frac{y_n}{||y_n||}|| = ||2x|| = 2$.

For the proof of Theorem 2.3 we will also need the following result, which is a particular case of [8, Corollary 2.2], which we state for the sake of clearness.

Lemma 2.7 ([8, Corollary 2.2]). Let X be a Banach space. Suppose that $x^* \in S_{X^*}$, $\delta > 0$ and $x \in B_X$ are such that

Re
$$x^*(x) \ge 1 - \delta$$

Then, for every $k \in (0,1)$ there exist $y^* \in X^*$ and $y \in B_X$ such that

Re
$$y^*(y) = ||y^*||, \qquad ||x - y|| \le \frac{\delta}{k}, \qquad ||x^* - y^*|| \le k.$$

Proof of Theorem 2.3. Consider a strictly increasing sequence (ρ_n) of positive numbers with $\lim \rho_n = 1$ and such that $\frac{\sqrt{2\delta}}{2\rho_n} < 1$ for every $n \in \mathbb{N}$. By [5, Proposition 3.8] or [4, Theorem 2.1], we have that $\Phi_X^S(\delta) = \sqrt{2\delta}$, so for every $n \in \mathbb{N}$ there are $x_n \in S_X$ and $x_n^* \in S_{X^*}$ satisfying that

$$\operatorname{Re} x_n^*(x_n) \ge 1 - \delta$$

and such that

(2)
$$\max\{\|x_n - z\|, \|x_n^* - z^*\|\} \ge \sqrt{2\delta\rho_{n+1}}$$

for every $(z, z^*) \in \Pi(X)$. Next, we apply Lemma 2.7 with $x_n^* \in S_{X^*}$, $x_n \in B_X$, and $k_n = \frac{\sqrt{2\delta}}{2\rho_n} \in (0, 1)$ to obtain $y_n^* \in X^*$ and $y_n \in S_X$ satisfying

$$\|y_n^*\| = \operatorname{Re} y_n^*(y_n), \qquad \|x_n - y_n\| \leq \frac{\delta}{k_n} = \sqrt{2\delta}\rho_n, \qquad \text{and} \qquad \|x_n^* - y_n^*\| \leq k_n = \frac{\sqrt{2\delta}}{2\rho_n}$$

As $k_n < 1$ and $||x_n^* - y_n^*|| \leq k_n$, we get that $y_n^* \neq 0$ and so, $\left(y_n, \frac{y_n^*}{||y_n^*||}\right) \in \Pi(X)$. As we have that $||x_n - y_n|| \leq \sqrt{2\delta\rho_n} < \sqrt{2\delta\rho_{n+1}}$, we get from equation (2) that

$$\left\|x_n^* - \frac{y_n^*}{\|y_n^*\|}\right\| \geqslant \sqrt{2\delta}\rho_{n+1}$$

Summarizing, we have found two sequences (x_n^*) in S_{X^*} and $(y_n^*) \in X^* \setminus \{0\}$ such that

$$\limsup \|x_n^* - y_n^*\| \leqslant \frac{\sqrt{2\delta}}{2} \quad \text{and} \quad \liminf \left\|x_n^* - \frac{y_n^*}{\|y_n^*\|}\right\| \geqslant \sqrt{2\delta}.$$

Now, Lemma 2.4 gives that X^* contains almost isometric copies of the real space $\ell_{\infty}^{(2)}$, and so does X (Lemma 2.2), as desired.

3. Continuity of the moduli

Our next goal is to show that the Bishop-Phelps-Bollobás modulus of a Banach space is continuous in the set of all equivalent norms on a given Banach space endowed with a metric introduced in [3, §18].

To do so we need to introduce some notation. Given a Banach space X, we denote $\mathcal{E}(X)$ the set of all equivalent norms to the original norm in X. $\mathcal{E}(X)$ is a metric space when endowed with the following distance:

$$d(p,q) = \log\left(\min\left\{k \ge 1 : \frac{1}{k}p \leqslant q \leqslant kp\right\}\right) \qquad (p,q \in \mathcal{E}(X)).$$

For $p_0 \in \mathcal{E}(X)$ and k > 1 we consider the open set given by $G(p_0, k) = \{p \in \mathcal{E}(X) : d(p, p_0) < \log k\}$. Given $p \in \mathcal{E}(X)$ we also use p to denote the dual norm in X^* and we use the notation

$$\Pi_p(X) = \{(x,x^*) \in X \times X^* : p(x) = p(x^*) = x^*(x) = 1\}.$$

For $\delta \in (0,2)$, we write $\Phi_{(X,p)}$ and $\Phi_{(X,p)}^S$ to denote respectively the Bishop-Phelps-Bollobás modulus and the spherical Bishop-Phelps-Bollobás modulus of X when it is endowed with the norm p. Besides, we consider the sets

$$A_p(\delta) = \{ (x, x^*) \in X \times X^* : p(x) \leq 1, \ p(x^*) \leq 1, \ \text{Re} \ x^*(x) > 1 - \delta \}$$

$$A_p^S(\delta) = \{ (x, x^*) \in X \times X^* : p(x) = 1, \ p(x^*) = 1, \ \text{Re} \ x^*(x) > 1 - \delta \}.$$

Finally, we write $d_p(A, B)$ to denote the Hausdorff distance between $A, B \subset X \times X^*$ associated to the ℓ_{∞} -distance $d_{\infty,p}$ in $X \times X^*$ when X and X^* are endowed with the norm p. That is, for $(x, x^*), (y, y^*) \in X \times X^*$, we write

$$d_{\infty,p}((x,x^*),(y,y^*)) = \max\{p(x-y),p(x^*-y^*)\}$$

and

$$d_p(A,B) = \max\left\{\sup_{a\in A} \inf_{b\in B} d_{\infty,p}(a,b), \sup_{b\in B} \inf_{a\in A} d_{\infty,p}(a,b)\right\}.$$

Observe that with this notation one has that

$$\Phi_{(X,p)}(\delta) = d_p(A_p(\delta), \Pi_p(X)) \quad \text{and} \quad \Phi^S_{(X,p)}(\delta) = d_p(A^S_p(\delta), \Pi_p(X)).$$

Theorem 3.1. Let X be a Banach space and $\delta \in (0, 2)$. The functions

$$\Phi_{(X,\cdot)}(\delta): \mathcal{E}(X) \longrightarrow \mathbb{R} \qquad and \qquad \Phi^S_{(X,\cdot)}(\delta): \mathcal{E}(X) \longrightarrow \mathbb{R}$$

are continuous.

To prove this result we need two lemmas which may be of independent interest.

Lemma 3.2. Let X be a Banach space, $\delta \in (0,2)$, $p_0 \in \mathcal{E}(X)$, and k > 1. Let $\eta > 0$ and $p, q \in G(p_0, k)$ satisfying $d(p,q) < \log(1+\eta)$.

Case 1: If $\delta \in (0, 1]$, then

$$d_{p_0}\left(A_p(\delta), A_q(\delta)\right) < k\eta + \frac{2k\eta\sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}$$

Case 2: If $\delta \in (1,2)$ and $(\delta - 1)(1 + \eta)^2 < 1$, then

$$d_{p_0}(A_p(\delta), A_q(\delta)) < k\eta + 2k \frac{\eta(2+\eta)}{(1+\eta)^2}$$

Proof. We suppose first that $\delta \in (0,1]$ and we write $\delta_0 = 1 - \frac{1-\delta}{(1+\eta)^2}$. Given $(x, x^*) \in A_p(\delta)$, define $x_0 = \frac{p(x)}{q(x)}x$ and $x_0^* = \frac{p(x^*)}{q(x^*)}x^*$ which obviously satisfy $q(x_0) \leq 1$ and $q(x_0^*) \leq 1$. Besides, it is immediate to check that

$$x_0^*(x_0) = x^*(x)\frac{p(x)p(x^*)}{q(x)q(x^*)} \ge \frac{x^*(x)}{(1+\eta)^2} > \frac{1-\delta}{(1+\eta)^2} = 1-\delta_0,$$

and so $(x_0, x_0^*) \in A_q(\delta_0)$. Observe that if $\delta < 1$ then $\delta_0 > \delta$ and we can use Case 1 of Lemma 3.3 in [5] for X endowed with the norm q to obtain $(y, y^*) \in A_q(\delta)$ satisfying

$$\max\{q(x_0 - y), q(x_0^* - y^*)\} < 2\frac{\sqrt{1 - \delta} - \sqrt{1 - \delta_0}}{1 - \sqrt{1 - \delta_0}} = \frac{2\eta\sqrt{1 - \delta}}{1 + \eta - \sqrt{1 - \delta}}.$$

So we can estimate as follows

$$p_0(x-y) \leqslant p_0(x-x_0) + p_0(x_0-y) \leqslant p_0(x) \left| 1 - \frac{p(x)}{q(x)} \right| + kq(x_0-y) < k\eta + \frac{2k\eta\sqrt{1-\delta}}{1+\eta - \sqrt{1-\delta}}$$

and an analogous argument gives us the same inequality for the number $p_0(x^* - y^*)$. Therefore, we have that $d_{p_0}((x, x^*), A_q(\delta)) < k\eta + \frac{2k\eta\sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}$ for every $(x, x^*) \in A_p(\delta)$. Exchanging the roles of p and q one obtains $d_{p_0}((z, z^*), A_p(\delta)) < k\eta + \frac{2k\eta\sqrt{1-\delta}}{1+\eta-\sqrt{1-\delta}}$ for every $(z, z^*) \in A_q(\delta)$ and hence

$$d_{p_0}\left(A_p(\delta), A_q(\delta)\right) < k\eta + \frac{2k\eta\sqrt{1-\delta}}{1+\eta - \sqrt{1-\delta}}$$

In the particular case in which $\delta = 1$ it suffices to observe that $x_0^*(x_0) > 0$ and so (x_0, x_0^*) belongs to $A_q(\delta)$. Therefore one obtains the estimation $d_{p_0}((x, x^*), A_q(\delta)) < k\eta$.

Suppose now that $\delta \in (1,2)$ and define this time $\delta_0 = 1 + (\delta - 1)(1 + \eta)^2$. Given $(x, x^*) \in A_p(\delta)$ we consider as in the previous case $x_0 = \frac{p(x)}{q(x)}x$ and $x_0^* = \frac{p(x^*)}{q(x^*)}x$ which satisfy $q(x_0) \leq 1$ and $q(x_0^*) \leq 1$. Using the facts that $p(x)/q(x) < 1 + \eta$, $p(x^*)/q(x^*) < 1 + \eta$ and $1 - \delta < 0$, we can write

$$x_0^*(x_0) = x^*(x)\frac{p(x)p(x^*)}{q(x)q(x^*)} \ge (1-\delta)\frac{p(x)p(x^*)}{q(x)q(x^*)} > (1-\delta)(1+\eta)^2 = 1-\delta_0,$$

and so $(x_0, x_0^*) \in A_q(\delta_0)$. Since $2 > \delta_0 > \delta$, we can use Case 2 of Lemma 3.3 in [5] for X endowed with the norm q to obtain $(y, y^*) \in A_q(\delta)$ satisfying

$$\max\{q(x_0 - y), q(x_0^* - y^*)\} < 2\frac{2 - \delta_0}{\delta_0} \frac{\delta_0 - \delta}{\delta_0 - 1 + \sqrt{1 - 2\delta + \delta\delta_0}} \\ \leqslant 2\frac{2 - \delta_0}{\delta_0} \frac{\delta_0 - \delta}{\delta_0 - 1} \leqslant 2\frac{\delta_0 - \delta}{\delta_0 - 1} = 2\frac{\eta(2 + \eta)}{(1 + \eta)^2} \,.$$

From this point one can proceed as in the previous case to obtain

$$d_{p_0} \left(A_p(\delta), A_q(\delta) \right) < k\eta + 2k \frac{\eta(2+\eta)}{(1+\eta)^2} \,,$$

which finishes the proof.

One can obtain an analogous result for the spherical modulus using the same proof.

Lemma 3.3. Let X be a Banach space, $\delta \in (0,2)$, $p_0 \in \mathcal{E}(X)$, and k > 1. Let $\eta > 0$ and $p, q \in G(p_0, k)$ satisfying $d(p,q) < \log(1+\eta)$.

Case 1: If $\delta \in (0, 1]$, then

$$\begin{split} d_{p_0}\left(A_p^S(\delta), A_q^S(\delta)\right) &< k\eta + \frac{4k(1-\delta)(2\eta+\eta^2)}{\delta+2\eta+\eta^2} \,.\\ \text{Case 2: If } \delta \in (1,2), \ suppose \ that \ (\delta-1)(1+\eta)^2 &< 1 \ and \ 2 - \sqrt{1-(\delta-1)(1+\eta)^2} < \delta, \ then \\ d_{p_0}\left(A_p^S(\delta), A_q^S(\delta)\right) &< k\eta + 2k(2\eta+\eta^2)\frac{\delta-1}{2-\delta} \,. \end{split}$$

Proof. The proof follows exactly the same lines as the proof of Lemma 3.2, using Lemma 3.4 in [5] instead of Lemma 3.3 in the corresponding cases. We observe that when $\delta = 1$, Lemma 3.4 in [5] cannot be used. In this case it suffices to take into account that the element (x_0, x_0^*) lies in $A_q^S(\delta)$ if (x, x^*) is in $A_p^S(\delta)$ so the estimation $d_{p_0}((x, x^*), A_q^S(\delta)) < k\eta$ follows as in the proof of Lemma 3.2.

We are ready to show that the Bishop-Phelps-Bollobás moduli are continuous in the metric space $\mathcal{E}(X)$.

Proof of Theorem 3.1. Fixed $p_0 \in \mathcal{E}(X)$ and k > 1, we consider the open set in $\mathcal{E}(X)$ given by $G(p_0, k) = \{p \in \mathcal{E}(X) : d(p, p_0) < \log k\}$. Let $\eta > 0$ be such that $(\delta - 1)(1 + \eta)^2 < 1$ and $p, q \in G(p_0, k)$ satisfying $d(p, q) < \log(1 + \eta)$. Then we can estimate as follows

$$\begin{split} \Phi_{(X,p)}(\delta) &- \Phi_{(X,q)}(\delta) = d_p \left(A_p(\delta), \Pi_p(X) \right) - d_q \left(A_q(\delta), \Pi_q(X) \right) \\ &\leqslant d_p \left(A_p(\delta), A_q(\delta) \right) + d_p \left(A_q(\delta), \Pi_p(X) \right) - d_q \left(A_q(\delta), \Pi_p(X) \right) + d_q \left(\Pi_p(X), \Pi_q(X) \right) \\ &\leqslant k d_{p_0} \left(A_p(\delta), A_q(\delta) \right) + (1 + \eta) d_q \left(A_q(\delta), \Pi_p(X) \right) \\ &- d_q \left(A_q(\delta), \Pi_p(X) \right) + k d_{p_0} \left(\Pi_p(X), \Pi_q(X) \right) \\ &\leqslant k d_{p_0} \left(A_p(\delta), A_q(\delta) \right) + k \eta d_{p_0} \left(A_q(\delta), \Pi_p(X) \right) + k d_{p_0} \left(\Pi_p(X), \Pi_q(X) \right) \\ &\leqslant k d_{p_0} \left(A_p(\delta), A_q(\delta) \right) + 2 k \eta + k d_{p_0} \left(\Pi_p(X), \Pi_q(X) \right) . \end{split}$$

Exchanging the roles of p and q we can write

$$\left|\Phi_{(X,p)}(\delta) - \Phi_{(X,q)}(\delta)\right| \leq kd_{p_0}\left(A_p(\delta), A_q(\delta)\right) + 2k\eta + kd_{p_0}\left(\Pi_p(X), \Pi_q(X)\right)$$

This, together with Lemma 3.2 and the continuity of $\Pi_p(X)$ with respect to p [3, Theorem 18.3], gives the continuity of $\Phi_{(X,\cdot)}(\delta)$.

A completely analogous argument allows to prove the continuity of $\Phi_{(X,\cdot)}^S$ from Lemma 3.3.

There is a classical way to measure when two Banach spaces are close, the so-called Banach-Mazur distance, and which is related to our approach using the distance between equivalent norms. Given two isomorphic Banach spaces X and Y, the Banach-Mazur distance between X and Y is defined by

$$d_{BM}(X,Y) = \log \inf \{ \|T\| \| \|T^{-1}\| : T \text{ an isomorphism of } X \text{ onto } Y \}.$$

Note that $d_{BM}(X,Y) \ge 0$ and $d_{BM}(X,Z) \le d_{BM}(X,Y) + d_{BM}(Y,Z)$. Given a Banach space X, we write $\mathcal{I}(X)$ to denote the set of all Banach spaces isomorphic to X, which is semimetric space when endowed with the Banach-Mazur distance. Then, the result above about the continuity of the Bishop-Phelps-Bollobás moduli on $\mathcal{E}(X)$ can be easily translated to the new setting.

Corollary 3.4. Let X be a Banach space and $\delta \in (0,2)$. The functions from $\mathcal{I}(X)$ to \mathbb{R} given by

$$Y \longmapsto \Phi_Y(\delta) \quad and \quad Y \longmapsto \Phi_Y^S(\delta) \qquad (Y \in \mathcal{I}(X))$$

are continuous.

The way to deduce the above result from Theorem 3.1 is given by the next lemma, which is well-known (see [6, Exercise 1.75], for instance) and relates $\mathcal{E}(X)$ and $\mathcal{I}(X)$. We include an easy proof for the sake of completeness.

Lemma 3.5. Let X_0 , X_1 be Banach spaces. If $T : X_1 \longrightarrow X_0$ is an isomorphism, there exists a norm $p_1 \in \mathcal{E}(X_0)$ such that (X_0, p_1) is isometrically isomorphic to $(X_1, \|\cdot\|_{X_1})$ and satisfying that

$$||x||_{X_0} \leq p_1(x) \leq ||T|| ||T^{-1}|| ||x||_{X_0}$$

for all $x \in X_0$.

Proof. Define $p_1(x) = ||T|| ||T^{-1}(x)||_{X_1}$ for every $x \in X_0$. Then, it is clear that (X_0, p_1) is isometrically isomorphic to $(X_1, ||\cdot||_{X_1})$. Also, for each $x \in X_0$ we have

$$p_1(x) = \|T\| \|T^{-1}(x)\|_{X_1} \leq \|T\| \|T^{-1}\| \|x\|_{X_0}$$

and, on the other hand,

$$\|x\|_{X_0} = \|T(T^{-1}(x))\|_{X_0} \leqslant \|T\| \|T^{-1}(x)\|_{X_1} = p_1(x).$$

An easy consequence of the continuity of the Bishop-Phelps-Bollobás moduli is that they coincide for Banach spaces which are almost isometric.

Corollary 3.6. Let X and Y be almost isometric Banach spaces (i.e. $d_{BM}(X,Y) = 0$). Then $\Phi_X(\delta) = \Phi_Y(\delta)$ and $\Phi_X^S(\delta) = \Phi_Y^S(\delta)$ for every $\delta \in (0,2)$.

References

- E. BISHOP AND R. R. PHELPS, A proof that every Banach space is subreflexive, Bull. Amer. Math. Soc 67 (1961), 97–98.
- [2] B. BOLLOBÁS, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc. 2 (1970), 181–182.
- [3] F. F. BONSALL AND J. DUNCAN, Numerical Ranges II, London Math. Soc. Lecture Note Series 10, Cambridge University Press, 1973.
- [4] M. CHICA, V. KADETS, M. MARTÍN, J. MERÍ, M. SOLOVIOVA, Two refinements of Bishop-Phelps-Bollobás modulus, Banach J. Math. Anal. 9 (2015), no. 4, 296–315.
- [5] M. CHICA, V. KADETS, M. MARTÍN, S. MORENO-PULIDO, AND F. RAMBLA-BARRENO, Bishop-Phelps-Bollobás moduli of a Banach space, J. Math. Anal. Appl. 412 (2014), no. 2, 697–719.
- [6] M. FABIAN, P. HABALA, P. HÁJEK, V. MONTESINOS, AND V. ZIZLER, Banach space theory, CMS Books in Mathematics, Springer, New York, 2011.
- [7] M. KATO, L. MALIGRANDA, Y. TAKAHASI, On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces, *Studia Math.* 144 (2001), 275–295.
- [8] R. R. PHELPS, Support Cones in Banach Spaces and Their Applications, Adv. Math. 13 (1974), 1–19.

(Chica) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

E-mail address: mcrivas@ugr.es

(Kadets) Department of Mathematics and Informatics, Kharkiv V. N. Karazin National University, pl. Svobody 4, 61022 Kharkiv, Ukraine ORCID: 0000-0002-5606-2679

E-mail address: vova1kadets@yahoo.com

(Martín) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain

ORCID: 0000-0003-4502-798X

E-mail address: mmartins@ugr.es

(Merí) Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SPAIN ORCID: 0000-0002-0625-5552

E-mail address: jmeri@ugr.es