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Abstract. We continue the study of the Bishop-Phelps-Bollobás moduli ΦX(δ) and ΦS
X(δ) initiated in

[M. Chica, V. Kadets, M. Mart́ın, S. Moreno-Pulido, and F. Rambla-Barreno. J. Math. Anal. Appl.

412 (2014), no. 2, 697–719]. In particular, for a uniformly non-square Banach space X we present a

simple proof of the previously known fact that ΦX(δ) <
√

2δ for δ ∈ (0, 1/2) and extend this result to

the whole range of δ ∈ (0, 2). We demonstrate also the continuity of ΦX with respect to X.

1. Introduction

In 1970, B. Bollobás [2] gave a refinement of the classical Bishop-Phelps theorem [1] on the density
of the set of norm-attaining functionals in the dual of every Banach space. Such a refinement allows
to approximate at the same time a functional and a vector in which it almost attains the norm by a
norm-attaining functional and a point in which it attains the norm, respectively. This paper deals with
two moduli, recently introduced in [5], which measure what is the best possible Bishop-Phelps-Bollobás
theorem in a given space. Let us give the necessary definitions. Given a real or complex Banach space
X, we write X∗ to denote the topological dual of X. We write BX and SX to denote respectively the
closed unit ball and the unit sphere of the space. We consider the set in X ×X∗ given by

Π(X) :=
{

(x, x∗) ∈ SX × SX∗ : Re x∗(x) = 1
}
.

Definition 1.1 (Bishop-Phelps-Bollobás moduli, [5]).
Let X be a Banach space. The Bishop-Phelps-Bollobás modulus of X is the function ΦX : (0, 2) −→ R+

such that given δ ∈ (0, 2), ΦX(δ) is the infimum of those ε > 0 satisfying that for every (x, x∗) ∈ BX×BX∗

with Re x∗(x) > 1− δ, there is (y, y∗) ∈ Π(X) with ‖x− y‖ < ε and ‖x∗ − y∗‖ < ε.

The spherical Bishop-Phelps-Bollobás modulus of X is the function ΦSX : (0, 2) −→ R+ such that
given δ ∈ (0, 2), ΦSX(δ) is the infimum of those ε > 0 satisfying that for every (x, x∗) ∈ SX × SX∗ with
Re x∗(x) > 1− δ, there is (y, y∗) ∈ Π(X) with ‖x− y‖ < ε and ‖x∗ − y∗‖ < ε.

Many properties of these moduli have been established in the recent papers [4, 5], to which we refer
for background. It is clear that ΦX(δ) > ΦSX(δ) for every δ ∈ (0, 2) and every Banach space X, and
this inequality can be strict (for instance, this happens when X is a Hilbert space, see [5, §4]). One

of the main results of [5] states that ΦX(δ) 6
√

2δ for every δ ∈ (0, 2) and every Banach space X [5,
Theorem 2.1] and that this inequality is sharp [5, §4]: for instance, spaces of continuous functions or

spaces of integrable functions satisfy ΦX(δ) =
√

2δ for every δ ∈ (0, 2). Conversely, it is shown in [5, §5]

and in [4, Corollary 3.4] that if ΦX(δ) =
√

2δ for some δ ∈ (0, 1/2), then X contains almost isometric

copies of the real space `
(2)
∞ (i.e. the space R2 endowed with the maximum norm). The proofs of this fact

are involved and cannot be extended to larger values of δ. The first aim of this paper is to extend this
result to all values of δ ∈ (0, 2) with a very simple proof. To do so, we provide a new sufficient geometric

condition for a Banach space to contain almost isometric copies of the real space `
(2)
∞ . This is the content

of section 2. Finally, section 3 is devoted to prove the continuity of the two Bishop-Phelps-Bollobás
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moduli in the set of all equivalent norms of a given Banach space (which can be endowed naturally with
the structure of metric space).

2. Banach spaces with the greatest possible modulus

Our aim now is to show that a Banach space X with maximum value of ΦX(δ) for some δ ∈ (0, 2)

contains almost isometric copies of the real space `
(2)
∞ . For δ < 1/2 this was proved, with a much more

complicated proof, in [5, Theorem 5.8] and [4, Corollary 3.4] (in last reference, the result is a consequence
of a quantitative approach). Let us first recall the following definition.

Definition 2.1. Let X, E be Banach spaces. X contains almost isometric copies of E if for every ε > 0
there exist a subspace Eε ⊂ X and a bijective linear operator T : E −→ Eε with ‖T‖ < 1 + ε and
‖T−1‖ < 1 + ε.

The unit ball of the real space `
(2)
∞ is the square with the vertexes u = (1, 1), v = (1,−1), −u and −v,

and the vertexes satisfy ‖u− v‖ = ‖u+ v‖ = 2. The following easy result, which we state here for future

use, is well known and follows from the above description of the shape of the unit ball of `
(2)
∞ .

Lemma 2.2. Let X be a Banach space.

(a) X contains the real space `
(2)
∞ isometrically if and only if there are elements u, v ∈ SE such that

‖u− v‖ = ‖u+ v‖ = 2.

(b) X contains almost isometric copies of the real space `
(2)
∞ if and only if there are elements un, vn ∈

X, n ∈ N such that lim ‖un‖ = lim ‖vn‖ = 1 and lim inf ‖un − vn‖ > 2, lim inf ‖un + vn‖ > 2.

(c) X contains almost isometric copies of the real space `
(2)
∞ if and only if X∗ does (see [7, Corollary 2],

for instance).

Our promised result can be stated as follows.

Theorem 2.3. Let X be a Banach space and suppose that there is δ ∈ (0, 2) satisfying ΦX(δ) =
√

2δ.

Then, X contains almost isometric copies of the real space `
(2)
∞ .

We need a couple of preliminary results. The first one is a sufficient condition for a Banach space to

contains almost-isometric copies of the real space `
(2)
∞ which can be of independent interest.

Lemma 2.4. Let X be a Banach space. Suppose that there exist k ∈ (0, 1) and two sequences (xn) in
SX and (yn) in X \ {0} satisfying

lim sup ‖xn − yn‖ 6 k and lim inf

∥∥∥∥xn − yn
‖yn‖

∥∥∥∥ > 2k.

Then X contains almost isometric copies of the real space `
(2)
∞ .

We will use the following result which is surely well known, but we include an elementary proof as we
have not found any explicit reference.

Remark 2.5. Let X be a Banach space, k ∈ (0, 1) and let (un), (vn) sequences of elements of X such
that

lim sup ‖un‖ 6 1, lim sup ‖vn‖ 6 1 and lim inf ‖kun + (1− k)vn‖ > 1.

Then lim inf ‖un + vn‖ > 2.

Proof. Write mn = ‖(1− k)un + kvn‖, take fn ∈ SX∗ such that

Re fn
(
(1− k)un + kvn

)
=
∥∥(1− k)un + kvn

∥∥ = mn,

and observe that lim sup Re fn(un) 6 1 and lim sup Re fn(vn) 6 1. As

mn = (1− k) Re fn(un) + kRe fn(vn),
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we have

Re fn(un) =
1

1− k
(
mn − kRe fn(vn)

)
and fn(vn) =

1

k

(
mn − (1− k) Re fn(un)

)
.

Now,

lim inf Re fn(un) >
1

1− k
(
lim inf mn − k lim sup Re fn(vn)

)
> 1

and

lim inf Re fn(vn) >
1

k

(
lim inf mn − (1− k) lim sup Re fn(un)

)
> 1.

Finally,

lim inf ‖un + vn‖ > lim inf Re fn(un + vn) > lim inf Re fn(un) + lim inf Re fn(vn) > 2. �

Proof of Lemma 2.4. Up to subsequences, we may and do suppose that

lim ‖xn − yn‖ 6 k, lim

∥∥∥∥xn − yn
‖yn‖

∥∥∥∥ > 2k, and ∃ lim ‖yn‖.

We first observe that since (xn) lies in SX , using the triangle inequality we have that

lim
∣∣1− ‖yn‖∣∣ =

∣∣1− lim ‖yn‖
∣∣ 6 k.

Now, we have

2k 6 lim

∥∥∥∥xn − yn
‖yn‖

∥∥∥∥ = lim
1

‖yn‖
∥∥‖yn‖xn − yn∥∥

= lim
1

‖yn‖
∥∥‖yn‖(xn − yn) + (1− ‖yn‖)yn

∥∥
6 lim ‖xn − yn‖+ lim

∣∣1− ‖yn‖∣∣ 6 k + k = 2k.

Hence, all the inequalities above are in fact equalities and we have

(1) lim ‖xn − yn‖ = k, lim

∥∥∥∥xn − yn
‖yn‖

∥∥∥∥ = 2k, and |1− lim ‖yn‖| = k.

Using Lemma 2.2, it is enough to find two sequences (un), (vn) in X such that lim ‖un‖ = 1, lim ‖vn‖ = 1,
lim inf ‖un + vn‖ > 2 and lim inf ‖un − vn‖ > 2. We distinguish two cases depending on the values of
lim ‖yn‖. Suppose first that lim ‖yn‖ = 1− k and take

un =
yn

1− k
and vn =

xn − yn
k

(n ∈ N),

which satisfy that lim ‖un‖ = lim ‖vn‖ = 1. We have (1 − k)un + kvn = xn ∈ SX , and we may apply
Remark 2.5 to get that lim inf ‖un + vn‖ > 2. On the other hand,

‖un − vn‖ =
1

k
‖kun − (xn − yn)‖ =

1

k
‖kun − xn + (1− k)un‖

=
1

k
‖un − xn‖ =

1

k

∥∥∥∥ yn
1− k

− xn
∥∥∥∥

>
1

k

(∥∥∥∥ yn
‖yn‖

− xn
∥∥∥∥− ∥∥∥∥ yn

1− k
− yn
‖yn‖

∥∥∥∥) −→ 2.

Therefore, lim inf ‖un − vn‖ > 2. This finishes the proof in this case.

If, otherwise, lim ‖yn‖ = 1 + k, take

un =
yn

1 + k
and vn =

yn − xn
k

(n ∈ N),
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which satisfy that lim ‖un‖ = lim ‖vn‖ = 1. Observe that

‖un − vn‖ =
1

k

∥∥∥∥k yn
1 + k

+ xn − yn
∥∥∥∥ =

1

k

∥∥∥∥xn − yn
1 + k

∥∥∥∥
>

1

k

(∥∥∥∥xn − yn
‖yn‖

∥∥∥∥− ∥∥∥∥ yn
1 + k

− yn
‖yn‖

∥∥∥∥) −→ 2.

Therefore, lim inf ‖un − vn‖ > 2. On the other hand,∥∥(1− k)un + kvn
∥∥ =

∥∥(1− k)un + yn − xn
∥∥ =

∥∥(1− k)un + (1 + k)un − xn
∥∥

=
∥∥2un − xn

∥∥ > 2‖un‖ − ‖xn‖ −→ 1,

so lim inf ‖(1− k)un + kvn
∥∥ > 1 and we may apply Remark 2.5 to get that lim inf ‖un + vn‖ > 2. �

Observe that if the sequences (xn) and (yn) in Lemma 2.4 are constant, what we get (with much easier

proof) is an isometric copy of the real space `
(2)
∞ . Let us state this result.

Corollary 2.6. Let X be a Banach space. Suppose that there are x ∈ SX , y ∈ X \ {0} and k ∈ (0, 1)
satisfying

‖x− y‖ = k and

∥∥∥∥x− y

‖y‖

∥∥∥∥ = 2k.

Then the real linear span of {x, y} is isometrically isomorphic to the real space `
(2)
∞ .

We would like to mention that both Lemma 2.4 and Corollary 2.6 are false for k = 0 and k = 1.
The case of k = 0 is immediate, as in every Banach space we may find unit vectors x, y satisfying the
requirements of the corollary, and the corresponding constant sequences satisfy the requirements of the
lemma. The case of k = 1 in the corollary cannot happen: if X is a Banach space, x ∈ SX and y ∈ X \{0}
satisfy ‖x− y‖ = 1 and

∥∥∥x− y
‖y‖

∥∥∥ = 2, it follows that |1− ‖y‖| = 1 (see eq. (1)), so ‖y‖ = 2; but then

4 = ‖2x− y‖ 6 ‖x‖+ ‖x− y‖ 6 2,

a contradiction. Finally, hypothesis of Lemma 2.4 for k = 1 are satisfied in every Banach space X.
Indeed, fix x ∈ SX and consider xn = x ∈ SX and yn = −1

n x ∈ X \ {0}. Then, ‖xn − yn‖ = 1 + 1
n and∥∥∥∥xn − yn

‖yn‖

∥∥∥∥ = ‖2x‖ = 2.

For the proof of Theorem 2.3 we will also need the following result, which is a particular case of [8,
Corollary 2.2], which we state for the sake of clearness.

Lemma 2.7 ([8, Corollary 2.2]). Let X be a Banach space. Suppose that x∗ ∈ SX∗ , δ > 0 and x ∈ BX
are such that

Re x∗(x) > 1− δ.
Then, for every k ∈ (0, 1) there exist y∗ ∈ X∗ and y ∈ BX such that

Re y∗(y) = ‖y∗‖, ‖x− y‖ 6 δ

k
, ‖x∗ − y∗‖ 6 k.

Proof of Theorem 2.3. Consider a strictly increasing sequence (ρn) of positive numbers with lim ρn = 1

and such that
√

2δ
2ρn

< 1 for every n ∈ N. By [5, Proposition 3.8] or [4, Theorem 2.1], we have that

ΦSX(δ) =
√

2δ, so for every n ∈ N there are xn ∈ SX and x∗n ∈ SX∗ satisfying that

Re x∗n(xn) > 1− δ

and such that

(2) max{‖xn − z‖, ‖x∗n − z∗‖} >
√

2δρn+1
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for every (z, z∗) ∈ Π(X). Next, we apply Lemma 2.7 with x∗n ∈ SX∗ , xn ∈ BX , and kn =
√

2δ
2ρn
∈ (0, 1) to

obtain y∗n ∈ X∗ and yn ∈ SX satisfying

‖y∗n‖ = Re y∗n(yn), ‖xn − yn‖ 6
δ

kn
=
√

2δρn , and ‖x∗n − y∗n‖ 6 kn =

√
2δ

2ρn
.

As kn < 1 and ‖x∗n − y∗n‖ 6 kn, we get that y∗n 6= 0 and so,
(
yn,

y∗n
‖y∗n‖

)
∈ Π(X). As we have that

‖xn − yn‖ 6
√

2δρn <
√

2δρn+1, we get from equation (2) that∥∥∥∥x∗n − y∗n
‖y∗n‖

∥∥∥∥ > √2δρn+1.

Summarizing, we have found two sequences (x∗n) in SX∗ and (y∗n) ∈ X∗ \ {0} such that

lim sup ‖x∗n − y∗n‖ 6
√

2δ

2
and lim inf

∥∥∥∥x∗n − y∗n
‖y∗n‖

∥∥∥∥ > √2δ .

Now, Lemma 2.4 gives that X∗ contains almost isometric copies of the real space `
(2)
∞ , and so does X

(Lemma 2.2), as desired. �

3. Continuity of the moduli

Our next goal is to show that the Bishop-Phelps-Bollobás modulus of a Banach space is continuous in
the set of all equivalent norms on a given Banach space endowed with a metric introduced in [3, §18].

To do so we need to introduce some notation. Given a Banach space X, we denote E(X) the set of
all equivalent norms to the original norm in X. E(X) is a metric space when endowed with the following
distance:

d(p, q) = log

(
min

{
k > 1 :

1

k
p 6 q 6 kp

})
(p, q ∈ E(X)).

For p0 ∈ E(X) and k > 1 we consider the open set given by G(p0, k) = {p ∈ E(X) : d(p, p0) < log k}.
Given p ∈ E(X) we also use p to denote the dual norm in X∗ and we use the notation

Πp(X) = {(x, x∗) ∈ X ×X∗ : p(x) = p(x∗) = x∗(x) = 1}.
For δ ∈ (0, 2), we write Φ(X,p) and ΦS(X,p) to denote respectively the Bishop-Phelps-Bollobás modulus

and the spherical Bishop-Phelps-Bollobás modulus of X when it is endowed with the norm p. Besides,
we consider the sets

Ap(δ) = {(x, x∗) ∈ X ×X∗ : p(x) 6 1, p(x∗) 6 1, Re x∗(x) > 1− δ}
ASp (δ) = {(x, x∗) ∈ X ×X∗ : p(x) = 1, p(x∗) = 1, Re x∗(x) > 1− δ}.

Finally, we write dp(A,B) to denote the Hausdorff distance between A,B ⊂ X × X∗ associated to the
`∞-distance d∞,p in X ×X∗ when X and X∗ are endowed with the norm p. That is, for (x, x∗), (y, y∗) ∈
X ×X∗, we write

d∞,p
(
(x, x∗), (y, y∗)

)
= max{p(x− y), p(x∗ − y∗)}

and

dp(A,B) = max

{
sup
a∈A

inf
b∈B

d∞,p(a, b), sup
b∈B

inf
a∈A

d∞,p(a, b)

}
.

Observe that with this notation one has that

Φ(X,p)(δ) = dp(Ap(δ),Πp(X)) and ΦS(X,p)(δ) = dp(A
S
p (δ),Πp(X)).

Theorem 3.1. Let X be a Banach space and δ ∈ (0, 2). The functions

Φ(X,·)(δ) : E(X) −→ R and ΦS(X,·)(δ) : E(X) −→ R
are continuous.

To prove this result we need two lemmas which may be of independent interest.
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Lemma 3.2. Let X be a Banach space, δ ∈ (0, 2), p0 ∈ E(X), and k > 1. Let η > 0 and p, q ∈ G(p0, k)
satisfying d(p, q) < log(1 + η).

Case 1: If δ ∈ (0, 1], then

dp0 (Ap(δ), Aq(δ)) < kη +
2kη
√

1− δ
1 + η −

√
1− δ

.

Case 2: If δ ∈ (1, 2) and (δ − 1)(1 + η)2 < 1, then

dp0 (Ap(δ), Aq(δ)) < kη + 2k
η(2 + η)

(1 + η)2
.

Proof. We suppose first that δ ∈ (0, 1] and we write δ0 = 1 − 1−δ
(1+η)2 . Given (x, x∗) ∈ Ap(δ), define

x0 = p(x)
q(x)x and x∗0 = p(x∗)

q(x∗)x
∗ which obviously satisfy q(x0) 6 1 and q(x∗0) 6 1. Besides, it is immediate

to check that

x∗0(x0) = x∗(x)
p(x)p(x∗)

q(x)q(x∗)
>

x∗(x)

(1 + η)2
>

1− δ
(1 + η)2

= 1− δ0,

and so (x0, x
∗
0) ∈ Aq(δ0). Observe that if δ < 1 then δ0 > δ and we can use Case 1 of Lemma 3.3 in [5]

for X endowed with the norm q to obtain (y, y∗) ∈ Aq(δ) satisfying

max{q(x0 − y), q(x∗0 − y∗)} < 2

√
1− δ −

√
1− δ0

1−
√

1− δ0
=

2η
√

1− δ
1 + η −

√
1− δ

.

So we can estimate as follows

p0(x− y) 6 p0(x− x0) + p0(x0 − y) 6 p0(x)

∣∣∣∣1− p(x)

q(x)

∣∣∣∣+ kq(x0 − y) < kη +
2kη
√

1− δ
1 + η −

√
1− δ

and an analogous argument gives us the same inequality for the number p0(x∗ − y∗). Therefore, we have

that dp0
(
(x, x∗), Aq(δ)

)
< kη + 2kη

√
1−δ

1+η−
√

1−δ for every (x, x∗) ∈ Ap(δ). Exchanging the roles of p and q one

obtains dp0
(
(z, z∗), Ap(δ)

)
< kη + 2kη

√
1−δ

1+η−
√

1−δ for every (z, z∗) ∈ Aq(δ) and hence

dp0 (Ap(δ), Aq(δ)) < kη +
2kη
√

1− δ
1 + η −

√
1− δ

.

In the particular case in which δ = 1 it suffices to observe that x∗0(x0) > 0 and so (x0, x
∗
0) belongs to

Aq(δ). Therefore one obtains the estimation dp0
(
(x, x∗), Aq(δ)

)
< kη.

Suppose now that δ ∈ (1, 2) and define this time δ0 = 1 + (δ − 1)(1 + η)2. Given (x, x∗) ∈ Ap(δ) we

consider as in the previous case x0 = p(x)
q(x)x and x∗0 = p(x∗)

q(x∗)x which satisfy q(x0) 6 1 and q(x∗0) 6 1. Using

the facts that p(x)/q(x) < 1 + η, p(x∗)/q(x∗) < 1 + η and 1− δ < 0, we can write

x∗0(x0) = x∗(x)
p(x)p(x∗)

q(x)q(x∗)
> (1− δ)p(x)p(x∗)

q(x)q(x∗)
> (1− δ)(1 + η)2 = 1− δ0,

and so (x0, x
∗
0) ∈ Aq(δ0). Since 2 > δ0 > δ, we can use Case 2 of Lemma 3.3 in [5] for X endowed with

the norm q to obtain (y, y∗) ∈ Aq(δ) satisfying

max{q(x0 − y), q(x∗0 − y∗)} < 2
2− δ0
δ0

δ0 − δ
δ0 − 1 +

√
1− 2δ + δδ0

6 2
2− δ0
δ0

δ0 − δ
δ0 − 1

6 2
δ0 − δ
δ0 − 1

= 2
η(2 + η)

(1 + η)2
.

From this point one can proceed as in the previous case to obtain

dp0 (Ap(δ), Aq(δ)) < kη + 2k
η(2 + η)

(1 + η)2
,

which finishes the proof. �

One can obtain an analogous result for the spherical modulus using the same proof.
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Lemma 3.3. Let X be a Banach space, δ ∈ (0, 2), p0 ∈ E(X), and k > 1. Let η > 0 and p, q ∈ G(p0, k)
satisfying d(p, q) < log(1 + η).

Case 1: If δ ∈ (0, 1], then

dp0
(
ASp (δ), ASq (δ)

)
< kη +

4k(1− δ)(2η + η2)

δ + 2η + η2
.

Case 2: If δ ∈ (1, 2), suppose that (δ − 1)(1 + η)2 < 1 and 2−
√

1− (δ − 1)(1 + η)2 < δ, then

dp0
(
ASp (δ), ASq (δ)

)
< kη + 2k(2η + η2)

δ − 1

2− δ
.

Proof. The proof follows exactly the same lines as the proof of Lemma 3.2, using Lemma 3.4 in [5] instead
of Lemma 3.3 in the corresponding cases. We observe that when δ = 1, Lemma 3.4 in [5] cannot be used.
In this case it suffices to take into account that the element (x0, x

∗
0) lies in ASq (δ) if (x, x∗) is in ASp (δ) so

the estimation dp0
(
(x, x∗), ASq (δ)

)
< kη follows as in the proof of Lemma 3.2. �

We are ready to show that the Bishop-Phelps-Bollobás moduli are continuous in the metric space
E(X).

Proof of Theorem 3.1. Fixed p0 ∈ E(X) and k > 1, we consider the open set in E(X) given by G(p0, k) =
{p ∈ E(X) : d(p, p0) < log k}. Let η > 0 be such that (δ − 1)(1 + η)2 < 1 and p, q ∈ G(p0, k) satisfying
d(p, q) < log(1 + η). Then we can estimate as follows

Φ(X,p)(δ)− Φ(X,q)(δ) = dp (Ap(δ),Πp(X))− dq (Aq(δ),Πq(X))

6 dp (Ap(δ), Aq(δ)) + dp (Aq(δ),Πp(X))− dq (Aq(δ),Πp(X)) + dq (Πp(X),Πq(X))

6 kdp0 (Ap(δ), Aq(δ)) + (1 + η)dq (Aq(δ),Πp(X))

− dq (Aq(δ),Πp(X)) + kdp0 (Πp(X),Πq(X))

6 kdp0 (Ap(δ), Aq(δ)) + kηdp0 (Aq(δ),Πp(X)) + kdp0 (Πp(X),Πq(X))

6 kdp0 (Ap(δ), Aq(δ)) + 2kη + kdp0 (Πp(X),Πq(X)) .

Exchanging the roles of p and q we can write∣∣Φ(X,p)(δ)− Φ(X,q)(δ)
∣∣ 6 kdp0 (Ap(δ), Aq(δ)) + 2kη + kdp0 (Πp(X),Πq(X)) .

This, together with Lemma 3.2 and the continuity of Πp(X) with respect to p [3, Theorem 18.3], gives
the continuity of Φ(X,·)(δ).

A completely analogous argument allows to prove the continuity of ΦS(X,·) from Lemma 3.3. �

There is a classical way to measure when two Banach spaces are close, the so-called Banach-Mazur
distance, and which is related to our approach using the distance between equivalent norms. Given two
isomorphic Banach spaces X and Y , the Banach-Mazur distance between X and Y is defined by

dBM (X,Y ) = log inf
{
‖T‖‖T−1‖ : T an isomorphism of X onto Y

}
.

Note that dBM (X,Y ) > 0 and dBM (X,Z) 6 dBM (X,Y ) + dBM (Y,Z). Given a Banach space X, we
write I(X) to denote the set of all Banach spaces isomorphic to X, which is semimetric space when
endowed with the Banach-Mazur distance. Then, the result above about the continuity of the Bishop-
Phelps-Bollobás moduli on E(X) can be easily translated to the new setting.

Corollary 3.4. Let X be a Banach space and δ ∈ (0, 2). The functions from I(X) to R given by

Y 7−→ ΦY (δ) and Y 7−→ ΦSY (δ)
(
Y ∈ I(X)

)
are continuous.
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The way to deduce the above result from Theorem 3.1 is given by the next lemma, which is well-known
(see [6, Exercise 1.75], for instance) and relates E(X) and I(X). We include an easy proof for the sake
of completeness.

Lemma 3.5. Let X0, X1 be Banach spaces. If T : X1 −→ X0 is an isomorphism, there exists a norm
p1 ∈ E(X0) such that (X0, p1) is isometrically isomorphic to (X1, ‖ · ‖X1) and satisfying that

‖x‖X0 6 p1(x) 6 ‖T‖‖T−1‖ ‖x‖X0

for all x ∈ X0.

Proof. Define p1(x) = ‖T‖‖T−1(x)‖X1 for every x ∈ X0. Then, it is clear that (X0, p1) is isometrically
isomorphic to (X1, ‖ · ‖X1

). Also, for each x ∈ X0 we have

p1(x) = ‖T‖‖T−1(x)‖X1 6 ‖T‖‖T−1‖ ‖x‖X0

and, on the other hand,

‖x‖X0
= ‖T (T−1(x))‖X0

6 ‖T‖‖T−1(x)‖X1
= p1(x). �

An easy consequence of the continuity of the Bishop-Phelps-Bollobás moduli is that they coincide for
Banach spaces which are almost isometric.

Corollary 3.6. Let X and Y be almost isometric Banach spaces (i.e. dBM (X,Y ) = 0). Then ΦX(δ) =
ΦY (δ) and ΦSX(δ) = ΦSY (δ) for every δ ∈ (0, 2).
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