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Abstract. A Banach space X is said to be an extremely non-complex space if the norm equal-
ity ‖ Id +T 2‖ = 1 + ‖T 2‖ holds for every bounded linear operator T on X. We show that

every extremely non-complex Banach space has positive numerical index, it does not have an

unconditional basis and that the infimum of the diameters of the slices of its unit ball is positive.

For a real Banach space X, we write SX for its unit sphere and BX for its unit ball. The dual
space of X is denoted by X∗ and L(X) is the space of all (bounded linear) operators from X to
X.

A Banach space X is said to be extremely non-complex if the norm equality

‖ Id +T 2‖ = 1 + ‖T 2‖
holds for every T ∈ L(X). This concept was introduced in [7], where several different exam-
ples of C(K) spaces are shown to be extremely non-complex, answering a question possed in [4,
Question 4.11]. For instance, this is the case for some perfect compact spaces K constructed by
P. Koszmider [6] such that C(K) has few operators (in the sense that every operator is a weak
multiplier). In [8] examples of extremely non-complex Banach spaces which are not C(K) spaces
were provided and they were used to provide an example of a Banach space whose group of sur-
jective isometries reduces to ± Id, but the group of surjective isometries of its dual contains the
group of isometries of a separable infinite-dimensional Hilbert space as a subgroup.

This notion is closely related to the so-called Daugavet equation. We recall that an operator S
defined on a Banach space X satisfies the Daugavet equation if

‖ Id +S‖ = 1 + ‖S‖
and that the space X has the Daugavet property [5] if the Daugavet equation holds for every rank-
one operator on X. It is known that a Banach space with the Daugavet property does not have
unconditional basis and that every slice of its unit ball has diameter two.

Another somehow related notion is that of numerical index of Banach spaces. The numerical
index of a Banach space X [1] is given by

n(X) = inf{v(T ) : T ∈ L(X), ‖T‖ = 1}
where v(T ) stands for the numerical radius of the operator T , i.e.

v(T ) = sup{|λ| : λ ∈ V (T )}
and V (T ) is the numerical range of T , i.e.

V (T ) = {x∗(T (x)) : x∗ ∈ SX∗ , x ∈ SX , x
∗(x) = 1}.

It is known that a Banach space X satisfies n(X) = 1 if and only if for every T ∈ L(X), T or −T
satisfies the Daugavet equation [1] (see also [9, Lemma 2.3]).
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The results of this paper are the following. Let X be an extremely non-complex Banach space.
Then, n(X) > 0 (actually, there is an uniform lower bound valid for all extremely non-complex
spaces), X does not have an unconditional basis, and the infimum of the diameters of the slices
of BX is positive (actually, there is an uniform lower bound valid for all extremely non-complex
spaces).

Of course, all these results would be evident if the following two questions had positive answer.
Is it true that every extremely non-complex Banach space has numerical index 1? Is it true that
every extremely non-complex Banach space satisfies the Daugavet property? We do not know
the answer to these questions, which is positive for all known examples of extremely non-complex
Banach spaces from [7, 8].

The results

Let us first show that the numerical index of any extremely non-complex Banach space is
positive.

Theorem 1. Let X be an extremely non-complex Banach space. Then,

n(X) >
√

1 + e−2 − 1.

Proof. We claim that for every T ∈ L(X) with ‖T‖ 6 1, the operators Id +T and Id−T satisfy
the Daugavet equation.

Indeed, we first observe that if ‖T‖ < 1, then Id +T and Id−T have square roots. This is
probably well known, but we include a short proof for completeness. Let

∑
n>0 ant

n be the power

series expansion centered at the origin of the function t 7→ (1 + t)1/2 with t ∈]− 1, 1[. This power
series is absolutely convergent on ]− 1, 1[. Thus, the operators given by

S1 =

+∞∑
n=0

anT
n and S2 =

+∞∑
n=0

an(−T )n

are well defined and satisfy S2
1 = Id +T and S2

2 = Id−T respectively. As X is extremely non-
complex, this implies that Id +T and Id−T satisfy the Daugavet equation. Finally, using the fact
that the set of operators satisfying the Daugavet equation is closed, one obtains the same result
for every T ∈ L(X) with ‖T‖ 6 1.

Now, fixed T ∈ L(X) with ‖T‖ = 1, one can use [1, Remark in p. 483] or [9, Lemma 2.3] to
obtain

(1) ‖ Id +T‖ = supV (Id +T ) 6 1 + v(T ) and ‖ Id−T‖ = supV (Id−T ) 6 1 + v(T ).

As L(X) is a Banach algebra, [3, Theorem 2.1] gives us that

max
±
‖ Id±T‖ − 1 >

√
1 + e−2 − 1

which, together with (1) provides

v(T ) >
√

1 + e−2 − 1.

Taking supremum on T ∈ L(X) with ‖T‖ = 1, we get n(X) >
√

1 + e−2 − 1, as desired. �

The second result deals with the diameters of the slices of the unit ball of an extremely non-
complex space. We need some notation. Let X be a real Banach space. A slice of BX is a
nonempty intersection of BX with an open half-space, i.e. a subset of the form

S(BX , x
∗, α) := {x ∈ BX : x∗(x) > 1− α}

where x∗ ∈ SX∗ and 0 < α 6 1.
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Theorem 2. Let X be an extremely non-complex Banach space of dimension greater than one.
Then, the infimum of the diameter of the slices of BX is positive.

Proof. Let x∗ ∈ SX∗ , 0 < α 6 1, S = S(BX , x
∗, α), and let d be the diameter of S. We can

assume without loss of generality that d < 1. Fixed 0 < ε < min{1− d, α}, pick y0 ∈ SX such that
x∗(y0) > 1− ε. Then, the following

(2) ‖x+ ty0‖ > (1− ε− d)(‖x‖+ |t|)

holds for every x ∈ kerx∗ and t ∈ R. Indeed, given x ∈ Sker x∗ , use [4, Proposition 4.9] to find
y ∈ S such that ‖x+ y‖ > 2− ε. Therefore, using that y, y0 ∈ S, one can write

‖x+ y0‖ > ‖x+ y‖ − ‖y − y0‖ > 2− ε− d.

From this it is easy to deduce (2) using some ideas of [5, Lemma 2.8]. We can assume that x 6= 0
since otherwise the estimate is trivial. Observe that by the symmetry of kerx∗ it suffices to show
the estimate for t > 0. Next, if ‖x‖ > t, we can write

‖x+ ty0‖ =

∥∥∥∥ x

‖x‖
‖x‖+ ty0

∥∥∥∥ > ‖x‖∥∥∥∥ x

‖x‖
+ y0

∥∥∥∥− (‖x‖ − t)‖y0‖

> ‖x‖(2− ε− d)− (‖x‖ − t) > (1− ε− d)(‖x‖+ t)

and an analogous argument gives this estimate if ‖x‖ < t.

Fixed x0 ∈ Sker x∗ , we use (2) and Hahn’s Theorem (see [10, Theorem 1.9.10], for instance) to
find x∗0 ∈ X∗ satisfying

x∗0(x0) = 1, x∗0(y0) = 0, and ‖x∗0‖ 6
1

1− ε− d
.

Call a = 1√
2

and define z0 = ax0 − (1− a)y0 and z∗0 = 1−a
a x∗0 + x∗ which satisfy

‖z0‖ > 1− ε− d, ‖z∗0‖ > 1− ε, and z∗0(z0) > 0.

Therefore, using again [4, Proposition 4.9] we obtain that

(3) ‖ Id +z∗0 ⊗ z0‖ = 1 + ‖z∗0‖‖z0‖ > 1 + (1− ε)(1− ε− d).

On the other hand, given x ∈ kerx∗ and t ∈ R, we can write∥∥(Id +z∗0 ⊗ z0)(x+ ty0)
∥∥ =

=

∥∥∥∥x+ ty0 +

(
1− a
a

x∗0(x) + tx∗(y0)

)
(ax0 − (1− a)y0)

∥∥∥∥
=

∥∥∥∥x+ (1− a)x∗0(x)x0 −
(1− a)2

a
x∗0(x)y0 + atx∗(y0)x0 + t

(
1− (1− a)x∗(y0)

)
y0

∥∥∥∥
6 ‖x‖+ (1− a)‖x∗0‖‖x‖+

(1− a)2

a
‖x∗0‖‖x‖+ a|t|+ |t|

∣∣1− (1− a)x∗(y0)
∣∣

6

(
1 +

1− a
a
‖x∗0‖

)
‖x‖+ |t|(2a+ ε)

6

(
1 +

1− a
a
‖x∗0‖+ ε

)
(‖x‖+ |t|)

6

(
1 +

1− a
a

1

1− ε− d
+ ε

)
1

1− ε− d
‖x+ ty0‖

where we used (2) in the last inequality. Hence we deduce that

‖ Id +z∗0 ⊗ z0‖ 6
(

1 +
1− a
a

1

1− ε− d
+ ε

)
1

1− ε− d
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which, together with (3) tells us that

1 + (1− ε)(1− ε− d) 6

(
1 +

1− a
a

1

1− ε− d
+ ε

)
1

1− ε− d
.

Finally, letting ε→ 0, we obtain that

2− d 6

(
1 +

√
2− 1

1− d

)
1

1− d

which obviously implies that d cannot be arbitrarily close to 0. �

Let us note that in the above proof we only use the fact that the norm equality ‖ Id +T 2‖ =
1 + ‖T 2‖ holds for every rank-one operator on the space. Therefore, for every Banach space X
satisfying this condition, the infimum of the diameter of the slices of BX is positive. Such spaces
where studied in [11], where it is shown that their unit balls do not have strongly exposed points.
Since the existence of a strongly exposed point of the unit ball gives slices of arbitrary small
diameter, our result is an improvement of that.

It is proved in [2, Theorem 2.1] that Banach spaces with the Daugavet property cannot have
an unconditional basis. Using the same ideas it is possible to show that extremely non-complex
Banach spaces also lack an unconditional basis.

Theorem 3. Let X be an extremely non-complex Banach space of dimension greater than one.
Then, X does not have an unconditional basis.

Proof. Suppose for the contrary that {en}n∈N is an unconditional basis of X with unconditional
base constant K > 1. Denote by {x∗n}n∈N the set of biorthogonal functionals associated to the
basis, define for each n ∈ N the rank-two operator Tn ∈ L(X) given by

Tn = x∗2n ⊗ e2n−1 − x∗2n−1 ⊗ e2n,

and observe that

T 2
n(x) =

(
x∗2n ⊗ e2n−1 − x∗2n−1 ⊗ e2n

)(
x∗2n(x)e2n−1 − x∗2n−1(x)e2n

)
= −x∗2n−1(x)e2n−1 − x∗2n(x)e2n

for every x ∈ X. Therefore, one has

− Id =

∞∑
n=1

T 2
n

pointwise. Besides, since

sup

{∥∥∥∥∥∑
i∈A

T 2
i

∥∥∥∥∥ : A ⊆ N, A finite

}
6 K <∞

it is possible to find a finite set A0 ⊆ N such that

(4) sup

{∥∥∥∥∥∑
i∈A

T 2
i

∥∥∥∥∥ : A ⊆ N, A finite

}
<

∥∥∥∥∥∑
i∈A0

T 2
i

∥∥∥∥∥+ 1.

Taking into account that
∑

i∈A0
T 2
i =

(∑
i∈A0

Ti
)2

and using that X is extremely non-complex,
one can write ∥∥∥∥∥Id +

∑
i∈A0

T 2
i

∥∥∥∥∥ = 1 +

∥∥∥∥∥∑
i∈A0

T 2
i

∥∥∥∥∥ .
Now, let {An}n∈N be an increasing sequence of finite subsets of N satisfying ∪∞n=1An = N\A0. So,
the following holds pointwise:

lim
n→∞

∑
i∈An

T 2
i = − Id−

∑
i∈A0

T 2
i
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and, therefore,

sup
n∈N

∥∥∥∥∥∑
i∈An

T 2
i

∥∥∥∥∥ >
∥∥∥∥∥Id +

∑
i∈A0

T 2
i

∥∥∥∥∥ = 1 +

∥∥∥∥∥∑
i∈A0

T 2
i

∥∥∥∥∥
which contradicts (4). �
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(Mart́ın & Meŕı) Departamento de Análisis Matematico, Facultad de Ciencias, Universidad de Granada,

18071 Granada, Spain

E-mail address: mmartins@ugr.es jmeri@ugr.es


