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Abstract. For any atomless positive measure µ, the space L1(µ) has the poly-
nomial Daugavet property, i.e. every weakly compact continuous polynomial
P : L1(µ) −→ L1(µ) satisfies the Daugavet equation ‖ Id +P‖ = 1+‖P‖. The
same is true for the vector-valued spaces L1(µ,E), µ atomless, E arbitrary.
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1. Introduction

Given a Banach space X over K (= R or C), by BX we denote the closed unit
ball and by SX the unit sphere of X. We use the notation T = SK and D = BK.
Given k > 0, we denote by P

(
kX;X

)
the space of all k-homogeneous polynomials

from X to X, and by P
(
kX
)

the space of all k-homogeneous scalar polynomials.
We say that P : X −→ X is a polynomial on X, writing P ∈ P (X;X), if P is a
finite sum of homogeneous polynomials from X to X. Let us recall that P (X;X)
is a normed space if we endow it with the norm ‖P‖ = sup{‖P (x)‖ : x ∈ BX}.
Therefore, P (X;X) embeds isometrically into `∞(BX , X) (for a Banach space Z
and a set Γ, we write `∞(Γ, Z) to denote the Banach space of all bounded functions
from Γ to Z endowed with the supremum norm. We will use the notation P (X) to
denote the space of all finite sums of homogeneous scalar polynomials. We always
consider P (X) as a subspace of `∞(BX ,K).

This paper is devoted to the study of the so-called Daugavet equation for
polynomials. In 1963, I. Daugavet [5] showed that every compact linear operator
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T on C[0, 1] satisfies ‖ Id +T‖ = 1+‖T‖, a norm equality which is nowadays known
as the Daugavet equation. A Banach space X is said to have the Daugavet property
if every weakly compact operator in L(X) satisfies the Daugavet equation. This
is the case, among others, of the spaces C(K,E) when the compact space K is
perfect (E is any Banach space), L1(µ,E) and L∞(µ,E) when the measure µ is
atomless, the disk algebra A(D) and the algebra of bounded analytic functions
H∞. We refer the reader to [1, 7, 8] for more information and background.

In 2007 the study of the Daugavet equation was extended to polynomials [3]
and, moreover, to bounded functions from the unit ball of a Banach space into the
space. Let us recall the relevant definitions. Let X be a real or complex Banach
space. A function Φ ∈ `∞(BX , X) is said to satisfy the Daugavet equation if the
norm equality

‖ Id +Φ‖ = 1 + ‖Φ‖ (DE)
holds. If this happens for all weakly compact polynomials on X, we say that X
has the polynomial Daugavet property. The main examples of Banach spaces hav-
ing the polynomial Daugavet property are: Cb(Ω, E) when the completely regular
space Ω is perfect (E is any Banach space) and its finite-codimensional subspaces,
L∞(µ,E) when the measure µ is atomless, and Cw(K,E), Cw∗(K,E∗) when the
compact space K is perfect. We refer the reader to [3, 4] for more information
and background. Let us remark that the polynomial Daugavet property may be
characterized in terms of scalar polynomials. We state this result here for the sake
of clarity.

Lemma 1.1 ([3, Corollary 2.2]). Let X be a real or complex Banach space. Then,
the following are equivalent:

(i) X has the polynomial Daugavet property.
(ii) For every p ∈ P(X) with ‖p‖ = 1, every x0 ∈ SX , and every ε > 0, there

exist ω ∈ T and y ∈ BX such that Reωp(y) > 1− ε and ‖x0 + ωy‖ > 2− ε.

Let us observe that all the examples above are of “`∞-type”. The aim of this
paper is to show that the space L1(µ,E) has the polynomial Daugavet property if
the measure µ is atomless regardless of the range space E. For the sake of clarity,
we will prove in Section 2 the scalar valued case (i.e. when E = K) and then we
will explain in Section 3 how to extend these ideas to the vector valued case.

We finish this introduction with an open problem.

Problem 1.2. Does the Daugavet property imply the polynomial Daugavet property?

2. Scalar-valued case

Let (Ω,Σ, µ) be a measure space. L1(µ) denotes the space of all measurable scalar
valued functions whose moduli have finite integral. The set of all simple (i.e. finite-
valued integrable) functions will be denoted by S(µ). Two observations are per-
tinent. First, every element in S(µ) has finite support. Second, S(µ) is dense in
L1(µ).
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Definition 2.1. Let (Ω,Σ, µ) be a measure space. Let z ∈ S(µ). We say that a
simple function x ∈ S(µ) is a splitting of z (or that x splits z) provided x2 = z2

and
∫
z−1({a})

x dµ = 0 for each a ∈ K.

Remark 2.2. Suppose that z =
m∑
j=1

aj1Aj
∈ S(µ) with some 0 6= aj ∈ K and

pairwise disjoint elements Aj ∈ Σ, and that x ∈ S(µ) splits z. We set

A+
j =

{
ω ∈ Aj : x(ω) = aj

}
and A−j =

{
ω ∈ Aj : x(ω) = −aj

}
.

With this notation, the fact that x splits z exactly means that Aj = A+
j ∪A

−
j and

µ(A+
j ) = µ(A−j ) for each j = 1, . . . ,m.

The following result gives two easy properties of splitting functions which we
will need in the sequel.

Proposition 2.3. Let (Ω,Σ, µ) be a measure space. If x ∈ S(µ) splits z ∈ S(µ),
then

‖x+ z‖ = ‖z‖ and µ
(
Supp(x+ z)

)
=

1
2
µ(Supp z).

Proof. We use the notation given in Remark 2.2. Since (x + z)1Aj
= 2z1A+

j
, one

has that

‖x+z‖ =
m∑
j=1

∫
Aj

|x+z|dµ =
m∑
j=1

∫
A+

j

2|aj |dµ =
m∑
j=1

|aj |2µ(A+
j ) =

m∑
j=1

|aj |µ(Aj) = ‖z‖

and

µ
(
supp (x+ z)

)
= µ

( m⋃
j=1

A+
j

)
=

m∑
j=1

µ(A+
j ) =

1
2

m∑
j=1

µ(Aj) =
1
2
µ(supp z). �

The following technical lemma, which may have independent interest, will be
the key to get our results.

Lemma 2.4. Let (Ω,Σ, µ) be an atomless measure space. For any z ∈ S(µ) there
exists a weakly null sequence (xn) in S(µ) such that each xn splits z.

Proof. Suppose that z =
m∑
j=1

aj1Aj with some aj ∈ K and pairwise disjoint el-

ements Aj ∈ Σ. Using that µ is atomless, for each j = 1, . . . ,m fixed, one can
recursively construct a collection of sets Aj,n,k ∈ Σ for n ∈ N and k = 1, . . . , 2n

with the following properties:

Aj,0,1 = Aj , Aj,n,k = Aj,n+1,2k−1 ∪Aj,n+1,2k and µ(Aj,n,k) = 2−nµ(Aj)

for any n ∈ N, k = 1, . . . , 2n. Then the so-called generalized Rademacher system

rj,n =
2n∑
k=1

(−1)k1Aj,n,k
(n ∈ N)
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is a weakly null sequence in L1(µ) (see [1, p. 497], for instance). It clearly follows

that the sequence of simple functions (xn) defined by xn =
m∑
j=1

aj rj,n for every

n ∈ N, is weakly null and it has been constructed in such a way that each xn is a
splitting of z. �

We may now apply the above result to obtain the following lemma.

Lemma 2.5. Let (Ω,Σ, µ) be an atomless measure space and let ϕ ∈ `∞(BL1(µ),K)
be weakly sequentially continuous. Given ε > 0 and δ > 0, there is y ∈ S(µ)
satisfying

‖y‖ = 1, µ(Supp y) < δ and
∣∣ϕ(y)

∣∣ > ‖ϕ‖ − ε.
Proof. We start by picking y0 ∈ S(µ) and n ∈ N such that

|ϕ(y0)| > ‖ϕ‖ − ε and
1
2n
µ
(
Supp(y0)

)
< δ.

Now, we use Lemma 2.4 to obtain a weakly null sequence (xk) in S(µ) such that
each xk splits y0. Therefore, limk ϕ(xk + y0) = ϕ(y0) and hence we may and do
choose k ∈ N so that |ϕ(xk + y0)| > ‖ϕ‖ − ε. By Proposition 2.3, y1 = xk + y0

satisfies ‖y1‖ = 1 and µ(Supp y1) = 1
2µ(Supp y0). Finally, we are done by just

repeating the argument n times. �

We are now ready to prove the main result of the section.

Theorem 2.6. Let (Ω,Σ, µ) be an atomless measure space. Then the space L1(µ)
has the polynomial Daugavet property.

Proof. Let us start observing that since L1(µ) has the Dunford-Pettis property
(see [2, Theorem 5.4.5] for instance), every scalar polynomial on L1(µ) is weakly
sequentially continuous (see [6, Proposition 2.34] for instance).

We will show that L1(µ) has the polynomial Daugavet property by using the
characterization given in Lemma 1.1. To do so, we fix p ∈ P (L1(µ)) with ‖p‖ = 1,

x0 ∈ SX and ε > 0. We pick δ > 0 so that
∫
A

|x0|dµ < ε/2 for each A ∈ Σ with

µ(A) 6 δ. As p is weakly sequentially continuous, we can use Lemma 2.5 to choose
y ∈ S(µ) with ‖y‖ = 1, µ(Supp y) 6 δ and

∣∣p(y)
∣∣ > 1 − ε. If we pick ω ∈ T such

that Reω p(y) =
∣∣p(y)

∣∣, we get Reω p(y) > 1− ε and

‖x0 + ω y‖ =
∫

Ω\Supp y

|x0| dµ+
∫

Supp y

|x0 + ωy| dµ

> ‖x0‖ −
∫

Supp y

|x0| dµ+ ‖y‖ −
∫

Supp y

|x0| dµ > 2− ε.

The result now follows from Lemma 1.1. �

Let us observe that the only property on scalar polynomials on L1(µ) we
have used in the previous proof is that they are weakly sequentially continuous.
Actually, we get the following more general result.
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Proposition 2.7. Let (Ω,Σ, µ) be an atomless measure space, let ϕ ∈ `∞(BL1(µ),K)
be weakly sequentially continuous with ‖ϕ‖ = 1, and let x0 ∈ SL1(µ). Then for every
ε > 0 there exist ω ∈ T and y ∈ L1(µ), ‖y‖ 6 1, such that

Reω ϕ(y) > 1− ε and ‖x0 + ω y‖ > 2− ε.
Equivalently, every weakly sequentially continuous bounded function from BL1(µ)

to L1(µ) with relatively weakly compact range satisfies (DE).

Proof. For the first part, just follow the proof of Theorem 2.6. The equivalent
reformulation follows from the first part of the proposition using [3, Theorem 1.1]
(this is the analogous result to Lemma 1.1 for other subspaces of `∞(BX , X)). �

3. Vector-valued case

Let (Ω,Σ, µ) be a measure space and let E be a Banach space. L1(µ,E) denotes
the Banach space of all Böchner-integrable functions from Ω to E, endowed with
the norm

‖f‖ =
∫

Ω

‖f(t)‖ dµ
(
f ∈ L1(µ,E)

)
.

All the results given in the previous section can be stated and proved in the
setting of L1(µ,E) instead of L1(µ). The proof of most of them requires just minor
modifications with respect to the same given there, but we need to be careful to
get the analogous to Theorem 2.6 since, in general, the space L1(µ,E) does not
have the Dunford-Pettis property.

We need some notation. If F is a closed subspace of E, we will consider
L1(µ, F ) as a subspace of L1(µ,E) in the natural way. The set of all simple (i.e.
finite-valued integrable) functions x ∈ L1(µ,E) is denoted by S(µ,E). We will use
in the sequel the following facts: every element of S(µ,E) has finite support and
S(µ,E) is dense in L1(µ,E).

Definition 3.1. Let (Ω,Σ, µ) be a measure space, let E be a Banach space and let
F be a subspace of E. Let z ∈ S(µ, F ). We say that a simple function x ∈ S(µ, F )
is a splitting of z (or that x splits z) provided x(ω) ∈ {−z(ω), z(ω)} a.e. and∫
z−1({a})

x dµ = 0 for each a ∈ F .

Next result summarizes the analogous results to those given in Section 2 for
weakly sequentially continuous bounded functions. We omit the proofs which are
exactly the same as the ones given there.

Proposition 3.2. Let (Ω,Σ, µ) be a measure space and let E be a Banach space.
(a) If x ∈ S(µ,E) splits z ∈ S(µ,E), then

‖x+ z‖ = ‖z‖ and µ
(
Supp(x+ z)

)
=

1
2
µ(Supp z).

(b) For any z ∈ S(µ,E) there is a weakly null sequence (xn) in S(µ,E) such that
each xn splits z.
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(c) Let ϕ ∈ `∞(BL1(µ,E),K) be weakly sequentially continuous. Given ε > 0 and
δ > 0, there is y ∈ S(µ,E) satisfying

‖y‖ = 1, µ(Supp y) < δ and
∣∣ϕ(y)

∣∣ > ‖ϕ‖ − ε.
(d) Let ϕ : BL1(µ,E) −→ K be a weakly sequentially continuous bounded function

with ‖ϕ‖ = 1, and let x0 ∈ SL1(µ,E). Then for every ε > 0 there exist ω ∈ T
and y ∈ L1(µ,E), ‖y‖ 6 1, such that

Reω ϕ(y) > 1− ε and ‖x0 + ω y‖ > 2− ε.

Equivalently, every Φ ∈ `∞(BL1(µ,E), L1(µ,E)) weakly sequentially continu-
ous with relatively weakly compact range satisfies (DE).

The proof of the result for polynomials (i.e. of Theorem 2.6) is not a simple
adaptation of the one given in the scalar valued case since L1(µ,E) does not have
the Dunford-Pettis property in general. Even so, the result can be proved using
directly item (d) of the above proposition.

Theorem 3.3. Let (Ω,Σ, µ) be a measure space and let E be a Banach space. Then
L1(µ,E) has the polynomial Daugavet property.

Proof. We fix p ∈ P (L1(µ,E)) with ‖p‖ = 1, x ∈ L1(µ,E) with ‖x‖ = 1 and
ε > 0. As S(µ,E) is dense in L1(µ,E), we can find x0, x1 ∈ S(µ,E) with ‖x0‖ = 1
and ‖x1‖ = 1 such that

‖x− x0‖ < ε/2 and |p(x1)| > 1− ε/2.

Let F be a finite-dimensional subspace of E such that the ranges of x0 and x1

belong to F (i.e. x0, x1 ∈ L1(µ, F )) and consider p̃ ∈ P (L1(µ, F )) as the restriction
of p to L1(µ, F ). Then, ‖p̃‖ > |p(x1)| > 1− ε/2. On the other hand, as F is finite-
dimensional, the space L1(µ, F ) has the Dunford-Pettis property (indeed, as F is
finite-dimensional, L1(µ, F ) is isomorphic to an L1(ν) space) and so every scalar
polynomial on L1(µ, F ) is weakly sequentially continuous (see [6, Proposition 2.34]
for instance). Now, we may apply item (d) of Proposition 3.2 to ϕ = p̃/‖p̃‖ (which is
sequentially continuous on L1(µ, F )), x0 ∈ SL1(µ,F ) and ε/2 to get y ∈ L1(µ, F ) ⊂
L1(µ,E) with ‖y‖ 6 1 and ω ∈ T such that

Reω ϕ(y) > 1− ε/2 and ‖x0 + ω y‖ > 2− ε/2.

It follows that

Reω p(y) = Reω p̃(y) > (1− ε/2) Reω ϕ(y) > 1− ε,

and

‖x+ ω y‖ > ‖x0 + ω y‖ − ‖x− x0‖ > 2− ε/2− ε/2 = 2− ε.

Finally, L1(µ,E) has the polynomial Daugavet property by Lemma 1.1. �
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