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ABSTRACT. We give a lower bound for the polynomial numerical index of order k for real lush spaces.
We use this bound to compute the polynomial numerical index of order 2 of the real spaces c0, `1 and
`∞. Finally, we present an example of a real Banach space X whose polynomial numerical indices are
positive while the ones of its bidual are zero.

1. INTRODUCTION

The polynomial numerical indices of a Banach space are constants relating the norm and the
numerical radius of homogeneous polynomials on the space. Let us present the relevant defini-
tions. For a Banach space X, we write BX for the closed unit ball, SX for the unit sphere, X∗ for
the dual space, and Π(X) for the subset of X × X∗ given by

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1} .

For k ∈ N we denote by P
(

kX; X
)

the space of all k-homogeneous polynomials from X into X
endowed with the norm

‖P‖ = sup{‖P(x)‖ : x ∈ BX}.

Given P ∈ P
(

kX; X
)

, the numerical range of P is the subset of the scalar field given by

V(P) = {x∗(Px) : (x, x∗) ∈ Π(X)},

and the numerical radius of P is

v(P) = sup{|x∗(Px)| : (x, x∗) ∈ Π(X)}.

The concept of numerical range was originally introduced in the sixties for linear operators by
F. Bauer and G. Lumer, extending the classical Toeplitz’s field of values of a matrix. Still in the
sixties, F. Bonsall, B. Cain, and H. Schneider extended the numerical range to arbitrary continuous
functions from the unit sphere of a real or complex Banach space into the space. We refer the
reader to the books [2, 3] for background. In the seventies, L. Harris [9] studied numerical ranges
for holomorphic functions and polynomials on complex Banach spaces. Since then, a deep interest
has been posed on the study of the numerical range and the numerical radius of homogeneous

Date: February 21st, 2007.



2 Polynomial numerical index of some real spaces

polynomials on Banach spaces, particularly in questions related to numerical radius attaining
polynomials (see [1] and references therein, for instance).

Recently, Y.S. Choi, D. García, S.G. Kim and M. Maestre [5] have introduced the polynomial
numerical index of order k of a Banach space X as the constant n(k)(X) defined by

n(k)(X) = max
{

c > 0 : c ‖P‖ 6 v(P) ∀ P ∈ P
(

kX; X
)}

= inf
{

v(P) : P ∈ P
(

kX; X
)

, ‖P‖ = 1
}

for every k ∈ N. This concept is a generalization of the numerical index of a Banach space (recov-
ered for k = 1) which was first suggested by G. Lumer in 1968. At that time, it was known that a
Hilbert space of dimension greater than 1 has numerical index 1/2 in the complex case, and 0 in
the real case. Two years later, J. Duncan, C. McGregor, J. Pryce, and A. White proved that L-spaces
and M-spaces have numerical index 1. They also determined the range of values of the numerical
index proving that

{n(X) : X complex Banach space } = [e−1, 1],
{n(X) : X real Banach space } = [0, 1].

The remarkable result that n(X) > 1/e for every complex Banach space X goes back to H. Bohnen-
blust and S. Karlin. The disk algebra and the finite codimensional subspaces of C[0, 1] are more
examples of Banach spaces with numerical index 1. The computation of the numerical index of
those two-dimensional real normed spaces whose unit balls are regular polygons has been re-
cently done. Specially interesting values of the numerical index of a Banach space are 0 and 1,
since the spaces having these values of the numerical index can be characterized in the finite-
dimensional case. For background, more information and recent results on numerical index, we
refer the reader to the recent expository paper [10] and references therein.

Contrary to the linear case, the general theory of polynomial numerical indices is still in its
infancy. However, in the already mentioned paper [5] and in [6] some results are given. Let us
present some of them. The easiest examples are n(k)(R) = 1 and n(k)(C) = 1. For every complex
Banach space X and every k > 2, one has n(k)(X) > exp

(
k log(k)

1−k

)
. This is not true in the real

case, since real Hilbert spaces of dimension greater than one have polynomial numerical index of
order k equal to 0 for every k. For every complex Banach space X such that X∗ is isometrically
isomorphic to an L1(µ) space, n(k)(X) = 1 for every k ∈ N; in particular, this happens for complex
C(K) spaces. This result does not hold in the real case; for instance, the polynomial numerical
indices of order 2 of the real spaces c0, c, `∞ are all smaller than 1/2. Also, n(2)(`1) 6 1/2 both
in the real and in the complex cases. Let us comment that the above examples show that the
polynomial numerical indices distinguish between L-spaces and M-spaces in the complex case,
and this is not possible if we only use the usual (linear) numerical index. The first author [11]
defined two more kinds of numerical indices, namely, the multilinear numerical index of order k of
X by

n(k)
m (X) = inf{v(A) : A ∈ L(kX; X), ‖A‖ = 1}

and the symmetric multilinear numerical index of order k of X by

n(k)
s (X) = inf{v(A) : A ∈ Ls(kX; X), ‖A‖ = 1},

where Ls(kX; X) is the subspace of all symmetric continuous k-linear mappings in L(kX; X).
Clearly 0 6 n(k)

m (X) 6 1, 0 6 n(k)
s (X) 6 1. The relationship between these two indices and

the polynomial numerical indices is studied in the cited paper. Also, in another recent paper, the
first author [12] gives some results concerning the polynomial numerical indices for Lp spaces
which generalize the corresponding ones for the (linear) numerical index (see [8]). Namely,
for 1 < p < ∞ and k ∈ N, one has n(k)(`p) = inf{n(k)(`m

p ) : m ∈ N}, that the sequence
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{n(k)(`m
p )}m∈N is decreasing, that inf{n(k)(`p) : k ∈ N} = inf{n(k)(`m

p ) : k ∈ N} = 0 for every
m > 2 and, finally, that n(k)(Lp(µ)) > n(k)(`p) for every positive measure µ. A very curious re-
sult has been very recently given by H. J. Lee [13, Theorem 2.7]: the only finite-dimensional real
Banach space X with n(2)(X) = 1 is X = R.

Other results dealing with polynomial numerical indices which will be interesting to our dis-
cussion are the following. For every real or complex Banach space X and every k ∈ N, one has

n(k+1)(X) 6 n(k)(X) and n(k)(X∗∗) 6 n(k)(X).

The first inequality may be strict, just take X = `1 and k = 1. It has been proved very recently that
the second inequality may be also strict for k = 1 [4]. We will show that the same is true for every
k > 2 (Example 2.6). Finally, the polynomial numerical indices of an L-summand or M-summand
of a Banach space are greater or equal than the corresponding ones of the whole space.

As shown by the above paragraphs, there are few Banach spaces for which the polynomial
numerical indices are known and, in the real case, the lack of examples is even bigger. The aim
of this paper is to give a tool to estimate the numerical index of higher order of many real spaces
like c0, `1, and `∞. The idea is to estimate the polynomial numerical indices of the so-called lush
spaces, a wide class of Banach spaces having linear numerical index 1. Following [4], we say that
a real Banach space X is lush if for every x, y ∈ SX and every ε > 0, there exists x∗ ∈ SX∗ such that
y ∈ S(BX , x∗, ε) and

dist
(
x, co

(
S(BX , x∗, ε) ∪−S(BX , x∗, ε)

))
< ε

where S(BX , x∗, ε) = {x ∈ BX : Re x∗(x) > 1 − ε} is a slice of the unit ball of X. This property
is the weakest known geometric property implying that the space has numerical index 1. For
instance, C(K) spaces, L1(µ) spaces and their isometric preduals are lush, and the same is true for
finite-dimensional subspaces of C[0, 1].

We give a lower bound for the numerical indices of higher order of real lush spaces. In par-
ticular, we show that n(2)(X) > 1

2 for every real lush space X and that this inequality is sharp.
Indeed, we will prove that

n(2)(c0) = n(2)(`1) = n(2)(`∞) =
1
2

.

Also, we give an example of a real Banach space X such that

n(k)(X) > 0 and n(k)(X∗∗) = 0

for every k ∈ N.

2. THE RESULTS

We are ready to state and prove the main result of the paper, which gives a lower bound for
the polynomial numerical indices of lush spaces.

Theorem 2.1. Let X be a real lush Banach space. Then, for k > 1 we have

n(k)(X) >
2k

2 + Mk(2k − 2)
,

where Mk =
k

∑
j=1

jk

j! (k − j)!
.

In order to prove the above result we will need a couple of lemmas. The first one is an almost
immediate consequence of the binomial theorem. The second follows from the Bishop-Phelps-
Bollobás Theorem.
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Lemma 2.2 ([11]). Let M > 1 and k > 1. Then,

max
t∈[0,1]

[
tk + (1− t)k + M

k−1

∑
j=1

(
k
j

)
tj(1− t)k−j

]
=

2 + M(2k − 2)
2k .

We recall that for a real Banach space X and P ∈ P
(

kX; X
)

, P̌ denotes the unique continuous

symmetric k-linear map from Xk into X associated with P. Given x, y ∈ X and ` ∈ {1, . . . , k} we
write

P̌
(
x`, yk−`

)
= P̌

(
x, (`). . . , x, y, (k−`). . . , y

)
and in the extreme case in which ` = k, we understand that P̌

(
xk, y0) = P(x).

Lemma 2.3. Let k > 1, X a Banach space, P ∈ P
(

kX; X
)

with ‖P‖ 6 1, and ε > 0. Then, for every

x∗ ∈ SX∗ and x ∈ X satisfying x ∈ S
(

BX , x∗, ε2

4

)
the following holds

|x∗(P(x))| 6 v(P) + ε + k ‖P̌‖ ε.

Proof. Under the hypothesis we can apply Bishop-Phelps-Bollobás Theorem (see [3, §16], for in-
stance) to find (y, y∗) ∈ Π(X) so that

‖x − y‖ < ε and ‖x∗ − y∗‖ < ε.

Therefore, we have

|x∗(P(x))| 6 |y∗(P(y))|+ |x∗(P(y))− y∗(P(y))|+ |x∗(P(x))− x∗(P(y))|
6 v(P) + ε + ‖P(x)− P(y)‖

6 v(P) + ε +
k

∑
j=1

∥∥P̌
(
xk−j+1, yj−1)− P̌

(
xk−j, yj)∥∥

6 v(P) + ε + k‖P̌‖ ε. �

Proof of Theorem 2.1. For P ∈ P
(

kX; X
)

with ‖P‖ = 1 and 0 < ε < 1 fixed, we take x0 ∈ SX such

that ‖P(x0)‖ > 1 − ε, and we apply the definition of lushness to x0 and P(x0)
‖P(x0)‖

to find x∗ ∈ SX∗

with P(x0)
‖P(x0)‖

∈ S
(

BX , x∗, ε2

4

)
, λ ∈ [0, 1], and x1, x2 ∈ S

(
BX , x∗, ε2

4

)
so that

‖x0 − (λx1 − (1− λ)x2)‖ <
ε2

4
.

From this it is easy to deduce that

‖P(x0)− P(λx1 − (1− λ)x2)‖ < k ‖P̌‖ ε2

4

and, therefore,∣∣x∗(P(λx1 − (1− λ)x2)
)∣∣ > |x∗(P(x0))| −

∣∣x∗(P(x0))− x∗
(

P(λx1 − (1− λ)x2)
)∣∣(1)

>
(

1− ε2

4

)
(1− ε)− k ‖P̌‖ ε2

4
.
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On the other hand, we have that∣∣x∗(P(λx1 − (1− λ)x2)
)∣∣(2)

=

∣∣∣∣∣λkx∗(P(x1)) + (1− λ)kx∗(P(−x2)) +
k−1

∑
`=1

(
k
`

)
λ`(1− λ)k−`x∗

(
P̌(x`

1, (−x2)k−`)
)∣∣∣∣∣

6 λk∣∣x∗(P(x1))
∣∣ + (1− λ)k∣∣x∗(P(x2))

∣∣ +
k−1

∑
`=1

(
k
`

)
λ`(1− λ)k−`

∣∣∣x∗ (
P̌(x`

1, xk−`
2 )

)∣∣∣
and, using Lemma 2.3,

6
(
λk + (1− λ)k)(v(P) + ε + k‖P̌‖ ε

)
+

k−1

∑
`=1

(
k
`

)
λ`(1− λ)k−`

∣∣∣x∗ (
P̌(x`

1, xk−`
2 )

)∣∣∣ .

Our next goal is to estimate
∣∣x∗(P̌(x`

1, xk−`
2 ))

∣∣ for ` ∈ {1, . . . , k − 1}. To do so, we write B =
{1, . . . , k}, yi = x1 for i ∈ {1, . . . , `}, and yi = x2 for i ∈ {` + 1, . . . , k}, and we use [7, Lemma 3.4]
to get

k!
∣∣x∗(P̌(x`

1, xk−`
2 ))

∣∣
6

∣∣ x∗(P(`x1 + (k − `)x2))
∣∣ + ∑

{i1,..., ik−1}⊂B

∣∣ x∗(P(yi1 + · · ·+ yik−1
))

∣∣
+ ∑

{i1,..., ik−2}⊂B

∣∣ x∗(P(yi1 + · · ·+ yik−2
))

∣∣ + · · ·+ `|x∗(P(x1))|+ (k − `)|x∗(P(x2))|

6 kk
∣∣∣x∗ (

P
(

`x1+(k−`)x2
k

))∣∣∣ + (k − 1)k ∑
{i1,..., ik−1}⊂B

∣∣∣ x∗
(

P
( yi1

+···+yik−1
k−1

))∣∣∣
+ (k − 2)k ∑

{i1,..., ik−2}⊂B

∣∣∣ x∗
(

P
( yi1

+···+yik−2
k−2

))∣∣∣
+ · · ·+ `|x∗(P(x1))|+ (k − `)|x∗(P(x2))| .

Since x1, x2 ∈ S
(

BX , x∗, ε2

4

)
, so does µx1 + (1 − µ)x2 for every µ ∈ [0, 1]. Therefore, we can use

Lemma 2.3 a number of times to obtain

k!
∣∣x∗(P̌(x`

1, xk−`
2 ))

∣∣
6 kk(v(P) + ε + k‖P̌‖ ε

)
+ (k − 1)k

(
k

k − 1

) (
v(P) + ε + k‖P̌‖ ε

)
+ (k − 2)k

(
k

k − 2

) (
v(P) + ε + k‖P̌‖ ε

)
+ · · ·+ k

(
v(P) + ε + k‖P̌‖ ε

)
=

k

∑
j=1

jk k!
j! (k − j)!

(
v(P) + ε + k‖P̌‖ ε

)
from which we deduce that∣∣x∗(P̌(x`

1, xk−`
2 ))

∣∣ 6 Mk
(
v(P) + ε + k‖P̌‖ ε

)
.

This, together with (2), tells us that∣∣x∗(P(λx1 − (1− λ)x2)
)∣∣ 6

(
λk + (1− λ)k)(v(P) + ε + k‖P̌‖ ε

)
+ Mk

(
v(P) + ε + k‖P̌‖ ε

) k−1

∑
`=1

(
k
`

)
λ`(1− λ)k−`,
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and Lemma 2.2 yields∣∣x∗(P(λx1 − (1− λ)x2)
)∣∣ 6

2 + Mk(2k − 2)
2k

(
v(P) + ε + k‖P̌‖ ε

)
.

Finally, using (1), we obtain(
1− ε2

4

)
(1− ε)− k‖P̌‖ ε2

4
6

2 + Mk(2k − 2)
2k

(
v(P) + ε + k‖P̌‖ ε

)
and the arbitrariness of ε allows us to write

2k

2 + Mk(2k − 2)
6 v(P),

which finishes the proof. �

For k = 1 the above result shows that n(X) = 1 for lush spaces, which is [4, Proposition 2.2].
Now, we would like to particularize Theorem 2.1 to some classes of lush spaces. Let us give
the necessary definitions. A real Banach space X is said to be a CL-space if BX is the absolutely
closed convex hull of every maximal proper face of SX . Examples of real CL-spaces are L1(µ)
for an arbitrary measure µ, and its isometric preduals, in particular C(K), where K is a compact
Hausdorff space. We refer to [14, §3], [15], and [17] for more information and background. Real
CL-spaces are clearly lush, but the reverse result is not true [4, Example 3.4]. Let us comment that
the proof of the above theorem simplifies is it is done only for CL-spaces. Another family of lush
spaces is the one of C-rich subspaces of C(K) spaces. Following [4], we say that a closed subspace
X of a C(K) space is C-rich if for every nonempty open subset U of K and every ε > 0, there is
a positive function h of norm 1 with support inside U such that the distance from h to X is less
than ε. Examples of C-rich subspaces are the finite-codimensional subspaces of C(K) when K is
perfect.

Corollary 2.4. Let X be a real CL-space or a C-rich subspace of a C(K) space. Then, for k > 2 we have

n(k)(X) >
2k

2 + Mk(2k − 2)
,

where Mk =
k

∑
j=1

jk

j! (k − j)!
. In particular, this applies to L1(µ) spaces and their isometric preduals, in

particular to C(K) spaces, and to finite-codimensional subspaces of C(K).

The above corollary applies to the real spaces `m
∞, `m

1 (m > 2), c0, `1, and `∞. Actually, for these
spaces an upper bound for their polynomial numerical indices can be given. In particular, the
second order polynomial numerical index of those spaces is calculated.

Corollary 2.5. Let X denote any of the real spaces `m
∞, `m

1 (m > 2), c0, `1, and `∞. Then,

n(2)(X) =
1
2

and
2k

2 + Mk(2k − 2)
6 n(k)(X) 6

2
k

(
k − 2

k

) k−2
2

(k > 3).

Proof. The inequality

2k

2 + Mk(2k − 2)
6 n(k)(X) (k > 2).

follows from Corollary 2.4. When k = 2, we get M2 = 3 so we have that n(2)(X) > 1
2 . To prove

the reverse inequality, we observe that `2
∞ ≡ `2

1 is either a L-summand or a M-summand of X.
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Thus, in view of [5, Proposition 2.8] it suffices to show that n(k)(`2
1) 6 1

2 , which is clear since the

polynomial P ∈ P
(

k`2
1; `2

1

)
(shown in [7, pp. 141]) given by

P(x, y) =
(

1
2

x2 + 2xy,−1
2

y2 − xy
) (

(x, y) ∈ `2
1

)
satisfies that ‖P‖ = 1 and v(P) 6 1

2 .

To get the upper bound for k > 3, we consider the polynomial P ∈ P
(

k`2
∞; `2

∞

)
given by

P(x, y) = (x2yk−2 − yk, 0)
(
(x, y) ∈ `2

∞

)
.

On the one hand, it is straightforward to show that ‖P‖ = 1. On the other hand, by just using the
definition of numerical radius and the fact that P is homogeneous, we have

v(P) = max

{
sup

t∈[−1,1]
|(1, 0)P(1, t)|, sup

t∈[−1,1]
|(0, 1)P(t, 1)|, sup

s∈[0,1]
|(s, 1− s)P(1, 1)|

}

= sup
t∈[−1,1]

|(1, 0)P(1, t)| = sup
t∈[−1,1]

|tk−2 − tk| =
2
k

(
k − 2

k

) k−2
2

. �

As we mentioned in the introduction, it is proved in [5, Corollary 2.15] that n(k)(X∗∗) 6 n(k)(X)
for every k ∈ N. The next example shows that this inequality can be strict.

Example 2.6. There exists a real Banach space X such that

n(k)(X) > 0 and n(k)(X∗∗) = 0

for every k ∈ N. Indeed, given a separable Banach space E, it is constructed in [16, Theorem 3.3]
a C-rich subspace X(E) of C[0, 1] such that E∗ is an L-summand of X(E)∗. Let us consider the
above space for E = `2. On the one hand, since X(`2) is a C-rich subspace of C(K), Corollary 2.4
gives that

n(k)(X(`2)
)

> 0
for every k ∈ N. On the other hand, X(`2)∗∗ = `2 ⊕∞ Z for a suitable space Z and, by [5,
Proposition 2.8], we get

n(k)(X(`2)∗∗
)

6 n(k)(`2) = 0
for every k ∈ N.
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