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Abstract. We construct an example of a Banach space which is not lush, but whose
dual space is lush. This example shows that lushness is not equivalent to numerical index
one. A characterization of lushness for some quotient spaces of L1(µ) spaces and new
results on C-rich subspaces of (scalar- or vector-valued) C(K) spaces are also presented.

1. Introduction

Given a real or complex Banach space X, we write BX , SX , X∗ and L(X) to denote,
respectively, the closed unit ball, the unit sphere, the topological dual and the Banach
algebra of bounded linear operators on X. T denotes the set of modulus one scalars. For
a bounded subset A of X, x∗ ∈ SX∗ and ε > 0, we write S(A, x∗, ε) to denote the open
slice

S(A, x∗, ε) = {x ∈ SX : Rex∗(x) > sup Rex∗(A)− ε}.
If B is a subset of X, we write aconv(B) for the absolutely convex hull of B. Finally, we
denote by ext(C) the set of extreme points of the convex subset C ⊂ X.

Definition 1.1 ([4, Definition 2.1]). A Banach space X is lush if for every x, y ∈ SX and
every ε > 0, there is a slice S = S(BX , x∗, ε) with x∗ ∈ SX∗ such that

x ∈ S and dist (y, aconv(S)) < ε.

Lushness was recently introduced in [4] as a geometrical property of a Banach space
which ensures that the space has numerical index one. We recall that a Banach space X
is said to have numerical index 1 if the equality

‖T‖ = sup{|x∗(Tx)| : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}
holds for every operator T ∈ L(X) or, equivalently (see [7]), for every operator T ∈ L(X)
there is ω ∈ T such that

‖Id + ω T‖ = 1 + ‖T‖.
We refer the reader to the survey paper [9] for more information and background on
numerical index.

Lushness was used in [4] to show that there is a Banach space having numerical index
one whose dual space does not share this property, a long standing open question in

Date: November 19th, 2008. Revised: January 19th, 2009. Second revision: March 11th, 2009.
2000 Mathematics Subject Classification. 46B04, 46B20, 47A12.
Key words and phrases. Banach space; numerical index; lushness; duality; C-rich subspaces; quotient

spaces of L1 spaces.
First author partially supported by Junta de Andalućıa and FEDER grant P06-FQM-01438. Second and

third authors partially supported by Spanish MEC and FEDER project no. MTM2006-04837 and Junta
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the theory of numerical indices. It has been also used recently to construct a Banach
space whose Lie-algebra is trivial but the Lie-algebra of its dual is infinite-dimensional
[15]. Also, lushness helps to estimate the polynomial numerical index of some spaces in
[6, 13] and it allows to show that every separable Banach space containing c0 can be
equivalently renormed to have numerical index one [3]. Some examples of lush spaces are
L1(µ)-spaces and their isometric preduals, including C(K) spaces, function algebras and
finite-codimensional subspaces of C[0, 1]. For more information and background on lush
spaces we refer the reader to the already cited [4] and to [3, 8].

The concept of numerical index one is difficult to manage, since its definition needs to
deal with all operators on the space and we do not know of any geometrical characteri-
zation. There are in the literature several geometrical sufficient conditions for numerical
index one, the weakest of all of them is lushness (see [3, §2] and [8, §1] for a detailed
account). Among the advantages of the concept of lushness is that it is separably deter-
mined, stable by ultraproduct and stable by taking “reasonable” finite unconditional sums
[3], and it is not known whether these results are true for Banach spaces with numerical
index one. It is known that lushness is equivalent to numerical index one for Asplund
spaces and for spaces with the Radon-Nikodým property (see [3, §2]) and, even more, for
the so-called slicely countably determined Banach spaces [1], a class of spaces recently
introduced which includes spaces not containing a copy of `1.

It has been even asked in [9, Problem 15] whether every Banach space with numerical
index one is lush. The main result of this paper is to show that this is not the case.
Actually, we provide an example of a Banach space X which is not lush, but whose dual
space is lush. Since when the dual space has numerical index one so does the space, the
same example shows that lushness is not equivalent to numerical index one. This is the
content of section 4. To do so, we characterize in section 3 a family of quotient spaces of
L1(µ) which are lush. Finally, some new results on C-rich subspaces of (scalar or vector-
valued) C(K) spaces are also obtained. Namely, in section 5 we show that if E is a lush
space, then C(K,E) is lush in both real and complex cases and, in the real case, the same
is true for every C-rich subspace of C(K,E); in section 6 we show that a subspace X
of a real C(K) space with K perfect is C-rich if (and only if) every subspace of C(K)
containing X is lush.

We start our exposition with some characterizations of lushness collected in section 2.

2. On some reformulations of lushness

The first result we are going to present is a slight modification of [3, Theorem 4.1] and
gives a reformulation of lushness only in terms of the space. The modification follows from
the immediate idea that in the definition of lushness (Definition 1.1) nothing changes if
we allow y to be in the unit ball instead of being in the unit sphere. We recall that a
subset G of the unit ball of the dual of a Banach space X is said to be norming for X if
‖x‖ = sup{|φ(x)| : φ ∈ G} for every x ∈ X and G is rounded if TG = G.

Proposition 2.1. Let X be a Banach space and G ⊂ SX∗ be a norming rounded subset.
Then, the following are equivalent:

(i) X is lush.
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(ii)R In the real case: for every x ∈ SX , y ∈ BX and ε > 0, there exist λ1, λ2 > 0,
λ1 + λ2 = 1 and x1, x2 ∈ BX such that

‖x+ x1 + x2‖ > 3− ε

and
‖y − (λ1x1 − λ2x2)‖ < ε

(ii)C In the complex case: For every x ∈ SX , y ∈ BX , n ∈ N and ε > 0, there exist
λ1, . . . , λn > 0,

∑n
k=1 λk = 1 and x1, . . . , xn ∈ BX such that∥∥∥∥x+

n∑
k=1

xk

∥∥∥∥ > n+ 1− ε

and ∥∥∥∥y − n∑
k=1

λk exp
(

2πik
n

)
xk

∥∥∥∥ < ε+
2π
n

(iii) For every x ∈ SX , y ∈ BX and for every ε > 0, there is x∗ ∈ G such that
x ∈ S = S(BX , x∗, ε) and dist (y, aconv(S)) < ε.

Proof. In the definition of lushness, given x and y in SX , we build a slice S such that x ∈ S
and dist (y, aconv(S)) < ε. But, of course, dist (αy, aconv(S)) < ε for every α ∈ [0, 1], i.e.
from the very beginning we could take an arbitrary y ∈ BX instead of y ∈ SX . With this
in mind, we can follow the proof of [3, Theorem 4.1] to show that we can also take y ∈ BX
in the assertions (ii)R, (ii)C and (iii). This is exactly our statements. �

In the separable case, it is possible to give another characterization of lushness only in
terms of the dual space. Let us comment that it is an easy reformulation of [8, Theo-
rem 4.3].

Proposition 2.2. For a separable Banach space X, the following are equivalent:

(i) X is lush.
(ii) There is a norming subset K̃ ⊂ ext(BX∗) such that for every x∗1 ∈ K̃ and for every

x∗2 ∈ SX∗ there is θ ∈ T such that ‖x∗1 + θx∗2‖ = 2.

Proof. By [14, Theorem 2.1] the property of K̃ in condition (ii) is equivalent to

|x∗∗(x∗)| = 1
(
x∗∗ ∈ ext(BX∗∗), x∗ ∈ K̃

)
.

Now, that separable lush spaces fulfill this condition is exactly what was proved in [8,
Theorem 4.3] and the reversed result follows from [3, Theorem 2.1]. �

Let us finish the section with another reformulation of lushness only valid in the real case
which appeared in [9, pp. 164] without proof. We do not know of any complex analogue
of this result.

Proposition 2.3. Let X be a real Banach space. Then, the following are equivalent:

(i) X is lush,
(ii) for every x ∈ SX , y ∈ BX and every ε > 0, there are z ∈ SX , γ1, γ2 ∈ R with
|γ1 − γ2| = 2, such that

‖x+ z‖ > 2− ε and ‖y + γiz‖ 6 1 + ε (i = 1, 2).
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Proof. (i) ⇒ (ii). Given x ∈ SX , y ∈ BX and ε > 0, we use the definition of lushness
(actually Proposition 2.1) to take x∗ ∈ SX∗ , λ ∈ [0, 1], and x1, x2 ∈ S(BX , x∗, ε/3)
satisfying

x∗(x) > 1− ε

3
and

∥∥y − (λx1 − (1− λ)x2

)∥∥ < ε

3
.

Now, it is easy to check that z =
x1 + x2

‖x1 + x2‖
, γ1 = 2− 2λ, and γ2 = −2λ fulfill the desired

conditions.

(ii) ⇒ (i). Fixed x ∈ SX , y ∈ BX and 0 < ε < 1, we take 0 < δ < ε/2 satisfying
1−3δ
1+δ > 1− ε. By hypothesis, we may find γ1, γ2 ∈ R and z ∈ SX such that |γ1 − γ2| = 2,

‖x+ z‖ > 2− δ, ‖y + γ1z‖ 6 1 + δ and ‖y + γ2z‖ 6 1 + δ.

Then, there is x∗ ∈ SX∗ satisfying x∗(x+ z) > 2− δ, so

(1) x∗(x) > 1− δ and x∗(z) > 1− δ,
hence x ∈ S(BX , x∗, ε). On the other hand, using the fact that ‖y + γ1z − γ2z − y‖ = 2,
we obtain

1− δ 6 ‖y + γ1z‖ 6 1 + δ and 1− δ 6 ‖y + γ2z‖ 6 1 + δ.

We define
x1 =

y + γ1z

‖y + γ1z‖
and x2 =

−y − γ2z

‖y + γ2z‖
and, using (1) and the fact that ‖y + γ1z‖x1 + ‖y + γ2z‖x2 = 2z, we deduce that

‖y + γ1z‖x∗(x1) + ‖y + γ2z‖x∗(x2) = 2x∗(z) > 2− 2δ,

which implies

x∗(x1) >
1− 3δ
1 + δ

and x∗(x2) >
1− 3δ
1 + δ

and, therefore, x1, x2 ∈ S(BX , x∗, ε).

Finally, if γ1 > 0 and γ2 < 0, we have that∥∥y − (−γ22 x1 − γ1
2 x2

)∥∥ =
∥∥−γ2

2 (y + γ1z) + γ1
2 (y + γ2z)− −γ22 x1 + γ1

2 x2

∥∥
6 −γ22

∣∣1− ‖y + γ1z‖
∣∣+ γ1

2

∣∣1− ‖y + γ2z‖
∣∣ < δ < ε,

and analogously if γ1 < 0 and γ2 > 0. Otherwise, there is i ∈ {1, 2} such that |γi| 6 δ and
then ‖y − (−1)ixi‖ 6

∣∣1− ‖y + γiz‖
∣∣+ δ 6 2δ < ε. �

3. Lushness for some quotient spaces of L1(µ)

The aim of this section is to characterize some quotient spaces of L1(µ) which are lush.
The construction uses duality argument, so we start with some statements about L∞(µ).

We recall that a subspace X of a C(K) space is said to be C-rich [4, Definition 2.3]
if for every nonempty open subset U of K and every ε > 0, there is a positive function
h ∈ C(K) of norm 1 with support inside U such that the distance from h to X is less than
ε. It follows from [2, Proposition 4.2] (and in the real case for K = [0, 1] it was proved in
[10, Lemma 1.4.]), that the positivity of the function h in this definition can be omitted.
A C-rich subspace of C(K) is necessarily lush [4, Theorem 2.4].

Considering an L∞(Ω,Σ, µ) space as a C(Kµ) space (where Kµ is the space of max-
imal ideals of the Banach algebra L∞), the above definition applies to subspaces of
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L∞(Ω,Σ, µ). The following easy lemma gives a characterization of C-richness of a subspace
of L∞(Ω,Σ, µ) in terms of the L∞ space itself.

Lemma 3.1. Let (Ω,Σ, µ) be a measure space and let X be a subspace of L∞(Ω,Σ, µ) ∼=
C(Kµ). If for every subset U ∈ Σ+ and every ε > 0 there is a function h ∈ L∞(Ω,Σ, µ)
of norm 1 with supp(h) ⊂ U and dist(h,X) < ε, then X is C-rich.

Proof. Observe that C-richness in C(Kµ) requires to find, for each open subset U of Kµ,
a certain continuous function with support inside U , and the condition of the lemma only
requires this for clopen subsets (this follows from the construction of Kµ). Since Kµ is
extremally disconnected, each non-void open set contains a non-void clopen set, which
proves the lemma. �

Recall that ext(BL∞(Ω,Σ,µ)) is the set of measurable functions on Ω which take almost
everywhere modulus-one values. We call such functions “modulus-one functions”.

We are now able to present the main result of this section.

Theorem 3.2. Let (Ω,Σ, µ) be a finite measure space such that L1 := L1(Ω,Σ, µ) is
separable and consider L∞ := L∞(Ω,Σ, µ) as the dual space for L1. Let Y ⊂ L1 be a
subspace whose annihilator Y ⊥ is C-rich in L∞. Then, X = L1/Y is lush if and only if
G = Y ⊥ ∩ ext(BL∞) is a norming subset of SX∗ for X.

Proof. Let us first observe that X is separable since L1 is. Now, if G is a norming
subset of SX∗ , then K̃ = G evidently satisfies condition (ii) of Proposition 2.2 and X is
lush. Conversely, suppose X is lush and let K̃ ⊂ X∗ = Y ⊥ be the norming subset from
Proposition 2.2.(ii). Let us prove for every f ∈ K̃ the condition |f | = 1 a.e., which will
ensure that G ⊃ K̃ and, consequently, that G is norming for X. Assume to the contrary
that for some f ∈ K̃ there exists ε > 0 such that the set A = {t ∈ Ω : |f(t)| < 1 − ε}
has positive measure. Since Y ⊥ is C-rich in L∞, there is g ∈ SY ⊥ such that |g(t)| < ε for
almost every t ∈ Ω \A. Then, the set

{t ∈ Ω : |f(t)|+ |g(t)| > 2− ε}
has measure zero and, therefore, ‖f + θg‖ < 2− ε for every θ ∈ T, which contradicts the
definition of K̃. �

4. The main example

Let us present the announced construction of a non lush space whose dual is lush.

Consider Ω = [0, 2] equipped with the standard Lebesgue measure. Introduce a partition
Ω =

⊔∞
n=0 ∆n into subsets of positive measure with ∆0 = [0, 1]. We consider all L∞(∆n)

(in the natural way) as subspaces of L∞[0, 2]. We denote by F the subspace of L∞[1, 2],
consisting of the functions satisfying the condition∫

∆n

f dλ = 0 (n ∈ N).

For a fixed dense countable subset {fm : m ∈ N} ⊂ SL2[0,1], let us define an operator
J : L∞[0, 1] −→ L∞[1, 2] as follows:

J(g) =
∑
m∈N

(∫
[0,1]

gfm dλ

)
1∆m

(
g ∈ L∞[0, 1]

)
.
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Observe that for every g ∈ L∞[0, 1] one has

‖J(g)‖ = sup
m∈N

∣∣∣∣∣
∫

[0,1]
g fm dλ

∣∣∣∣∣ = ‖g‖L2[0,1],

so J is a weakly compact operator mapping every modulus-one function from L∞[0, 1] into
a norm-one element of L∞[1, 2]. Finally, denote

Z =
{
g + 2J(g) + f : g ∈ L∞[0, 1], f ∈ F

}
.

Theorem 4.1. Z is a weak∗-closed C-rich subspace of L∞[0, 2], which does not contain any
modulus-one function. Consequently, for Y = ⊥Z ⊂ L1[0, 2], the quotient X = L1[0, 2]/Y
is a Banach space which is not lush, but whose dual X ∗ = Z is lush.

Proof. At first remark that Z can be written as the set of those h ∈ L∞[0, 2], for which
the system of linear equations

2
∫

[0,1]
hfm dλ =

1
λ(∆m)

∫
∆m

h dλ (m ∈ N)

is valid. Since the left-hand and right-hand sides of all these equations are weak∗ contin-
uous, the solution of the system is a weak∗-closed linear subspace.

To demonstrate C-richness of Z, let us fix a subset A ⊂ [0, 2] of positive measure and
ε > 0. There are two (not mutually excluding) cases.
Case 1: λ(A ∩ [0, 1]) > 0. Then, since J is a weakly compact operator, its restriction on
L∞(A ∩ [0, 1]) is also weakly compact, so for every ε > 0 there is a g ∈ SL∞(A∩[0,1]) with
‖Jg‖ < ε/2, so an element g+2J(g) ∈ Z is the element whose distance from g is less than
ε.
Case 2: λ(A ∩ [1, 2]) > 0. In this case there is n ∈ N for which λ(A ∩ ∆n) > 0. One
can evidently find f ∈ SL∞(A∩∆n) with

∫
∆n

f dλ = 0. Then, we have f ∈ F ⊂ Z and
supp(f) ⊂ A, which completes the proof of C-richness.

Finally, assume for the sake of contradiction that Z contains a modulus-one function
h = g + 2J(g) + f where g ∈ L∞[0, 1] and f ∈ F . Since the supports of J(g) and f lie in
[1, 2], g is a modulus-one function on [0, 1]. By definition of J , this means that

sup
n

∣∣∣∣ 1
λ(∆n)

∫
∆n

J(g) dλ
∣∣∣∣ = ‖J(g)‖ = 1,

so there is an n ∈ N for which
1

λ(∆n)

∣∣∣∣∫
∆n

J(g) dλ
∣∣∣∣ > 1

2
.

Consequently,

1 = ‖h‖ > 1
λ(∆n)

∣∣∣∣∫
∆n

2J(g) dλ
∣∣∣∣ > 1,

which is a contradiction. This shows, using Theorem 3.2, that X is not lush.

Finally, X ∗ = Z is C-rich in L∞[0, 2] and so lush by [4, Theorem 2.4]. �

We now enunciate other properties of the space X constructed in the above theorem.

Remarks 4.2. Let X be the space constructed in Theorem 4.1.
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(a) X has numerical index one but it is not lush. This solves in the negative [9,
Problem 15]. Indeed, since X ∗ is lush, it follows that X ∗ has numerical index one
[4, Proposition 2.1] and so does X (see [9, §2], for instance).

(b) It was asked in [9, Problem 13] and in [4, Remark 3.5], whether for every Banach
space E with numerical index one, the subset of SE∗ given by

A(E) = {x∗ ∈ SE∗ : |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BE∗∗)}

is norming for E. Since this condition implies lushness of E [3, Theorem 2.1], we
have that A(X ) is not norming and our space X answers in the negative the cited
question.

(c) Even more, the set A(X ) is empty. Indeed, if x∗ ∈ A(X ), it is clear (using the
Krein-Milman theorem for BX∗∗) that for every y∗ ∈ SX ∗ there is θ ∈ T such that
‖x∗ + θy∗‖ = 2 (see [14, Theorem 2.1] for instance). Now, since X ∗ = Z is a
C-rich subspace of L∞[0, 2], it follows that x∗ is a modulus-one function on [0, 2]
(see the proof of Theorem 3.2). But Z does not contain any of such functions as
it is proved in Theorem 4.1.

Let X be a Banach space. We have shown here that lushness of X∗ does not imply
lushness of X. Also, lushness of X does not imply lushness of X∗ nor lushness of X∗∗

(just consider X as the lush space presented in [3, Example 3.1] such that X∗ and X∗∗

do not have numerical index one). Therefore, the following result gives the unique true
implication between the lushness of a space and lushness of the dual or of the bidual.

Proposition 4.3. Let X be a Banach space. If X∗∗ is lush, then X is lush.

Proof. We fix x, y ∈ SX and ε > 0. Since X∗∗ is lush and SX∗ ⊂ SX∗∗∗ is norming for
X∗∗, Proposition 2.1.(iii) allows us to find z∗ ∈ SX∗ such that

x ∈ S(BX∗∗ , z∗, ε) and dist
(
y, aconv

(
S(BX∗∗ , z∗, ε)

))
< ε.

The first assertion above obviously implies that x ∈ S(BX , z∗, ε). The second assertion is
equivalent to

y ∈ aconv
(
S(BX∗∗ , z∗, ε)

)
+ εBX∗∗

and so, since aconv
(
S(BX , z∗, ε)

)
is weak∗-dense in aconv

(
S(BX∗∗ , z∗, ε)

)
and εBX is

weak∗-dense in εBX∗∗ , we have

y ∈ aconv
(
S(BX , z∗, ε)

)
+ εBX

w∗

.

Since y ∈ X, we can replace the weak∗-closure above by weak closure, and so by norm
closure by convexity, to get

dist
(
y, aconv

(
S(BX , z∗, ε)

))
< ε. �

5. Lushness in vector-valued C(K) spaces

Our first goal in this section is to show that lushness of the range space passes to every
space of continuous functions. Let us comment that this result is known for Banach spaces
with numerical index one [16, Theorem 5].

Proposition 5.1. Let E be a lush Banach space and K be a Hausdorff compact. Then,
the (real or complex) space C(K,E) is also lush.
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Proof. We work only in the more difficult complex case, the real case being completely
analogous. According to Proposition 2.1, it is enough to show that for every f ∈ SC(K,E),
g ∈ BC(K,E), n ∈ N and ε > 0, there exist λ1, . . . , λn > 0,

∑n
k=1 λk = 1 and f1, . . . , fn ∈

BC(K,E) such that:

(2)
∥∥∥∥f +

n∑
k=1

fk

∥∥∥∥ > n+ 1− ε,

(3)
∥∥∥∥g − n∑

k=1

λk exp
(

2πik
n

)
fk

∥∥∥∥ 6 ε+
2π
n
.

Since ‖f‖ = 1, we can find t0 ∈ K such that ‖f(t0)‖ = 1. So, we apply again Propo-
sition 2.1 to x = f(t0) ∈ SE and y = g(t0) ∈ BE . Then, we get x1, . . . , xn ∈ BE and
λ1, . . . , λn > 0,

∑n
k=1 λk = 1, such that∥∥∥∥f(t0) +
n∑
k=1

xk

∥∥∥∥ > n+ 1− ε,
∥∥∥∥g(t0)−

n∑
k=1

λk exp
(

2πik
n

)
xk

∥∥∥∥ 6 ε

2
+

2π
n
.

Since g is continuous on K, we may find an open set U ⊂ K such that t0 ∈ U and

‖g(t)− g(t0)‖ 6 ε

2
(t ∈ U),

and a continuous function α : K −→ [0, 1] with α(t0) = 0 and α|K\U ≡ 1. If we define

fk(t) = xk + α(t)
(
exp

(−2πik
n

)
g(t)− xk

)
∈ BC(K,E)

(
t ∈ K, k = 1, . . . , n

)
,

then the functions fk satisfy conditions (2) and (3). Indeed, the fulfilment of (2) follows
by just evaluating at t0. For the second inequality, we consider an arbitrary t ∈ K and we
observe that∥∥∥∥g(t)−

n∑
k=1

λk exp
(

2πik
n

)
fk(t)

∥∥∥∥ =
∥∥∥∥(1− α(t)

)(
g(t)−

n∑
k=1

λk exp
(

2πik
n

)
xk

)∥∥∥∥ .
Now, if t ∈ U , we have ‖g(t)− g(t0)‖ 6 ε

2
and so∥∥∥∥g(t)−

n∑
k=1

λk exp
(

2πik
n

)
fk(t)

∥∥∥∥ 6 ‖g(t)− g(t0)‖+

∥∥∥∥∥g(t0)−
n∑
k=1

λk exp
(

2πik
n

)
xk

∥∥∥∥∥
6 ε+

2π
n
.

If, otherwise, t /∈ U , then α(t) = 1 and so g(t)−
n∑
k=1

λk exp
(

2πik
n

)
fk(t) = 0. �

The following definition follows the spirit of [2, Proposition 4.2] and it was stated in
[5, Definition 2.3]. Recall that for α ∈ C(K) and x ∈ E, α ⊗ x ∈ C(K,E) denotes the
function t 7−→ α(t)x.

Definition 5.2. Let K be a compact space and let E be a Banach space. A subspace X
of C(K,E) is called C-rich if for every ε > 0, every x ∈ E and every open subset U of K,
there exists a nonnegative function α ∈ C(K) with ‖α‖ = 1 and supp(α) ⊂ U such that
dist(α⊗ x,X) < ε.

The next result shows that C-rich subspaces are lush also in the vector-valued case.
Since we will use Proposition 2.3, the proof is valid in the real case only.
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Proposition 5.3. Let E be a lush real Banach space and K be a Hausdorff compact space.
Then, every C-rich subspace X of C(K,E) is also lush.

Proof. We fix f ∈ SX , g ∈ BX and 0 < ε < 1, and we find t0 ∈ K such that ‖f(t0)‖ = 1.
Since E is lush, we may use Proposition 2.3 to find z ∈ SX , γ1, γ2 ∈ R with |γ1 − γ2| = 2
such that

‖f(t0) + z‖ > 2− ε/5 and ‖g(t0) + γiz‖ 6 1 + ε/5.
We also take an open subset U of K containing t0 such that

‖f(t1)− f(t2)‖ < ε/5, ‖g(t1)− g(t2)‖ < ε/5 (t1, t2 ∈ U).

As X is C-rich, we may find a nonnegative norm-one α ∈ C(K) and h ∈ SX such that

supp(α) ⊂ U and ‖h− α⊗ z‖ < ε/5.

Let us show that h, γ1 and γ2 fulfil the conditions of Proposition 2.3, i.e.

‖f + h‖ > 2− ε and ‖g + γih‖ 6 1 + ε (i = 1, 2).

Indeed, for the first inequality we take t1 ∈ U such that α(t1) = 1 and observe that

‖f + h‖ > ‖f(t1) + h(t1)‖ > ‖f(t0) + z‖ − ‖f(t0)− f(t1)‖ − ‖h(t1)− z‖ > 2− ε.
To deal with the second inequality, we observe that

‖g(t) + γih(t)‖ 6 ‖g(t) + γi α(t) z‖+ |γi|‖α(t)z − h‖
6 ‖g(t) + γi α(t) z‖+ 3ε/5.

If t /∈ U , α(t) = 0 and so ‖g(t) + γih(t)‖ 6 1 + 3ε/5 6 1 + ε. If t ∈ U , we have

‖g(t) + γi α(t) z‖ 6 ‖g(t)− g(t0)‖+ ‖g(t0) + γi α(t) z‖ 6 1 + 2ε/5,

since g(t0) + γi α(t) z = (1− α(t))g(t0) + α(t)
(
g(t0) + γi z

)
∈ (1 + ε/5)BX . Then,

‖g(t) + γih(t)‖ 6 1 + 2ε/5 + 3ε/4 = 1 + ε. �

6. A characterization of C-rich subspaces of real C(K) in terms of
lushness

In [12] a general notion of richness, generated by the Daugavet property was introduced.
We recall that a Banach space X has the Daugavet property whenever ‖Id +T‖ = 1 +‖T‖
for every rank-1 operator T ∈ L(X) [11]. If X is a Banach space with the Daugavet
property, we say that a subspace Y of X is said to be wealthy if every subspace Z ⊂ X
containing Y has the Daugavet property. This concept was introduced in [12, §5] and it is
equivalent to a concept of richness also introduced in the same paper [12, §5]. It is shown
in [12] that all finite-codimensional subspaces of a space X with the Daugavet property
are wealthy, and moreover, if X/Y does not contain copies of `1, or if X/Y has the RNP,
then Y is wealthy. If K is a perfect compact space, wealth is equivalent to C-richness for
subspaces of C(K) [12].

Following these ideas, one can introduce an analogous concept for lushness.

Definition 6.1. Let X be a lush Banach space. A subspace Y of X is said to be lush-
wealthy if every subspace Z ⊂ X containing Y is lush.

The aim of this section is to show that for subspaces of real C(K) spaces with K perfect,
lush-wealth is equivalent to C-richness. The proof of this result uses Proposition 2.3 which
is only valid for real Banach spaces.
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Theorem 6.2. Let K be a perfect compact space and let Y be a subspace of the real space
C(K). Then, Y is C-rich if and only if Y is lush-wealthy.

We need the following preliminary result. We write S1 = {(α, β) ∈ R2 : α2 + β2 = 1}.

Lemma 6.3. Let K be a perfect compact space and let V be an open subset.

(a) There is φ : K −→ S1 surjective and continuous such that φ(K \ V ) = {(1, 0)}.
(b) Therefore, if we write φ(t) = (f(t), g(t)) for every t ∈ K, then f, g ∈ C(K) satisfy

(b1) ‖(αf + βg)|V ‖ = ‖αf + βg‖ = (α2 + β2)1/2 for every α, β ∈ R.
(b2) ‖(αf + βg + c1)|V ‖ = (α2 + β2)1/2 + |c| for every α, β, c ∈ R.
(b3) g|K\V ≡ 0 and f |K\V ≡ 1.

Proof. (a). If V is clopen in K, then it is a perfect compact space and so there is an onto
continuous function ψ : V −→ S1 (see [17, Theorem 8.5.4]) and we may define φ to be
φ|V = ψ and φ|K\V = (1, 0). Otherwise, V is not closed and so the quotient space K̃ of
K obtained by identifying all points of K \ V is perfect and we may find ψ : K̃ −→ S1

onto and continuous and, rotating if needed, we may suppose that K \ V is mapped to
the point (1, 0). Now, φ is just the composition of the quotient map K −→ K̃ and ψ.

(b). Since φ(V ) = S1 and [αf + βg](t) =
(
(α, β) | (f(t), g(t))

)
for every t ∈ K

and every α, β ∈ R, assertions (b1) and (b2) follow easily. The fulfilment of (b3) is
straightforward. �

Proof of Theorem 6.2. If Y is C-rich, then evidently every superspace Z of Y is also C-rich
and so lush by [4, Theorem 2.4].

Conversely, we assume that Y is lush-wealthy and we start with the following claim.

Claim: Given ε > 0 and an open set V ⊂ K, we can find c ∈ R and y ∈ Y so that

|y(t) + c| 6 ε (t ∈ K \ V ) and ‖(y + c1)|V ]‖ > 1 + ε.

Proof of the Claim. We use Lemma 6.3 to get f, g ∈ C(K) fulfilling (b1), (b2) and (b3),
and we consider the space X = lin{Y, f, g} which is lush by hypothesis. Therefore, fixed
δ > 0 such that

(4) 0 < δ < 1
1000 and 100(1 + ε)δ < ε,

we may use Proposition 2.3 to get that there exist h ∈ SX and γ1, γ2 ∈ R such that

(5) ‖h+ g‖ > 2− δ2, ‖f + γ1h‖ < 1 + δ2, ‖f + γ2h‖ < 1 + δ2, and |γ1 − γ2| = 2.

Since g|K\V ≡ 0, there is t0 ∈ V satisfying |g(t0) + h(t0)| > 2− δ2 and so

|g(t0)| > 1− δ2 and |h(t0)| > 1− δ2.

Next, we observe that (b1) gives us that ‖g ± δf‖ = (1 + δ2)1/2 and, therefore,

(1 + δ2)1/2 > |g(t0)|+ δ|f(t0)| > (1− δ2) + δ|f(t0)|
which obviously implies

|f(t0)| 6 (1 + δ2)1/2 − (1− δ2)
δ

< 2δ.

This, together with (5), tells us that

1 + δ2 > |h(t0)| |γi| − |f(t0)| > (1− δ2)|γi| − 2δ (i = 1, 2)
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so we obtain |γi| < 1+δ
1−δ < 1 + 3δ for i = 1, 2 and, using the fact that |γ1 − γ2| = 2, we

deduce that
|γ1|, |γ2| ∈ [1− 3δ, 1 + 3δ] and γ1γ2 < 0.

Using this and (5) again, we get

(6) ‖f − h‖ 6 1 + δ2 + 3δ 6 1 + 4δ and ‖f + h‖ 6 1 + 4δ.

Therefore, given t ∈ K \ V , we have that

1 + |h(t)| = |f(t)|+ |h(t)| 6 1 + 4δ

which implies |h(t)| 6 4δ. Since h ∈ X, there exist α, β ∈ R and x ∈ Y satisfying
h = x+ αf + βg, and thus

|x(t) + α| 6 4δ (t ∈ K \ V ).

Henceforth, if we show that

(7) ‖(x+ α1)|V ‖ > 1
25

the proof of the claim will be finished by just taking

y = 25(1 + ε)x and c = 25(1 + ε)α.

In order to prove (7), on the one hand we observe that, by (b2), we have

(8) (α2 + β2)1/2 6
∥∥(αf + βg − α1

)
|V
∥∥ 6 ‖h|V ‖+ ‖(x+ α1)|V ‖ = 1 + ‖(x+ α1)|V ‖

and

(9) 1 = ‖h|V ‖ 6 ‖(x+ α1)|V ‖+ ‖αf + βg − α1‖ 6 ‖(x+ α1)|V ‖+ 2(α2 + β2)1/2.

We are now going to estimate the distance between ‖(x+α1)|V ‖ and (α2 + β2)1/2. To do
so, we call

G1 = (1 + α)f + βg − α1 and G2 = (1− α)f − βg + α1,

we observe that

f + h = G1 + x+ α1 and f − h = G2 − (x+ α1),

and we use (6) to get

2(1 + 4δ)2 > ‖(f + h)|V ‖2 + ‖(f − h)|V ‖2

>
∣∣‖(x+ α1)|V ‖ − ‖G1|V ‖

∣∣2 +
∣∣‖(x+ α1)|V ‖ − ‖G2|V ‖

∣∣2
= 2‖(x+ α1)|V ‖2 − 2‖(x+ α1)|V ‖(‖G1|V ‖+ ‖G2|V ‖) + ‖G1|V ‖2 + ‖G2|V ‖2.

Besides, using conditions (b1) and (b2) it is easy to show that

‖G1|V ‖ 6 1 + |α|+ (α2 + β2)1/2 6 1 + 2(α2 + β2)1/2,

‖G2|V ‖ 6 1 + 2(α2 + β2)1/2, and ‖G1|V ‖2 + ‖G2|V ‖2 > 2 + 2(α2 + β2).
Hence, we deduce that

(1 + 4δ)2 > ‖(x+ α1)|V ‖2 − 2‖(x+ α1)|V ‖(1 + 2(α2 + β2)1/2) + 1 + α2 + β2

and, therefore,(
‖(x+ α1)|V ‖ − (α2 + β2)1/2)

)2
6 2‖(x+ α1)|V ‖(1 + (α2 + β2)1/2) + 8δ + 16δ2

which, together with (8), implies(
‖(x+ α1)|V ‖ − (α2 + β2)1/2)

)2
6 4‖(x+ α1)|V ‖+ 2‖(x+ α1)|V ‖2 + 8δ + 16δ2.
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Summarizing, if we write A = ‖(x + α1)|V ‖ and B = (α2 + β2)1/2, we deduce from (4),
(9) and the above equation that{

1 6 A+ 2B
(A−B)2 6 4A+ 2A2 + 8δ + 16δ2

from where it is easy to deduce that A = ‖(x + α1)|V ‖ > 1
25 , finishing the proof of the

claim.

To finish the proof, we fix ε > 0 and an open set U ⊂ K, and we observe that it is
enough to find a function y ∈ SY with ‖y|U‖ = 1 and with modulus smaller than ε on
K \ U . To find this function, we consider two open subsets V1, V2 contained in U such
that V1 ∩ V2 = ∅ and we use the claim to find c1, c2 ∈ R and y1, y2 ∈ Y satisfying

‖(yi + ci1)|K\Vi
‖ 6 ε/2 and ‖(yi + ci1)|Vi ]‖ > 1 + ε/2 (i = 1, 2).

If either c1 = 0 or c2 = 0, then y1
‖y1‖ or y2

‖y2‖ is the function we are looking for. Therefore,
we may assume without loss of generality that 0 < |c1| 6 |c2| and we take the function
ỹ = y1 − c1

c2
y2 ∈ Y . Now, we have

|ỹ(t)| 6 |y1(t) + c1|+ |c1|
|c2| |y2(t) + c2| 6 ε/2 + ε/2 = ε (t ∈ K \ U)

and
‖ỹ|V1‖ > ‖(y1 + c11)|V1‖ −

|c1|
|c2|‖(y2 + c21)|V1‖ > 1 + ε/2− ε/2 = 1.

Therefore, ‖ỹ‖ = ‖ỹ|V1‖ > 1 and so the function y = ỹ
‖ỹ‖ ∈ SY satisfies

‖y|K\U‖ 6 ‖ỹ|K\U‖ 6 ε and ‖y|U‖ = 1. �

We would like to remark that, outside of this result, lush-wealth differs strongly from
wealth. For example, one can show that no one-codimensional subspace of L1[0, 1] is lush
(this is not trivial!), and so L1[0, 1] does not have at all any proper lush-wealthy subspace.

Acknowledgement. The authors thank the anonymous referee for several stylistical
improvements.
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[9] V. Kadets. M. Mart́ın, and R. Payá, Recent progress and open questions on the numerical index
of Banach spaces, Rev. R. Acad. Cien. Serie A. Mat. 100 (2006), 155–182.



LUSHNESS, NUMERICAL INDEX ONE AND DUALITY 13

[10] V. M. Kadets, M. M. Popov, The Daugavet property for narrow operators in rich subspaces of
C[0, 1] and L1[0, 1], St. Petersburg Math. J. 8 (1997), 571–584.

[11] V. M. Kadets, R. V. Shvidkoy, G. G. Sirotkin, and D. Werner, Banach spaces with the
Daugavet property, Trans. Amer. Math. Soc. 352 (2000), 855–873.

[12] V. M. Kadets, R. V. Shvidkoy, and D. Werner, Narrow operators and rich subspaces of Banach
spaces with the Daugavet property, Studia Math. 147 (2001), 269–298.
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