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TWO-DIMENSIONAL BANACH SPACES WITH POLYNOMIAL NUMERICAL
INDEX ZERO

DOMINGO GARCÍA, BOGDAN C. GRECU, MANUEL MAESTRE, MIGUEL MARTÍN, AND JAVIER MERÍ

Abstract. We study two-dimensional Banach spaces with polynomial numerical indices equal
to zero.

1. Introduction

The polynomial numerical indices of a Banach space are constants relating the norm and the
numerical radius of homogeneous polynomials on the space. Let us present the relevant definitions.
For a Banach space X, we write BX for the closed unit ball, SX for the unit sphere, X∗ for the
dual space, and Π(X) for the subset of X ×X∗ given by

Π(X) = {(x, x∗) ∈ SX × SX∗ : x∗(x) = 1} .
For k ∈ N we denote by P

(
kX;X

)
the space of all k-homogeneous polynomials from X into X

endowed with the norm
‖P‖ = sup{‖P (x)‖ : x ∈ BX}.

We recall that a mapping P : X −→ X is called a (continuous) k-homogeneous polynomial on X
if there is a k-linear continuous mapping A : X × · · · ×X −→ X such that P (x) = A(x, . . . , x) for
every x ∈ X. We refer to the book [6] for background. Given P ∈ P

(
kX;X

)
, the numerical range

of P is the subset of the scalar field given by

V (P ) = {x∗(P (x)) : (x, x∗) ∈ Π(X)},
and the numerical radius of P is

v(P ) = sup{|x∗(P (x))| : (x, x∗) ∈ Π(X)}.

Recently, Y. S. Choi, D. Garćıa, S. G. Kim and M. Maestre [2] have introduced the polynomial
numerical index of order k of a Banach space X as the constant n(k)(X) defined by

n(k)(X) = max
{
c > 0 : c ‖P‖ 6 v(P ) ∀P ∈ P

(
kX;X

)}
= inf

{
v(P ) : P ∈ P

(
kX;X

)
, ‖P‖ = 1

}
for every k ∈ N. This concept is a generalization of the numerical index of a Banach space
(recovered for k = 1) which was first suggested by G. Lumer in 1968 [7].

Let us recall some facts about the polynomial numerical index which are relevant to our dis-
cussion. We refer the reader to the already cited [2] and to [4, 12, 13] for recent results and
background. The easiest examples are n(k)(R) = 1 and n(k)(C) = 1 for every k ∈ N. In the com-
plex case, n(k)(C(K)) = 1 for every k ∈ N and n(2)(`1) 6 1

2 . The real spaces `m1 , `m∞, c0, `1 and `∞
have polynomial numerical index of order 2 equal to 1/2 ([12]). The only finite-dimensional real
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and P06-FQM-01438.

1
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Banach space X with n(2)(X) = 1 is X = R ([13]). The inequality n(k+1)(X) 6 n(k)(X) holds for
every real or complex Banach space X and every k ∈ N, giving that n(k)(H) = 0 for every k ∈ N
and every real Hilbert space H of dimension greater than one. This last fact is not true in the
complex case in which it follows from an old result by Harris ([9]) that n(k)(X) > k

k
1−k for every

complex Banach space X and every k > 2. Finally, n(k)(X∗∗) 6 n(k)(X) for every real or complex
Banach space X and every k ∈ N, and this inequality may be strict.

For a real finite-dimensional spaceX, the fact n(X) = 0 is equivalent toX having infinitely many
surjective isometries [15, Theorem 3.8]. In particular, it can be shown that the only two-dimensional
space with infinitely many surjective isometries is the Hilbert space. For bigger dimensions the
situation is not that easy but it is possible to somehow describe all these spaces (see [14] and [15]).

We will show in this paper that the situation for numerical indices of higher order is not so tidy,
and many different examples of two-dimensional spaces with numerical indices of higher order equal
to zero will be given. Namely, we start by showing that n(p−1)(`2p) = 0 if p is an even number and,
actually, that n(2k−1)(X) = 0 if (X, ‖ ·‖) is a real Banach space of dimension greater than one such
that the mapping x 7−→ ‖x‖2k is a 2k-homogeneous polynomial. Next, we describe all absolute
normalized and symmetric norms on R2 such that the polynomial numerical index of order 3 is
zero showing, in particular, that all these norms come from a polynomial. Finally, we present some
examples proving that the situation is different for higher orders and for nonsymmetric norms.
This is the content of section 2. We include an appendix (section 3) where it is shown that the
formulae appearing in the examples are actually norms on R2.

Let us finish the introduction with some notation. We say that a norm ‖ · ‖ in R2 is absolute
if ‖(x, y)‖ = ‖(|x|, |y|)‖ for every x, y ∈ R, normalized if ‖(1, 0)‖ = ‖(0, 1)‖ = 1 and symmetric
whenever ‖(x, y)‖ = ‖(y, x)‖ for every x, y ∈ R. For 1 6 p 6 ∞, we write ‖ · ‖p to denote the
p-norm and `dp to denote the d-dimensional `p-space (i.e. Rd endowed with ‖ · ‖p).

Let X be a Banach space, k ∈ N and let S ∈ L(X) be a surjective isometry. Given P ∈
P
(
kX;X

)
, S−1 ◦ P ◦ S ∈ P

(
kX;X

)
clearly and one has that

(1) V (S−1 ◦ P ◦ S) = V (P ) and ‖S−1 ◦ P ◦ S‖ = ‖P‖

(indeed, these equalities follow easily from [9, Theorem 2] but they are actually straightforwardly
deduced from the definition of numerical range).

Let us also recall that X is a smooth space if given x ∈ X \ {0} there exists a unique norm-
one linear functional x∗ ∈ X∗ such that x∗(x) = ‖x‖. Moreover, this functional is given by the
derivative Dx‖ · ‖ of the norm at x. If X is a finite-dimensional space it is known [5, Corollary 1.5
and Remark 1.7] that X is smooth if and only if its norm is Fréchet differentiable on SX .

2. The results

Our first goal is to discuss the polynomial numerical index of the real spaces `2p for 1 < p <∞.
Let us recall that n(k)(`2p) > 0 for p = 1,∞ and every k ∈ N [12, Corollary 2.5].

Example 2.1. Let 1 < p <∞.

(a) If p is an even number and k ∈ N, then n(k)(`2p) = 0 if k > p − 1 and n(k)(`2p) > 0 if
k < p− 1.

(b) If p is not an even number, then n(k)(`2p) > 0 for every k ∈ N.

Proof. (a). Given (x, y) ∈ S`2p , the only functional which norms (x, y) is (xp−1, yp−1) ∈ `2p/p−1. If
we consider the polynomial P ∈ P

(
p−1`2p; `

2
p

)
defined by P (x, y) = (−yp−1, xp−1) then,

(xp−1, yp−1)(P (x, y)) = −xp−1yp−1 + yp−1xp−1 = 0
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for all (x, y) ∈ S`2p implying that v(P ) = 0 and n(p−1)(`2p) = 0. Therefore, for k > p−1, n(k)(`2p) = 0
by [2, Proposition 2.5]. If k < p− 1 and P = (P1, P2) ∈ P

(
k`2p; `

2
p

)
is non zero, observe that

xp−1P1(x, y) + yp−1P2(x, y)

is a scalar homogeneous polynomial which cannot be constant zero. Indeed, we can assume without
loss of generality that P1 is non-zero and evaluate the above expression at (x, 1) for x ∈ R obtaining

xp−1P1(x, 1) + P2(x, 1).

We observe that the first summand is a non-zero polynomial in the variable x of degree at least
p − 1 and the second one has degree at most k. So their sum cannot be equal to zero for every
x ∈ R.

(b). When p is not an even number, the only linear functional which norms (x, y) ∈ `2p with
x, y 6= 0 is (x|x|p−2, y|y|p−2) ∈ `2p/p−1. If P = (P1, P2) ∈ P

(
k`2p; `

2
p

)
satisfies v(P ) = 0, then

(2) x|x|p−2P1(x, y) + y|y|p−2P2(x, y) = 0

for every x, y 6= 0. Now, if p /∈ N, evaluating at (x, 1) for every x > 0, we get

xp−1P1(x, 1) = −P2(x, 1) (x ∈ R+).

If P1(x, 1) is not zero in R+, dividing the above equation by xp−1+deg(P1(x,1)) and taking the limit
as x → +∞, we get a contradiction. Hence, we have that P1(x, 1) = 0 for x ∈ R+ which implies
P2(x, 1) = 0 for x ∈ R+ and, therefore, that P = 0. Finally, if p ∈ N is odd, we use (2) to obtain

xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R+)

−xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R−)

which, together with the fact that xp−1P1(x, 1) + P2(x, 1) and −xp−1P1(x, 1) + P2(x, 1) are poly-
nomials, implies

xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R)

−xp−1P1(x, 1) + P2(x, 1) = 0 (x ∈ R).

This obviously gives P1(x, 1) = 0 and P2(x, 1) = 0 for x ∈ R, implying that P = 0 and finishing
the proof. �

Since `2p is an absolute summand of `p and `dp for every d > 2, by [4, Proposition 2.1] we get the
following.

Corollary 2.2. Let p be an even number and d > 2 an integer. Then, n(p−1)(`p) = n(p−1)(`dp) = 0.

Remark 2.3. It is claimed in [11] that n(k)(`dp) > 0 for every k ∈ N, every 1 < p <∞, p 6= 2, and
every integer d > 2. Going into the proof of that result, one realizes that it is needed that p is not
an even integer.

It is known that n(X∗) 6 n(X) for every Banach space X. Example 2.1 shows that, unlike the
linear case, there is no general inequality between the polynomial numerical indices of a Banach
space and the ones of its dual.

Example 2.4. The reflexive space X = `24 satisfies n(k)(X) = 0 and n(k)(X∗) > 0 for all k > 3.

Our next result is a generalization of Corollary 2.2 to every Banach space whose norm raised to
an even power is a homogeneous polynomial.

Proposition 2.5. Let k be a positive integer and let (X, ‖ · ‖) be a real Banach space of dimension
greater than one. If the mapping x 7−→ ‖x‖2k is a 2k-homogeneous polynomial, then n(2k−1)(X) =
0.
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Proof. Let R and A be respectively the 2k-homogeneous scalar polynomial and the corresponding
symmetric 2k-linear form such that A(x, . . . , x) = R(x) = ‖x‖2k for every x ∈ X. Since R is
Gâteaux differentiable on SX so is ‖ · ‖. Moreover, for fixed x ∈ SX , we have that

2kDx‖ · ‖(y) = DxR(y) = 2kA(x, . . . , x, y)

for every y ∈ X and, therefore, the functional given by x∗(y) = A(x, . . . , x, y) is the only norm-one
functional satisfying x∗(x) = 1. To finish the proof, we fix x0, y0 two linearly independent elements
of X and we define P ∈ P

(
2k−1X;X

)
by

P (x) = −A(x, . . . , x, y0)x0 +A(x, . . . , x, x0)y0

(
x ∈ X

)
which clearly satisfies P 6= 0. Finally, for (x, x∗) ∈ Π(X) we have that

x∗
(
P (x)

)
= A

(
x, . . . , x, P (x)

)
= A

(
x, . . . , x,−A(x, . . . , x, y0)x0 +A(x, . . . , x, x0)y0

)
= −A(x, . . . , x, y0)A(x, . . . , x, x0) +A(x, . . . , x, x0)A(x, . . . , x, y0) = 0

so v(P ) = 0 and, consequently, n(2k−1)(X) = 0. �

The rest of the paper is devoted to the two-dimensional case. We start with some facts about
two-dimensional spaces with polynomial numerical index 0 which will be useful in this paper.

Theorem 2.6. Let (X, ‖·‖) be a two dimensional real space such that n(k)(X) = 0 for some k > 1,
let k0 = min{k : n(k)(X) = 0}, and P = (P1, P2) ∈ P

(
k0X;X

)
with v(P ) = 0. The following

hold:

(a) The (k0 + 1)-homogeneous scalar polynomial defined by

Q(x, y) = yP1(x, y)− xP2(x, y)
(
(x, y) ∈ X

)
only vanishes at (0, 0).

(b) k0 is odd.
(c) (X, ‖ · ‖) is a smooth space. Moreover, for every non-zero (x, y) ∈ X the unique functional

(x∗, y∗) ∈ SX∗ which norms (x, y) is given by

x∗ =
−P2(x, y)‖(x, y)‖

Q(x, y)
and y∗ =

P1(x, y)‖(x, y)‖
Q(x, y)

.

(d) The polynomial P is unique in the following sense: P̃ ∈ P
(
k0X;X

)
satisfies v(P̃ ) = 0 if

and only if there exists λ ∈ R so that P̃ = λP .

Proof. Given P = (P1, P2) ∈ P
(
k0X;X

)
with v(P ) = 0, we claim that P1 and P2 do not have

any factor in common and, in particular, that P only vanishes at (0, 0). Indeed, if k0 > 2, suppose
that there exist scalar polynomials S,R1, R2 with deg(Ri) < k0 such that Pi = SRi for i = 1, 2.
Since v(P ) = 0, given an element (x, y) ∈ SX and a linear functional (x∗, y∗) ∈ SX∗ satisfying
x∗x+ y∗y = 1, we have that

x∗P1(x, y) + y∗P2(x, y) = 0
and, therefore,

S(x, y)
(
x∗R1(x, y) + y∗R2(x, y)

)
= 0

which gives us x∗R1(x, y) + y∗R2(x, y) = 0 whenever S(x, y) 6= 0. Writing R = (R1, R2) and using
that V (R) is connected [1, Theorem 1] and that S only has a finite number of zeros in SX , we
deduce v(R) = 0 and so n(k)(X) = 0 for some k < k0, contradicting the minimality of k0. If
k0 = 1, the above argument is immediate.

(a). The fact that Q(x0, y0) = 0 for some (x0, y0) 6= 0 yields that P (x0, y0) = λ(x0, y0) for
some λ ∈ R which, together with v(P ) = 0, implies that λ = 0 contradicting the fact that P only
vanishes at (0, 0).
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(b). Since Q only vanishes at (0, 0), its degree k0 + 1 must be even and thus k0 is odd.

(c). Given (x, y) ∈ SX , we observe that any functional (x∗, y∗) ∈ SX∗ norming (x, y) satisfies
the linear equations x∗x + y∗y = 1 and x∗P1(x, y) + y∗P2(x, y) = 0 which uniquely determine
(x∗, y∗) as

x∗ =
−P2(x, y)
Q(x, y)

and y∗ =
P1(x, y)
Q(x, y)

since Q(x, y) 6= 0. For arbitrary (x, y) 6= (0, 0) it suffices to use what we have just proved and the
homogeneity.

(d). Since v(P̃ ) = 0, for every ((x, y), (x∗, y∗)) ∈ Π(X) we have x∗P̃1(x, y) + y∗P̃2(x, y) = 0
which, together with (c), gives

−P2(x, y)
Q(x, y)

P̃1(x, y) +
P1(x, y)
Q(x, y)

P̃2(x, y) = 0

and, therefore,
P1(x, y)P̃2(x, y) = P2(x, y)P̃1(x, y)

for every (x, y) ∈ SX . Now it suffices to recall that P1 and P2 do not have any factor in common
to get the result. �

We have to restrict ourselves to the two-dimensional case since the above result is not true for
higher dimensions.

Remark 2.7. Consider the real Banach space X = `22 ⊕1 Y , where Y is any non-null Banach
space. Then n(k)(X) 6 n(k)(`22) = 0 for every k ∈ N by [4, Proposition 2.1]. But the norm of X is
not smooth at points (0, y) ∈ SX with y ∈ SY . Also, if we choose Y such that n(k)(Y ) = 0, there
are different non-null polynomials whose numerical radii are zero.

A consequence of Theorem 2.6 is the following partial answer to Problem 42 of [10].

Corollary 2.8. If X is a two-dimensional real Banach space with n(2)(X) = 0, then n(X) = 0.

It is a well known result (see [14, Corollary 2.5] and [15, Theorem 3.1]) that the only two
dimensional real space with numerical index 0 is the Euclidean space. The above theorem allows
us to give a different and elementary proof of this fact. We include it here since it gives some ideas
which we will use later.

Corollary 2.9. Let X be a two dimensional real space with n(X) = 0. Then, X is the two
dimensional real Euclidean space.

Proof. Let e1, e2 ∈ SX and e∗1, e
∗
2 ∈ SX∗ be so that e∗i (ej) = δij for i, j ∈ {1, 2} (the existence of

such elements is guaranteed by [16, Theorem II.2.2]). We fix a linear operator T with v(T ) = 0
and we write it in the basis {e1, e2}:

T (x, y) = (ax+ by, cx+ dy)
(
(x, y) ∈ X

)
.

Since e∗i (Tei) = 0 for i = 1, 2 we obtain a = d = 0. Given an arbitrary nonzero (x, y) ∈ X, we use
Theorem 2.6 to get that the unique linear functional which norms (x, y) is given by(

−cx‖(x, y)‖
by2 − cx2

,
by‖(x, y)‖
by2 − cx2

)
but such a functional must coincide with the differential of the norm, implying that

∂‖ · ‖
∂x

(x, y) =
−cx‖(x, y)‖
by2 − cx2

and
∂‖ · ‖
∂y

(x, y) =
by‖(x, y)‖
by2 − cx2

.

We rewrite the first equation as follows:
1

‖(x, y)‖
∂‖ · ‖
∂x

(x, y) =
−cx

by2 − cx2
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and we integrate it with respect to x, obtaining

log ‖(x, y)‖ =
1
2

log(by2 − cx2) + f(y)

for some differentiable function f . Differentiating now with respect to y we get
1

‖(x, y)‖
∂‖ · ‖
∂y

(x, y) =
by

by2 − cx2
+ f ′(y)

so f ′(y) = 0 and f(y) is constant, say M . Therefore, we can write

‖(x, y)‖ = eM (by2 − cx2)
1
2

and deduce that b > 0 and c < 0. Now, since ‖e1‖ = ‖e2‖ = 1, we get 1 = eM b
1
2 = eM (−c) 1

2

which yields that

‖(x, y)‖ = eM (by2 − cx2)
1
2 = eM b

1
2 (x2 + y2)

1
2 = (x2 + y2)

1
2 . �

There are more two-dimensional spaces for which the polynomial numerical index of order 3
is zero since we already know that n(3)(`24) = 0. However, we are able to completely describe
absolute normalized and symmetric norms with polynomial numerical index of order 3 equal to
zero showing, in particular, that all of them come from a polynomial. We will see later that the
hypothesis of symmetry is necessary.

Theorem 2.10. Let X = (R2, ‖·‖) be a two-dimensional Banach space satisfying that n(3)(X) = 0
with ‖ · ‖ being a normalized absolute symmetric norm. Then, there is β ∈ [0, 3] so that

‖(x, y)‖ =
(
x4 + 2βx2y2 + y4

) 1
4

(
(x, y) ∈ X

)
.

In particular, the fourth power of the norm of X is a polynomial.

Proof. We can assume that n(2)(X) 6= 0 since otherwise X is a Hilbert space and the result holds
with β = 1. We fix P = (P1, P2) ∈ P

(
3X;X

)
with v(P ) = 0 and we consider the associated scalar

polynomial Q(x, y) = yP1(x, y)−xP2(x, y) which only vanishes at (0, 0) by Theorem 2.6. Hence we
can assume without loss of generality that Q > 0 on R2 \ {(0, 0)}. Next, the norm being absolute,

the operator U =
(

1 0
0 −1

)
is a surjective isometry and so the polynomial (R1, R2) = U−1 ◦P ◦U ,

which is given by(
R1(x, y), R2(x, y)

)
=
(
P1(x,−y),−P2(x,−y)

) (
(x, y) ∈ X

)
,

satisfies
v(R1, R2) = 0 and ‖(R1, R2)‖ = ‖P‖

by (1). Thus, Theorem 2.6 tells us that there is λ ∈ R with |λ| = 1 so that

P1(x,−y) = λP1(x, y) and P2(x,−y) = −λP2(x, y)

for every (x, y) ∈ X. Moreover, we have that λ = −1. Indeed, it suffices to take a non-zero x ∈ R
and to observe that

Q(x,−x) = −xP1(x,−x)− xP2(x,−x) = −λQ(x, x)

which implies λ = −1 since Q > 0 on R2 \ {(0, 0)}. Hence, for every (x, y) ∈ X we get

(3) P1(x,−y) = −P1(x, y) and P2(x,−y) = P2(x, y).

Analogously, the norm being symmetric, the operator V =
(

0 1
1 0

)
is a surjective isometry and so

the polynomial (S1, S2) = V −1 ◦ P ◦ V , which is given by(
S1(x, y), S2(x, y)

)
=
(
P2(y, x), P1(y, x)

) (
(x, y) ∈ X

)
,

satisfies
v(S1, S2) = 0 and ‖(S1, S2)‖ = ‖P‖.
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by (1). Therefore, using again Theorem 2.6 and the fact that Q > 0 on R2 \ {(0, 0)}, we deduce
that

P2(x, y) = −P1(y, x)
(
(x, y) ∈ X

)
.

Therefore, if we write P1(x, y) = ax3 + bx2y + cxy2 + dy3 for some a, b, c, d ∈ R, we obtain
P2(x, y) = −dx3 − cx2y − bxy2 − ay3. Further, using (3) we deduce that

P1(x, y) = bx2y + dy3 and P2(x, y) = −dx3 − bxy2

for every (x, y) ∈ X. This, together with Theorem 2.6, tells us that the linear functional which
norms an arbitrary non-zero (x, y) ∈ X is given by(

(dx3 + bxy2)‖(x, y)‖
dx4 + 2bx2y2 + dy4

,
(bx2y + dy3)‖(x, y)‖
dx4 + 2bx2y2 + dy4

)
thus, we have that

1
‖(x, y)‖

∂‖ · ‖
∂x

(x, y) =
dx3 + bxy2

dx4 + 2bx2y2 + dy4
and

1
‖(x, y)‖

∂‖ · ‖
∂y

(x, y) =
bx2y + dy3

dx4 + 2bx2y2 + dy4
.

Integrating the first equation with respect to x we obtain

log ‖(x, y)‖ =
1
4

log(dx4 + 2bx2y2 + dy4) + f(y) (x, y ∈ R)

for some differentiable function f . Differentiating now with respect to y we get

1
‖(x, y)‖

∂‖ · ‖
∂y

(x, y) =
bx2y + dy3

dx4 + 2bx2y2 + dy4
+ f ′(y) (x, y ∈ R)

so f ′(y) = 0 and f(y) is constant, say C. Therefore, we can write

‖(x, y)‖ = eC(dx4 + 2bx2y2 + dy4)
1
4 (x, y ∈ R).

Now, since ‖(1, 0)‖ = ‖(0, 1)‖ = 1, d > 0 and eC d
1
4 = 1 so, calling β = b e4C , we have

‖(x, y)‖ = (x4 + 2βx2y2 + y4)
1
4 (x, y ∈ R).

Finally, this formula defines a norm if and only if β ∈ [0, 3] as shown in Proposition 3.1. �

The next example shows that the hypothesis of symmetry of the norm in the above theorem
cannot be dropped.

Example 2.11. There are normalized absolute norms ‖·‖ on R2 such that the spaces X = (R2, ‖·‖)
satisfy n(3)(X) = 0 and ‖ · ‖` is not a polynomial for any positive number `. Indeed, for any
irrational 0 < a < 1, we consider the function ‖ · ‖a defined by

‖(x, y)‖a =
(
x2 +

(
a

1+a

)1+a

y2

)−a
2 (

x2 +
(

a
1+a

)a
y2
) 1+a

2 (
(x, y) ∈ R2 \ {(0, 0)}

)
and ‖(0, 0)‖a = 0, which is a norm as shown in Proposition 3.6 and obviously satisfies that ‖ · ‖`a is
not a polynomial for any positive number `. We then consider X = (R2, ‖ · ‖a) and the polynomial
P = (P1, P2) ∈ P

(
3X;X

)
given by

P (x, y) =
((

a
1+a

)a (
1+2a
1+a

)
x2y +

(
a

1+a

)1+2a

y3,−x3

) (
(x, y) ∈ X

)
.

Since ‖ · ‖a is differentiable on SX , for (x, y) ∈ SX , the only functional (x∗, y∗) ∈ SX∗ norming
(x, y) is given by

(
∂‖·‖a
∂x (x, y) , ∂‖·‖a∂y (x, y)

)
. It is easy to check that

∂‖ · ‖a
∂x

(x, y) = x3A(x, y, a)

∂‖ · ‖a
∂y

(x, y) =
((

a
1+a

)a (
1+2a
1+a

)
x2y +

(
a

1+a

)1+2a

y3

)
A(x, y, a)
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where

A(x, y, a) =
(
x2 +

(
a

1+a

)1+a

y2

)−a
2 −1 (

x2 +
(

a
1+a

)a
y2
) 1+a

2 −1

.

Therefore, x∗P1(x, y) + y∗P2(x, y) = 0 which implies v(P ) = 0.

For higher order, there are examples of absolute normalized and symmetric norms with polyno-
mial numerical indices equal to zero which do not come from polynomials.

Example 2.12. For every positive integer m > 3, there are absolute normalized and symmetric
norms ‖ · ‖m,θ such that the spaces Xm,θ = (R2, ‖ · ‖m,θ) satisfy n(2m−1)(Xm,θ) = 0 and ‖ · ‖2`m,θ is

not a polynomial for any positive number `. Indeed, let ‖ · ‖m,θ be defined by

‖(x, y)‖m,θ =
(
x2 + y2

) θ
2
(
x2m−2 + y2m−2

) 1−θ
2m−2

(
(x, y) ∈ R2

)
where θ ∈ [0, 1]. This formula defines a norm as shown in Proposition 3.5. To prove that
n(2m−1)(Xm,θ) = 0, we define the polynomial P = (P1, P2) ∈ P

(
2m−1Xm,θ;Xm,θ

)
by

P1(x, y) = θy
(
x2m−2 + y2m−2

)
+ (1− θ)y2m−3

(
x2 + y2

)
P2(x, y) = −θx

(
x2m−2 + y2m−2

)
− (1− θ)x2m−3

(
x2 + y2

)
and we show that v(P ) = 0. Since ‖ · ‖m,θ is differentiable on SXm,θ , for (x, y) ∈ SXm,θ the only

functional (x∗, y∗) ∈ SX∗
m,θ

norming (x, y) is given by
(
∂‖·‖m,θ
∂x (x, y) , ∂‖·‖m,θ∂y (x, y)

)
and, therefore,

x∗ =
[
θx
(
x2m−2 + y2m−2

)
+ (1− θ)x2m−3

(
x2 + y2

)]
B(x, y,m, θ)

y∗ =
[
θy
(
x2m−2 + y2m−2

)
+ (1− θ)y2m−3

(
x2 + y2

)]
B(x, y,m, θ)

where
B(x, y,m, θ) =

(
x2 + y2

) θ
2−1 (

x2m−2 + y2m−2
) 1−θ

2m−2−1
.

Now, it is routine to check that x∗P1(x, y)+y∗P2(x, y) = 0. Finally, if θ ∈ [0, 1] is chosen irrational,
then ‖ · ‖2`m,θ is not a polynomial for any positive integer `.

3. Appendix: Some norms in the plane

The aim of this last section is to justify that some formulae appearing in the past section are
really norms. We start with the norms given in Theorem 2.10 for which the justification is direct.

Proposition 3.1. For β ∈ R, the formula

‖(x, y)‖ =
(
x4 + 2βx2y2 + y4

) 1
4

(
(x, y) ∈ R2

)
defines a norm in R2 if and only if β ∈ [0, 3].

Proof. We start by observing that for 0 6 β 6 1 we can write

‖(x, y)‖ =
(
β(x2 + y2)2 + (1− β)(x4 + y4)

) 1
4 =

∥∥∥(β 1
4 ‖(x, y)‖2 , (1− β)

1
4 ‖(x, y)‖4

)∥∥∥
4

and so it defines a norm on R2. In case β < 0, it is easy to check that the set

A =
{

(x, y) ∈ R2 : x4 + 2βx2y2 + y4 6 1
}

is not convex and thus ‖ · ‖ is not a norm. Indeed, fix 0 < δ < (−2β)
1
2 and observe that the points(

1

(1+2βδ2+δ4)
1
4
, δ

(1+2βδ2+δ4)
1
4

)
and

(
1

(1+2βδ2+δ4)
1
4
, −δ

(1+2βδ2+δ4)
1
4

)
belong to A while their midpoint

(
1

(1+2βδ2+δ4)
1
4
, 0
)

does not.
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Finally, for β > 1, we consider the change of variables given by

x =
u+ v

(2 + 2β)
1
4

and y =
u− v

(2 + 2β)
1
4

;

we observe that

(x4 + 2βx2y2 + y4)
1
4 =

(
u4 + 2 3−β

1+β u
2v2 + v4

) 1
4

and that the mapping g : [1,+∞[−→]− 1, 1] given by g(β) = 3−β
1+β satisfies

g([1, 3]) = [0, 1] and g(]3,+∞[) =]− 1, 0[ .

So the remaining cases 1 6 β 6 3 and 3 < β are covered respectively by the previous ones 0 6 β 6 1
and β < 0. �

The study of the functions appearing in Examples 2.11 and 2.12 is more difficult and requires
some tricky arguments. We would like to thank Vladimir Kadets for providing us with some crucial
ideas.

We start with some folklore lemmata on convex functions. Recall that a function f : A −→ R
on a convex set A is said to be convex if

f(λx+ (1− λ) y) 6 λ f(x) + (1− λ) f(y)
(
x, y ∈ A, λ ∈ [0, 1]

)
.

A subset C of a vector space is said to be a cone if αx + β y ∈ C for every x, y ∈ C and every
α, β ∈ R+. If f : C −→ R is positive homogeneous, then f is convex if and only if f is sublinear,
i.e.

f(x+ y) 6 f(x) + f(y) (x, y ∈ A).

Lemma 3.2. Let (X, ‖ · ‖) be a normed space, C ⊆ X a cone and let f : C −→ R be a positive
homogeneous function. If

f(λx+ (1− λ) y) 6 λ f(x) + (1− λ) f(y)
(
x, y ∈ C ∩ SX , λ ∈ [0, 1]

)
,

then f is convex on C.

Proof. Since f is positive homogeneous, it is enough to show that it is sublinear. If x, y ∈ C are
non-null elements, then x/‖x‖ and y/‖y‖ belong to C ∩ SX and so

1
‖x‖+‖y‖ f(x+ y) = f

(
‖x‖

‖x‖+‖y‖
x

‖x‖
+ ‖y‖
‖x‖+‖y‖

y

‖y‖

)
6 1
‖x‖+‖y‖

(
f(x) + f(y)

)
.

If x = 0 or y = 0, the result is trivial. �

It is well-known (see [17, Proposition 2.2], for instance) that a twice differentiable function
f : A −→ R defined on an open convex subset A of Rd is convex if and only if the Hessian matrix
of f is semi-definite positive. With this in mind, the following result is completely evident.

Lemma 3.3. Let f : Rd −→ R be a continuous function which is twice differentiable with the partial
derivatives of second order continuous on Rd \ {0}. If there are open convex subsets A1, . . . , Am
such that

⋃m
i=1Ai is dense in Rd and f |Ai is convex for i = 1, . . . ,m, then f is convex on Rd.

Proof. Since f |Ai is convex, the Hessian matrix of f is semi-definite positive on Ai. Since
⋃m
i=1Ai

is dense in Rn and the second derivative of f is continuous, we get that the Hessian matrix of f is
semi-definite positive on Rn \ {0}. Now, for fixed x, y ∈ Rd such that the segment [x, y] does not
contain 0, there is an open semispace S such that 0 /∈ S and [x, y] ⊂ S. Since the Hessian matrix
of f is semi-definite positive on S, we get that f is convex on S and so on [x, y]. The remainder
case in which 0 ∈ [x, y] reduces to the above one by the continuity of f . �

We finish the list of preliminary results with an obvious lemma on convex real functions.
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Lemma 3.4. Let I ⊂ R be an interval, let γ, γ0, γ1 : I −→ R be twice differentiable positive
functions, and let ϕ = log(γ), ϕi = log(γi) for i = 0, 1.

(a) γ is convex if and only if ϕ′′ + [ϕ′]2 > 0. In particular, if ϕ′′ > 0, then γ is convex.
(b) If ϕ′′0 and ϕ′′1 are nonnegative, then for each θ ∈ [0, 1] the function

γθ(t) = [γ1(t)]θ[γ0(t)]1−θ
(
t ∈ I

)
is convex.

Proof. (a). We have clearly that

ϕ′ =
γ′

γ
and ϕ′′ =

γ′′ γ − [γ′]2

γ2
, so ϕ′′ + [ϕ′]2 =

γ′′ γ

γ2
.

Now, γ is convex if and only if γ′′ > 0 and, since γ is positive, this is equivalent to ϕ′′ + [ϕ′]2 > 0.

(b). Writing ϕθ = log(γθ), we have that

ϕ′′θ = θϕ′′1 + (1− θ)ϕ′′0

and the result follows from (a). �

We are now ready to state the convexity of the norms of Examples 2.11 and 2.12.

Proposition 3.5. For every p0, p1 ∈ [2,+∞[ and every θ ∈ [0, 1], the function

fθ(x, y) = ‖(x, y)‖θp1 ‖(x, y)‖1−θp0

(
x, y ∈ R

)
is a norm on R2.

Proof. Let us define ϕ(t) = log(fθ(t, 1)) and ϕi(t) = log ‖(t, 1)‖pi for i = 0, 1 and every t ∈ [0, 1],
and observe that

ϕ′i(t) =
tpi−1

1 + tpi
and ϕ′′i (t) =

tpi−2(pi − 1− tpi)
(1 + tpi)2

(
t ∈ [0, 1], i = 0, 1

)
.

If pi > 2, then ϕ′′i > 0 for i = 0, 1 and Lemma 3.4 gives us that the function t 7−→ fθ(t, 1) for
t ∈ [0, 1] is convex. Using Lemma 3.2 for (R2, ‖ · ‖∞) we have that f is convex on the cone

{(x, y) ∈ R2 : x > 0, y > 0, x 6 y}.

Since the function fθ is absolute and symmetric, the same argument is valid in any of the other
seven cones wherein we can divide R2. Now, since fθ is twice differentiable with partial derivatives
of second order continuous on R2 \ {(0, 0)}, Lemma 3.3 gives us that it is convex on R2. Finally,
since fθ is positive homogeneous and it is zero only at zero, it is a norm on R2. �

Proposition 3.6. For any 0 < a < 1, the function ‖ · ‖a defined by

‖(x, y)‖a =
(
x2 +

(
a

1+a

)1+a

y2

)−a
2 (

x2 +
(

a
1+a

)a
y2
) 1+a

2 (
(x, y) ∈ R2 \ {(0, 0)}

)
and ‖(0, 0)‖a = 0, is a norm on R2.

Proof. First of all, ‖ · ‖a is positive homogeneous, it is obviously continuous on R2 \ {(0, 0)} and it
is also continuous at (0, 0) by homogeneity. We consider the function

ϕ(t) = log
(
‖(t, 1)‖a

)
(t ∈ R)
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and observe that

ϕ′(t) =
t3((

a
1+a

)a
+ t2

)((
a

1+a

)1+a

+ t2
) (t ∈ R)

ϕ′′(t) =
3t2
(

a
1+a

)1+2a

+ t4
(

a
1+a

)a
+ t4

(
a

1+a

)1+a

− t6((
a

1+a

)a
+ t2

)2
((

a
1+a

)1+a

+ t2
)2 (t ∈ R)

so we obviously obtain that

ϕ′′(t) +
(
ϕ′(t)

)2 =
3t2
(

a
1+a

)1+2a

+ t4
(

a
1+a

)a
+ t4

(
a

1+a

)1+a

((
a

1+a

)a
+ t2

)2
((

a
1+a

)1+a

+ t2
)2 (t ∈ R)

Therefore, Lemma 3.4 gives us that the function t 7−→ ‖(t, 1)‖a for t ∈ R is convex and using now
Lemma 3.2 for (R2, | · |ε) where |(x, y)|ε = max{ε|x|, |y|}, and taking ε→ 0, this implies that ‖ · ‖a
is convex on the upper halfplane. Repeating the argument by interchanging 1 by −1, we get that
‖ · ‖a is also convex on the lower halfplane. Now, Lemma 3.3 gives us that it is convex on R2 and
the homogeneity shows that ‖ · ‖a is a norm on R2. �

One may wonder whether Proposition 3.5 is true for every pair of norms on R2. The following
example shows that this is not the case even when working with C∞ norms.

Example 3.7. For every θ ∈]0, 1[, there is ε > 0 such that the positive homogeneous function

n(x, y) = (x2 + ε y2)
θ
2 (εx2 + y2)

1−θ
2

is not a norm. Indeed, just observe that

n(1, 0) = ε
1−θ
2 , n(0, 1) = ε

θ
2 and n(1, 1) = (1 + ε)

1
2 .
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the paper. We also thank the anonymous referee for multiple stylistical improvements.

References

[1] F. F. Bonsall, B. E. Cain, and H. Schneider The numerical range of a continuous mapping of a normed

space. Aequationes Math. 2 (1968), 86–93.
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