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Abstract. The nature of mathematical objects, their various types, the way in which they are 

formed, and how they participate in mathematical activity are all questions of interest for 

philosophy and mathematics education. Teaching in schools is usually based, implicitly or 

explicitly, on a descriptive/realist view of mathematics, an approach which is not free from 

potential conflicts. After analysing why this view is so often taken and pointing out the 

problems raised by realism in mathematics this paper discusses a number of philosophical 

alternatives in relation to the nature of mathematical objects. Having briefly described the 

educational and philosophical problem regarding the origin and nature of these objects we 

then present the main characteristics of a pragmatic and anthropological semiotic approach to 

them, one which may serve as the outline of a philosophy of mathematics developed from the 

point of view of mathematics education. This approach is able to explain from a non-realist 

position how mathematical objects emerge from mathematical practices. 
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1. Introduction 

The ontological status of mathematical objects, or to put it another way, the form in which 

they exist, is a problem belonging to the philosophy of mathematics and one which since the 

time of Plato has generated an enormous amount of literature (Rozov, 1989, p. 105). 

However, interest in this question has now spread beyond the confines of these fields and has 

become an object of study for research in mathematics education. Thus, as highlighted by 

Radford (2008), “any didactic theory, at one moment or another (unless it voluntarily wants 

to confine itself to a kind of naïve position), must clarify its ontological and epistemological 

position” (p. 221). 

There are several reasons why it is important to clarify these positions. Indeed, the 

ontology and epistemology of mathematical entities lie at the heart of a number of 

fundamental questions related to the study of key issues in mathematics education. For 

example, they are closely related to the central problem of the meaning of mathematical 

symbols, as in questions such as “What is the ontological status of these entities? Where do 

they come from? How can one get hold of them (or construct them)?” (Sfard, 2000, p. 43). 

Above all, however, understanding the nature of mathematical objects is especially relevant 

when it comes to studying and tackling the ontological and epistemological conflicts and 

difficulties that arise in mathematics classrooms, for example, those that derive from 

attributing existence to mathematical objects.     

In this context the present paper aims to explore the nature of mathematical objects by 

analysing their ways of being and their existence in mathematical practices. Specifically, it 

seeks to explain how mathematical objects emerge from mathematical practices and, 

ultimately, to provide an operative response to the basic question of how mathematical 

knowledge is constructed within schools.  

The three questions addressed by the paper are as follows: 

1. Why are students usually offered a descriptive/realist view of mathematics in the 

classroom? 

2. Is the realist view the most appropriate when it comes to explaining the nature of 

mathematical objects? 

3. Is it possible, in the classroom, to offer a non-realist explanation of how mathematical 

objects emerge from mathematical practices? 

In addressing these questions we first explore why mathematics is presented to students 

in a realist way. Then, in Section 3, the paper considers whether teaching practices should 

actually end up offering this view, a discussion that leads us to propose the philosophical and 

didactic problem raised by realism in mathematics. Section 4 summarizes anti-realist 

positions as philosophical alternatives to realism. In Section 5 we take a more detailed look at 

the basic notion of mathematical practice, including examples of classroom activities that 

help to clarify the notion of mathematical practices and the theoretical ideas which are put 

forward in the following section. Thus, in Section 6 we present a semiotic ontology for an 

educational mathematics philosophy, contrasting it with traditional approaches within the 
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philosophy of mathematics. Specifically, the paper develops the proposed ontology of 

mathematical objects, their types and the resulting configurations, as well as specifying their 

ways of ‘being’ in mathematical practice, their forms of existence, and their participation in 

mathematical activity. Basing on these assumptions, we will try to explain how mathematical 

practices can produce a referent that, implicitly or explicitly, is considered to be a 

mathematical object, and which is apparently independent of the language used to describe it. 

Finally, in Section 7, we compare our proposal with other theoretical frameworks in which 

the notion of mathematical object plays a key role. The paper concludes with some final 

reflections about the usefulness of developing an ontology based on the emergence of 

mathematical objects from mathematical practices. 

2. The descriptive/realist view of mathematics 

In this section it is argued that the way in which mathematics is taught in schools leads 

students to develop, albeit implicitly, a realist view of the nature of mathematical objects. Our 

aim here is to answer the following question: Why, explicitly or otherwise, is a 

descriptive/realist view of mathematics suggested during the teaching process? This view 

assumes that mathematical statements are a description of reality, and that the mathematical 

objects described by such statements form part of this reality. In the teaching process this 

‘reality’ to which mathematical objects belong is located at an intermediate point between 

what, in the philosophy of mathematics, are referred to as Platonic and empiricist positions, 

although depending on the teaching process considered, one may observe a clear preference 

for one or the other of these two points of view, for example, in contextualized teaching or 

realist mathematics. 

The following paragraph from a textbook illustrates how the descriptive/realist view of 

mathematics may be present in classroom discourse: 

Complex numbers are of enormous interest. It has been shown that among complex 

numbers every polynomial equation has at least one root, and may have as many roots 

as the degree of the polynomial. This is known as the fundamental theorem of algebra. 

Complex numbers have many applications in other sciences, such as in calculations 

for AC circuits, the formulation of quantum mechanics and even in aerodynamics. 

You have just discovered the existence of complex numbers... (Barceló, Bujosa, 

Cañadilla, Fargas, & Font, 2002, p. 81) 

In what follows, we consider five arguments that, explicitly or otherwise, lead students 

to view mathematical objects as having real existence.  

2.1. The Objectivity of Mathematics 

It is immediately apparent that the textbook paragraph makes use of a personal/institutional 

duality, that is, students are invited to see how the results they have obtained are already 

known and form part of established mathematical knowledge. In the first three lines, prior to 

speaking about the existence of complex numbers, the author refers to the important findings 

associated with them, what might be called known representations, definitions and properties 

of complex numbers. This is an example of a mathematics discourse which gives students the 

message that mathematics is a ‘certain’, ‘true’ or ‘objective’ science. We thus face the 



4 

 

epistemological problem of explaining the generality and objectivity of mathematical 

propositions.  

The classroom discourse usually explains the objectivity of mathematics, explicitly or 

otherwise, by suggesting that while mathematics is the result of the problem-solving activity 

carried out by different human societies, its truth or objectivity does not depend on the people 

who have developed it. In a way this leads students toward what in philosophy is regarded as 

realism in terms of truth value or epistemological realism (Shapiro, 2000). This type of 

realism can be formulated as follows: Regardless of whether mathematical objects exist 

independently of people and of the language through which they are known, the truth value of 

mathematical statements is objective and independent of the people who make such 

statements.   

The step from epistemological to ontological realism is related to the assumption that in 

order for mathematical knowledge to be objective and general, its objects must also be 

regarded as such. The epistemological question regarding the objectivity and generality of 

mathematical knowledge therefore leads to the postulation of mathematical objects that are 

also objective and general. 

2.2. The Predictive Success of Sciences that Make Use of Mathematics 

The textbook paragraph also contains a discourse about the applications of complex numbers 

to reality. The predictive success of those sciences that make use of mathematics is used to 

argue in favour of the existence of mathematical objects. This argument strengthens, above 

all, the idea of ontological realism. The relationship between mathematics and reality is 

present, to varying degrees, in almost all teaching processes. Indeed, certain processes of 

mathematics teaching and learning include a descriptive discourse about mathematics that 

facilitates, explicitly or otherwise, the emergence of mathematical objects as if they existed in 

reality. This is the case, for example, of some teaching processes that propose a 

contextualized or realist approach to mathematics. 

2.3. Differentiation Between Ostensive and Non-ostensive Objects 

As discussed in Font, Godino, Planas, and Acevedo (2010) it is possible in mathematics 

discourse (a) to talk about ostensive objects representing non-ostensive objects that do not 

exist, for example, we can write that f’(a) does not exist because the graph of f  has a pointed 

form at x = a; and (b) to differentiate the mathematical object from one of its representations. 

Duval (1995, 2006) has pointed out the importance of the different representations and 

transformations between representations in students’ understanding of the mathematical 

object as something different from its representation. Both aspects lead students to interpret 

mathematical objects as being different from their ostensive representations. When produced 

within the mathematics classroom this type of discourse leads us to infer the existence of the 

object as something independent of its representation.  

2.4. The Object Metaphor in Teachers’ Discourse 

As described in Font, Godino, et al. (2010) we consider that the object metaphor plays a 

relevant role in understanding the existence of mathematical objects as pre-existing objects. 
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The object metaphor is a conceptual metaphor that has its origins in our experiences with 

physical objects and enables events, activities, emotions and ideas, etc. to be interpreted as if 

they were real entities with properties. For example, Font, Bolite, and Acevedo (2010) 

analysed different classroom episodes in which the graphical representation of functions was 

being taught, and found that the object metaphor was always present in teachers’ discourse 

because the mathematical entities were presented here as ‘objects with properties’. 

At all events, it is common in mathematics discourse to use certain metaphorical 

expressions
2 

of this conceptual metaphor, ones which suggest that mathematical objects are 

not constructed but, rather, are discovered as pre-existing objects. For example, words such 

as ‘describe’ or ‘find’, etc. are often used, while the textbook paragraph cited above contains 

the word ‘discovered’. 

2.5. Simplicity, Intentionality and Reification 

In everyday life it is useful to assume that the different experiences which one has of an 

object, for example, a chair, are due to there being an object called a chair which is the cause 

of these experiences. Just as postulating objects such as chairs is a useful fiction, regardless 

of whether they actually exist, it is also useful to postulate the existence of mathematical 

objects. Their postulation is justified on the basis of the practical benefits, especially as 

regards simplifying the mathematical theory which is being studied. Indeed, it is highly 

convenient to consider that there exists a mathematical object that is represented by different 

representations, which can be defined by various equivalent definitions, or which has 

properties, etc.  

In addition to the convenience and simplicity that derive from postulating the existence 

of mathematical objects, there are also philosophical reasons for doing so. Here we will 

mention only the philosophical argument, introduced into modern philosophy by Brentano, 

which states the intentionality of thought. Basically, intentionality means that the activity of 

the mind refers to, indicates or contains an object. According to this point of view, therefore, 

the subject assigns an intentional content to representations, definitions, properties, etc. This 

assignation is what leads us to consider that language represents ‘something’, that definitions 

define ‘something’, that properties are the properties of ‘something’, etc. In other words, an 

intentional content is associated with the representations, definitions, properties, etc., and this 

content is regarded as an object.   

The process by which we assume, or state linguistically, that there is an object with 

various properties or various representations, etc. is known as reification (Quine, 1990). This 

process is described by Quine for objects such as chairs, trees, etc., as well as for abstract 

objects in several works, it being frequently linked with notions related to the psychology of 

                                                 
2
 Conceptual metaphors enable metaphorical expressions to be grouped together. A metaphorical expression, on 

the other hand, is a particular case of a conceptual metaphor. For example, the conceptual metaphor “the graph 

is a path” appears in classroom discourse through expressions such as “the function passes through the 

coordinate origin” or “if before point M the function is ascending and after it is descending then we have a 

maximum.” The teacher is unlikely to say to students that “the graph is a path” but, rather, will use metaphorical 

expressions that suggest this. 
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learning. The process of reification has also been studied in the area of mathematics 

education (see, for example, Asiala, Brown, DeVries, Dubinsky, Mathews, & Thomas, 1996; 

Sfard, 1991).  

Figure 1 summarizes the relevant arguments leading to a descriptive/realist view in 

school mathematics. 

 

Figure 1. Arguments Leading to a Descriptive/Realist View in School Mathematics 

 

3. The problem of realism 

Having argued in the previous section that mathematics teaching leads students to develop, 

explicitly or implicitly, a realist view of mathematics it is now necessary to ask whether this 

is a desirable outcome. In principle, one might answer affirmatively, since such a view 

corresponds to a philosophical position on the nature of mathematical objects that is 

supported by well-founded epistemological theories within the philosophy of mathematics. 

Specifically, the descriptive/realist position considers that mathematics are neither invented 

nor constructed, but rather discovered. Consequently, mathematical theories describe pre-

existing mathematical objects. The two most representative approaches in this regard are 

Platonism and empirical realism. 

Mathematical Platonism can be defined as the conjunction of the following three theses: 

(a) Existence: there are mathematical objects, mathematical sentences and theories provide 

true descriptions of such objects; (b) abstractness: mathematical objects are abstracts, that is, 

non-spatiotemporal entities; and (c) independence: mathematical objects are independent of 

intelligent agents and their language, thought and practices. Furthermore, according to the 

Platonists, abstract objects are wholly non-physical, non-mental, non-spatial, non-temporal 

and non-causal (Linnebo, 2009). 

Empirical realism shares with Platonism the view that mathematics is the description of 

objects that exist independently of people and of the language used to represent these objects. 
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However, rather than situating them beyond space and time, empirical realism locates such 

objects within a spatio-temporal world. The main perspectives in this regard are physicalism, 

holistic empiricism and radical empiricism.  

Physicalism views mathematical sentences and theories as being about ordinary physical 

objects. John Stuart Mill, for instance, regarded mathematics as simply a very general natural 

science. For the holistic empiricist (Quine, 1969) the existence of mathematical objects is 

based on the argument of indispensability: Their existence is indispensable for justifying the 

existence of the objects dealt with by physics, and for the latter’s predictive success. This is 

an indirect argument, since the existence of mathematical objects is inferred from the 

predictive success of those sciences which make use of mathematics. Radical empiricism 

(Maddy, 1990; Tymoczko, 1991) can be considered as a development of Mill’s physicalism, 

since it assumes that mathematical propositions are ultimately based on our sense perceptions 

and on the inductive generalizations made from them. Some authors associated with this 

view, such as Maddy, argue that certain mathematical objects (for example, certain sets) are 

perceivable spatio-temporal objects in the same way as ordinary physical objects are. 

The different varieties of realism in mathematics pose a common epistemological 

problem that can be stated in the form of a question: If mathematical objects are independent 

of people, how can we gain access to them? (Benacerraf, 1973). Radical empiricists go as far 

as to state that we actually perceive such objects, whereas the less radical holistic empiricists 

respond to the above question by claiming that access is gained through an indirect 

mechanism. The Platonists, for their part, are left to postulate some kind of bridge (for 

example, intuition) between the spatio-temporal world and the Platonic world. At all events, 

none of these responses offers an entirely satisfaction explanation of how we gain access to 

mathematical objects, and neither do they adequately explain mathematical activity. These 

limitations suggest that the realist view is perhaps not the most suitable for explaining the 

processes through which mathematics is learnt. In this regard, Ernest (1998) has highlighted 

the negative consequences that Platonism and mathematical realism, as well as the 

foundationalist and absolutist positions, may have for mathematics education. 

 

4. Philosophical explanations that offer an alternative to realism 

In our opinion the realist view of mathematics can be broken down into two main arguments. 

The first states that there are objects to which mathematical activity refers, that is, those 

objects we describe when we do maths. The second states, more strongly, that these objects 

exist independently of people and of the language used to describe them. By breaking down 

the realist view in this way it is possible to explain how plausible philosophical alternatives to 

realism have developed. These alternative views seek to show that mathematical objects do 

not exist independently of people and of the language used to describe them, thereby refuting 

the second argument of mathematical realism. Furthermore, they also respond to the first 

argument by offering a plausible explanation of how the objects to which mathematical 

activity refers may develop. Specifically, they argue that what is developed is a fictional 

object that serves as a reference for mathematical activity, or alternatively that mathematics is 

a social construction which may be useful in describing the world of physical objects, etc. 
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This non-descriptive perspective on mathematics, which we will here refer to as anti-realist, 

is shared by a number of different theoretical approaches, notably psychologism, 

constructivism, conventionalism and nominalism.  

Psychologism states that mathematical sentences and theories are about mental objects. 

Probably the most common version of this view holds that numbers are akin to ideas in our 

heads, and that ordinary mathematical sentences like “3 is prime” provide descriptions of 

these ideas (Balaguer, 2008). A point of view that shares common ground with psychologism 

is constructivist intuitionism, whose origins lie in the philosophy of Kant. The principle of 

construction or constructibility, which forms the basis of mathematical intuitionism, states 

that mathematics is the study of certain types of mental constructions. For intuitionism, 

mathematical objects are entities that the mind produces based on (a) the fundamental 

intuition of natural objects, and (b) the use of methods of effective construction. All that 

exists are natural objects and that which can be constructed effectively from them. 

Conventionalism has been described as “the view that a priori truths, logical axioms, or 

scientific laws have no absolute validity but are disguised conventions representing one of a 

number of possible alternatives” (Norton, 1997, p. 121), and one of its historical antecedents 

would be formalism. In the conventionalist view the essential feature of logical and 

mathematical systems is not their descriptive nature, which does not mean they cannot be 

applied to the study of the physical world, but rather their constructive or constitutive nature, 

in the sense that the meaning of logical or mathematical signs is determined by the rules of 

inference and axioms. Among the different approaches that may be considered as 

conventionalist, the most relevant to the present paper is that of Wittgenstein (1978), 

especially in terms of the following three arguments. Firstly, Wittgenstein states that 

mathematical propositions are rules (of a grammatical kind) governing the use of a certain 

kind of sign; for example, the mathematical statement 6
2
 = 36 provides a rule which, in 

empirical statements, allows us to write 6
2
 instead of 36. The fact that mathematical 

statements are written in the form of declarative sentences is not in itself sufficient to reject 

the argument that such statements actually express rules, since despite taking the grammatical 

form of declarative sentences they are used as rules. The other two arguments of relevance 

here are that the meaning of mathematical expressions is determined (and exhausted) by the 

rules governing the use of such expressions, and that these rules are conventional in nature. 

As regards the nominalist approach, here there is no need to speak of the existence of 

mathematical objects, nor of abstract or any other type of object for that matter, except in 

terms of the signs we use to do mathematics. In a nominalist reconstruction of mathematics, 

concrete entities take up the role played by abstract entities in Platonist accounts of 

mathematics. With respect to the entities alleged by some to be universals or abstract objects 

(e.g. properties, numbers or propositions), nominalism proposes two general options: (a) to 

deny the existence of the alleged entities in question, and (b) to accept the existence of these 

entities but to argue that they are particular or concrete (Rodriguez-Pereyra, 2008). 

At all events, a detailed examination of the relationship between these traditional 

approaches to the philosophy of mathematics and mathematics education is beyond the scope 

of the present paper. Rather, our aim is to find a way of overcoming the ontological and 
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epistemological problem of realism by proposing, from the perspective of mathematics 

education, a mathematical ontology that is compatible with non-realist positions such as 

conventionalism and constructivism. Specifically, the goal is to develop a semiotic ontology 

for an educational mathematics philosophy that can explain how mathematical practices may 

produce a referent that is also, explicitly or implicitly, considered to be a mathematical 

object, and which exists apparently as an independent object of the language used to describe 

it. As will be shown in the following sections, the application of anthropological and semiotic 

postulates to mathematical practice and to the objects involved in it enables us to develop a 

useful framework for describing mathematical activity, both that of professionals and that 

which takes place in schools. 

In the mathematical ontology described in the following sections, mathematical objects 

emerge from the practices performed by people within particular contexts, communities, 

cultures, or institutions, and since such practices depend on the available artifacts and 

linguistic tools, mathematical objects depend on language and culture. 

5. mathematical practices and emergence 

Our ontological proposal is derived from mathematical practice, this being the basic context 

in which individuals gain their experience and in which mathematical objects emerge. 

Consequently, the object here acquires a status derived from the practice that precedes it.  

One way of conceptualizing mathematical practices is to regard them as the combination 

of an operative practice, through which mathematical texts are read and produced, and a 

discursive practice, which enables reflection upon the operative practice. Both these practices 

would be able to be recognized as mathematical by an expert observer. This way of 

understanding mathematical practice requires consideration of the personal and institutional 

facets, among which complex dialectical relationships are established and whose study is 

essential for mathematics education. 

At all events, it is important to distinguish between human behaviour, understood as the 

apparent and observable behaviour of individuals, and practice, in the sense that purposeful 

human action has a meaning for both the individual performing it and the person who 

interprets it. In the case of mathematical practices, however, their meaning is determined by 

the function that a given practice serves in problem-solving processes, or in communicating 

the solution to another person, validating the solution and generalizing it to other contexts 

and types of problem. It should be emphasized that this way of understanding the meaning of 

mathematical practices implies that they be considered as rule-governed.   

The notion of emergence is often used when studying complex systems, whether of a 

physical, biological or some other nature, although it is also employed in cognitive science, 

ontology and epistemology (Bunge, 2003; O’Connor & Wong, 2006). It is usually considered 

that emergent entities (properties or substances) ‘arise’ out of more fundamental entities and 

yet are ‘novel’ or ‘irreducible’ with respect to them. In the context of the present ontological 

proposal the idea of emergence is useful for describing how mathematical objects are 

constituted, although the notion will largely be used metaphorically and in its ‘weak’ sense 

(Bedau, 1997). 
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In order to make it easier to understand the theoretical notions being proposed and their 

usefulness in terms of explaining the emergence of mathematical objects in the teaching 

context, we will present a number of examples of mathematical activity generated from 

problematic tasks carried out (or proposed) in classrooms.  

Activity 1 (6-year-olds pupils, primary education) 

The children are asked to add 14 + 27. To this end they are given base-ten blocks so that 

they can perform the actions shown in Figure 2, after which the teacher explains the figure on 

the board. This task forms part of a teaching process whose methodology passes through the 

stages of manipulation, graphical representation and symbolic representation, and whose 

objective is to enable children to perform the ‘carrying over’ of natural two-digit numbers. 

 

Figure 2. Example of a Mathematical Activity 

What emerges from this activity is the property that 14 + 27 is equal to 41 and a 

procedure for adding two-digit numbers. This emergence is achieved by using material that 

can be handled (base-ten blocks) and through different representations on the board 

(graphical, symbolic), and it is also assumed that the pupils have a certain knowledge about 

the meaning of natural numbers and sums, etc. For example, it is assumed that they are 

already able to perform certain procedures such as addition without carry-over and mental 

arithmetic, etc. The question is: How do pupils become convinced that 14 + 27 = 41? The 

answer is by means of the evidence provided by their senses and through certain implicit 

processes of generalization and idealization. The only thing about which the pupils have 

empirical evidence is that 14 blocks + 27 blocks make 41 blocks. However, in the class the 

blocks are used as generic objects and it is implicitly accepted that 14 objects + 27 objects 

make 41 objects (physical operation of adding objects). Hence they conclude that 14 + 27 = 

41 is true (mathematical operation with numbers). In this activity, therefore, there has been a 

shift from a physical plane (operations with physical objects) to the mathematical plane 

(operations with mathematical objects). This activity, together with others, also serves to 

demonstrate the emergence of a procedure for adding two-digit numbers.  

In summary, the two things that emerge in the classroom through this activity are (a) 

properties, which are implicitly assumed to be properties of mathematical objects, in this 

case, natural numbers; and (b) procedures, which are implicitly assumed to be rules about 

how to use these mathematical objects. 

Activity 2  
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The second example that we will use to explain our proposed mathematical ontology 

involves the following series of problems, which are related to one another and which were 

set in different school contexts.  

Activity 2A (12-year-olds pupils, compulsory secondary education) 

We firstly propose the following task to the students: Here you have this chess boar. 

How many smaller or equal-sized chess boards you can build? The solution to this problem 

requires that pupils apply an organized system of actions or practices (see Figure 3): writing 

(numbers, table), operations (addition, multiplication), argumentation, etc. and doing so 

implies the interaction of several ingredients (natural numbers, square of a number, sum, 

etc.). The conclusion they reach (which emerges) is that the following proposition is true: The 

number of boards is equal to 12 + 22 +… + 82. This is a result that was not known and 

which, implicitly, is presented as a result in the world of things, it tells us about the number 

of boards that could be made.  

 

Figure 3. A Student’s Solution 

Activity 2B (16-year-olds students in a problem-solving workshop; these were bright students 

in compulsory education who had a certain mastery of algebra) 

Now, the students are given the following task: Find the maximum number of squares of 

any size that can be built inside a square of side n. (Suggestion: Look for simpler examples 

and find a regular pattern). Justify your answer. What emerges in this case is the following 

general statement: For any square of side n, the number of squares of any size that can be 

formed is 12 + 22 +… + n2. It should be noted that here, implicitly, this statement is 

presented as a property in the world of mathematical objects (squares in this case).  

Activity 2C (continuous education course for secondary school teachers)  

In Figure 4 we present the third proposed task. This problem is designed so that in step 

(c) the teachers state the property 1
2 

+ 2
2 

+… + n
2 

= 
6

)12)(1(  nnn
 and justify it on the 
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basis of their answers in step (b). This activity leads to the emergence, above all, of properties 

of natural numbers that are unknown to the participating teachers. 

(a) Using the following pieces (below), construct a cube of Side 4. 

(b) Describe the pieces which are necessary to construct (in the same way) a cube 

of Side 5, one of Side 8 and another of side n.   

(c) In the case of the cube with side n, can the quadrangular pieces be used to 

construct this if there are 
6

)12)(1(  nnn
cubes of Side 1? Justify your answer. 

 

Figure 4. Pieces of a cube of side 4 

Activity 2D (first-year mathematics undergraduates) 

In the last task we ask the students to prove the following property using complete 

induction: 1
2 

+ 2
2 

+… + n
2 

= 
6

)12)(1(  nnn
. In this case the property of the numbers is 

already known. The proof by empirical induction which the students performed led to the 

emergence of an argument that enables us to ensure the validity of the property. 

The notion that mathematical objects emerge from practices helps us to understand that 

the construction of these objects is progressive and dependent on the institutional framework 

and the artefacts used in these practices. From the point of view of those who take part in 

such activities, the appearance of objects has a certain novel aspect to it. For example, in 

Activity 2C the property 1
2 

+ 2
2 

+… + n
2 

= 
6

)12)(1(  nnn
 is initially unknown, is then 

something which is conjectured on the basis of the actions performed in the three steps, and 

finally, a deductive proof of its validity can be developed for any natural number, for 

example, by using the principle of mathematical induction (Activity 2D). 

 

6. A semiotic ontology for an educational mathematics philosophy 

In this section we describe a mathematical ontology that seeks to avoid the philosophical 

problems of realism in mathematics, and its negative consequences as regards mathematics 
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education. The view taken of the philosophy of mathematics is a broad one and is not limited 

to classical problems about the origin and justification of professional mathematical 

knowledge. Rather, the aim is to develop an ontological and epistemological model that is 

useful for analysing the mathematical activity that takes place in educational institutions. It is 

assumed that mathematics is a human activity (anthropological postulate) and that the entities 

involved in this activity come or emerge from the actions and discourse through which they 

are expressed and communicated (semiotic postulate). This model has been progressively 

developed in several papers by Godino and colleagues (Godino & Batanero, 1998; Godino, 

Batanero, & Font, 2007) and is referred to as the ‘onto-semiotic approach’ to knowledge and 

mathematics instruction. The objective in this paper is to examine in greater detail and clarify 

the nature of different types of objects and their emergence through mathematical practices. 

We also seek to locate the onto-semiotic model within the framework of traditional 

approaches to the philosophy of mathematics. 

6.1 The Objects Involved in Mathematical Practices 

In ordinary language the word object is used to refer to things that are material, tangible or 

real, but this is not the case in philosophy. In philosophical language, an object is a basic and 

universal metaphysical category, a synonym for entity, thing or something that can be 

individualized. In the philosophy of mathematics the term mathematical object usually refers 

to abstract objects such as classes, propositions or relationships. However, in our proposed 

ontology, and in accordance with symbolic interactionism (Blumer, 1969; Cobb & 

Bauersfeld, 1995), we use object in a wide sense to mean any entity which is involved in 

some way in mathematical practice or activity and which can be separated or individualized. 

For example, in Activity 2B (Section 5) the following objects, among others, are involved:  

- Concepts/definitions of natural number, square of a natural number, first consecutive 

natural numbers, sum, square, etc. 

- Properties of arithmetic operations (as distributive) and the proposition: The number of 

squares is 1
2 

+ 2
2 

+… + n
2
. 

- Ways of expressing the concepts/definitions and properties (geometric and algebraic). 

- An argument. For example, one pupil represented a particular but indeterminate square of 

side k, which enabled him to justify, by means of reasoning in terms of generic elements, 

that the number of squares of side k is (n     k +1)(n     k +1). 

In the onto-semiotic approach (OSA), being a mathematical object is equivalent to being 

involved somehow in mathematical practices. The expression mathematical object is a 

metaphor that projects some features found in the source domain (physical reality) to the 

target domain (mathematics). We remark the possibility that physical objects be separated 

from other “objects”. Therefore, initially, all we can "separate" and "individualize" in 

mathematics is considered an object, for example, a concept, a property, a representation, a 

procedure, etc. According to Lakoff and Johnson (1980) this is an ontological metaphor that 

“allows us to pick up parts of our experience and treat them as discrete entities or substances 

of a uniform kind” (p. 25). 
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We recognize that this conception of mathematical object is very broad (or weak), since 

in fact "everything" involved in mathematical practice should be considered a mathematical 

object. However, we think this broad use of the term mathematical object is useful at the 

beginning, because at this moment we assume that mathematical objects are not just the 

abstract concepts, but any entity or thing to which we refer, or of which we speak, no matter 

if it is real or imaginary, whenever it is involved in some way in mathematical activity.  

This initial "weakness" of the notion of object should be reinforced by a "strong theory" 

that would categorize the various types of objects of interest to describe mathematical 

activity. The main aim in this paper is to develop this theory. To achieve this aim the ideas of 

being involved in mathematical practice and existing, taking into account different types of 

existence, are very useful. 

In the next section we will describe the types of objects that are involved in 

mathematical practice and their different forms of existence.  

6.2. Configurations of Objects Involved in the Systems of Mathematical Practices 

An analysis of Activities 1 and 2 in Section 5 reveals a first type of object that is involved in 

mathematical practices, problems, concepts/definitions, propositions, etc., which we will 

refer to here as primary objects (see Godino et al., 2007).  

If we consider, for example, the objects involved when carrying out and evaluating the 

practice that enables a problem to be solved (e.g. Activities 2A-2D in Section 5), then we can 

see the use of languages, both verbal and symbolic. These languages are the ostensive part of 

a series of concepts/definitions, propositions and procedures that are involved in the 

elaboration of arguments whose purpose is to decide whether the simple actions of which the 

practice is composed, and the practice itself as a compound action, are satisfactory.  

The following typology of primary mathematical objects
3
 can therefore be proposed:  

- Linguistic elements: Terms, expressions, notations, graphs, etc. in their various registers 

(written, oral, gestural, etc.). 

- Situations/problems: Extra-mathematical applications, tasks, exercises, examples, etc. 

- Concepts/definitions: Introduced by means of definitions or descriptions, explicit or 

otherwise (straight line, point, number, mean, function, etc.). 

- Propositions: Statements about concepts, etc. 

- Procedures: Algorithms, operations, techniques of calculation, etc. 

- Arguments: Statements used to validate or explain the propositions and procedures, 

whether deductive or of another kind. 

                                                 
3
 Some authors have argued that some of what are here called primary objects should be considered as 

objects. For example, Quine proposes referring to propositional objects rather than propositions (Quine, 

1969). Another example can be found in some versions of nominalism, which consider that signs are the 

only mathematical object which exists. 
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The six types of primary entities proposed here extend the traditional distinction between 

conceptual and procedural entities, the latter being considered insufficient when it comes to 

describing the objects that are involved in, and emerge from, mathematical activity
4
. The 

situations/problems are the origin or raison d’être of the activity, the language represents the 

remaining entities and serves as a tool for action, and the arguments justify the procedures 

and propositions which relate the concepts among one another. Considering an entity as 

primary is a relative rather than absolute matter, since we are dealing with functional entities 

that are relative to the language games, institutional frameworks, communities of practices 

and contexts of use, in which they participate. They also have a recursive nature, in the sense 

that each object, depending on the level of analysis, may be composed of entities of the 

remaining types, for example, an argument may bring into play concepts, propositions, 

procedures, etc. 

Primary objects are related to one another and form configurations, which can be defined 

as networks of objects that are involved in, and emerge from, systems of practices (Godino et 

al., 2007). These configurations may be socio-epistemic (networks of institutional objects) or 

cognitive (networks of personal objects). 

It should be noted that by considering the components of these configurations as primary 

objects, we are engaging in a process of reification, in the sense that notions which would 

normally be regarded as abstract are conceived of as objects. However, this position is 

consistent with usual mathematical practice, which also engages in reification. In the 

mathematics classroom this process is facilitated by, among other factors, the use of the 

object metaphor within the teaching discourse (Font, Bolite, et al., 2010).  

The key question that now needs to be addressed is: What is the nature of primary 

objects? Problems, linguistic elements and arguments do not face the problem of appearing to 

be of a different nature than they actually are, but this is not the case of the other primary 

objects (procedures, concepts/definitions and propositions).  

As regards procedures, it is clear that they are rules, even though in many cases they are 

formulated as propositions, for example, the quotient rule for the derivative of functions is 

stated in the form of a proposition, or even as definitions, since, for example, if we define the 

perpendicular bisector of a segment as the perpendicular that passes through the mid-point, 

then we are implicitly stating a construction procedure. The object nature which proves to be 

particularly problematic is that of concepts/definitions and propositions since, in addition to 

the fact that ostensive representations are normally assumed to represent ideal mathematical 

objects, it is usually assumed that definitions and propositions refer to mathematical objects 

which exist in some form or another.  

In our ontological proposal, and in line with Wittgenstein’s philosophy of mathematics 

(Baker & Hacker, 1985; Bloor, 1983; Wittgenstein, 1978), concepts/definitions and 

                                                 
4
 Depending on the text analysed, some of the elements in this configuration may be missing; this would be 

the case of epistemic configurations of axiomatic texts. 

 



16 

 

propositions are regarded as ‘grammatical’ rules of a certain kind. From this point of view, 

mathematical statements are rules (of a grammatical kind) governing the use of certain types 

of signs, since that is precisely how they are used, as rules. They do not describe properties of 

mathematical objects with any kind of existence that is independent of the people who wish 

to know about them or the language through which they are known, even if this may appear 

to be the case.  

Let us consider the two primary objects that emerged in Activity 1 (Section 5) in order to 

justify that they are, by nature, rules. On the one hand, we saw how the ‘carrying over’ 

procedure for two-digit natural numbers emerged, and here its status as a rule is clear. On the 

other hand, there is the proposition 14 + 27 = 41. This statement was presented to the pupils 

as a generalization of operations that can be performed with objects and, implicitly, a process 

of idealization led them to consider that this was a property of natural numbers, thereby 

obscuring its status as a rule. However, in this activity the objects employed are only used as 

positive examples in which the proposition is fulfilled, since were a counter-example to be 

presented this could not invalidate the proposition as it would be rejected. It is not possible to 

refute empirically the mathematical statement 14 + 27 = 41, since in the event that some 

empirical evidence led us to conclude that 14 + 27 does not equal 41, the statement itself 

would then be used to argue that an error had been made in gathering this evidence. 

This is a conventionalist position that is opposed to the realist argument in the 

philosophy of mathematics: Mathematical statements do not describe any type of reality 

(neither ideal nor natural) which exists a priori of the mathematician’s constructive activity. 

Therefore, concepts/definitions, propositions and procedures of epistemic configurations exist 

in the same way as conventional rules do. From this perspective, mathematical ‘truth’, 

‘certainty’ or ‘necessity’ simply means ‘agreeing’ with the result of following a rule that 

forms part of a language game which operates within certain social practices. It is not an 

agreement of arbitrary opinions, but rather an agreement of practices that are subject to rules. 

However, this does not mean that the socio-epistemic configuration of primary mathematical 

objects is the result of arbitrary, whimsical or even ideologically motivated decisions and 

choices.  

The above view can be regarded as an intermediate position between the nominalist and 

realist viewpoints. On the one hand, it disagrees with those nominalist positions that deny the 

existence of abstract objects such as classes, propositions or relationships, since it is assumed 

that socio-epistemic configurations of primary objects are used and emerge within classroom 

mathematical practices. On the other hand, by considering that the definitions and 

propositions of socio-epistemic configurations have the status of rules, because that is 

precisely how they are used, our approach also differs from those realist positions which 

consider that mathematical objects exist and that they function as a referent for the 

configuration as a whole, their existence being independent of people and the language used 

to describe them.   

This conventionalist position is supported by Wittgenstein’s philosophy of mathematics 

and is also compatible with, or at least does not contradict, other approaches in mathematics 

education that are based on the same philosophy, for example, the theory of commognition 
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(Sfard, 2008), as well as, more generally, all those approaches which consider that 

mathematics discourse and its objects are mutually constitutive. It is also consistent with the 

notion of praxeology proposed by the anthropological theory of the didactic (Chevallard, 

1992). Finally, the proposed ontology of primary objects and their characterization as rules is, 

in our view, also compatible with the notion of mathematical object in Radford’s cultural 

semiotics and, moreover, renders that approach more operative: “Mathematical objects are 

fixed patterns of reflexive activity incrusted in the ever changing world of social practice 

mediated by artefacts” (Radford, 2008, p. 222).  

6.3. Ways of ‘Being’ of Primary Mathematical Objects 

The notion of language game (Wittgenstein, 1953) plays a key role in our onto-semiotic 

approach, since, together with that of institution, it is considered to be one of the contextual 

elements that relativize the ways in which primary mathematical objects can be or exist.  

The notion of language game in Wittgenstein’s system of aphorisms characterizes the 

pragmatic-anthropological position on the meaning of words and linguistic expressions: 

Language game is meant to highlight the fact that the speaking of language is part of an 

activity, or of a way of life. Each word has meaning insofar as it has a use in a particular 

language game, but outside the language game there is no meaning. For example, in 

Activities 2A-2D of Section 5 we can see how the “proof” is immersed in various language 

games that correspond to the institutional context in question. Activities 2A and 2B, for 

instance, are immersed in a language game corresponding to basic arithmetic, one in which 

pupils participate during their first years at school. Activity 2C, however, implies a sharp 

shift away from this language game and forms part of another one that corresponds to 

algebra. Finally, the proof by mathematical induction (Activity 2D) implies participation in 

the rules, customs and agreements associated with the “way of life” of the professional 

mathematics community. In this case the language game is one of universal quantifiers, 

corresponding to the logic of propositions. 

Depending on the language game in which they are involved the primary mathematical 

objects that form part of mathematical practices, and those which emerge from them, may be 

considered in terms of how they participate, and the different ways of doing so may be 

grouped into dual facets or dimensions (Godino et al., 2007), as we will see below.  

Expression/content 

Primary mathematical objects require a sign that enunciates (or accompanies) them. 

However, being an object or a sign is relative, it is a distinction based on a temporary 

relationship rather than on substance, since what is a sign at one moment may become an 

object at another, or vice-versa. Subjects may therefore identify the sign with the object or 

differentiate between the two, according to what is most appropriate.  

The possibility of differentiating between sign and object enables a given individual to 

establish a semiotic function between two objects (something for something). In this 

relationship it is considered that one of the objects is an expression that is related with a 

content (the other object).         
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One way in which primary mathematical objects can be regarded as ‘being’ in 

mathematical practices is therefore related to the expression/content duality. They may be 

participating as representations or as represented objects and, depending on the language 

game, they may shift from being representations to being represented objects. For example, 

Font, Bolite, et al. (2010, p. 17) discuss the case of a textbook which, having stated that 

functions can be represented in four different ways and that it is important not to confuse the 

function with one of its representations, then proceeds, in the following paragraph, to identify 

the function with the symbolic representation, by literally stating “Given the function f(x) = 

1/x …”. 

If we then ask how the expression is related to the content, we come up against the 

problem of classifying representations as internal or external. Consider, for example, the 

word “triangle” written on a sheet of paper. We normally consider this expression to be 

related to the mathematical object triangle (institutional content) through the subject’s 

concept (personal content). Furthermore, both the subject’s concept and its expression are 

considered to be representations; the written word triangle is an external representation and 

the subject’s concept an internal (or mental) representation. 

The classification into mental (or internal) and external representations is by no means 

transparent. Indeed, the ambiguity of the internal/external classification has been pointed out 

by different researchers (Kaput, 1998; Sáenz-Ludlow, 2002). Mathematical objects are 

represented in books, on boards, etc. by mathematical sign systems and using materials that 

form part of the real world; since it is also assumed that the subject is related to this real 

world by mental representations, a conclusion is that what is considered to be external is also, 

in a way, internal.  

In agreement with Godino and Font (2010), we consider that the internal/external duality 

does not adequately account for the institutional dimension of mathematical knowledge, since 

it confuses, to some extent, mathematical objects with the ostensive resources that serve as 

the basis for the creation or emergence of institutional entities. In addition to being 

problematic, the internal/external classification is not very operative, and we therefore 

propose that it be replaced with two more useful dualities (or ways of being). These dualities 

are personal/institutional and ostensive/non-ostensive.  

Personal/institutional 

Mathematical cognition must contemplate both the personal and institutional facets, 

between which complex dialectical relationships are established and whose study is essential 

for mathematics education. Personal cognition is the result of the individual subject’s thought 

and action with respect to a certain class of problems, whereas institutional cognition is the 

result of the dialogue, agreement and rules that emerge from a group of individuals who form 

a practice community
5
.  

                                                 
5
 The notion of institutional cognition is associated with socio-cultural approaches to the construction of 

knowledge. If mathematical objects do not exist independently of people, but rather are produced 

intersubjectively through dialogue and convention, then this process by which objects are created constitutes 

a kind or form of cognition, namely institutional cognition.  
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The personal/institutional duality provides a way of thinking about how primary 

mathematical objects can be regarded as having ‘being’ in mathematical practices. Such 

objects may participate as either personal or institutional objects and, depending on the 

language game, they may shift from being personal to institutional. 

The personal/institutional dialectic is essential in teaching processes, whose aim is to 

enable students to take on board the institutional objects (i.e. learning). Indeed, the 

mathematics classroom makes use of a language game that leads students to distinguish 

between personal objects and institutional objects. This game is related to the need to justify 

mathematical statements, although what is understood by proof or justification may differ 

depending on the institutional context in question, as can be seen in Activities 2A-2D. In the 

classroom, personal objects may be described using a first-person discourse, whereas 

institutional objects require a third-person discourse since they are considered to be objective. 

The main outcome of this language game is that mathematics is presented as an objective 

science. 

The personal/institutional duality leads us to consider configurations of institutional 

primary objects and configurations of personal primary objects, and to problematize the 

relationship between them. Our main interest in this paper lies with the former, and in 

relation to the latter we merely wish to highlight two points. Firstly, these two types of 

configurations are not identified with one another, but rather are regarded as being composed 

of similar elements. In the former case this means configurations that are shared within a 

practice community (the institution), whereas the latter are, in principle, personal to the 

individual subject. Secondly, the construct of configurations occupies a common ground with 

other constructs used in research into the teaching of mathematics (conception, schema, 

belief, intuitive rules, etc.). 

The ontology proposed in this paper considers mathematics as a series of intersubjective 

social constructions, and it is necessary for these constructions to be conventional, a point of 

view that overlaps with social constructivism (Ernest, 1998).  

The notion of cognitive configuration (personal objects network) is a tool for describing 

the objects involved and emerging from personal practices, and therefore, to describe the 

subject’s knowledge, understanding and skills at some point in the learning process. Learning 

can be described in terms of students’ construction of a cognitive configurations network, 

with progressive levels of complexity, in line with the institutional intended configurations.  

This description is consistent with the theory of objectification (Radford, 2008), which 

posits that learning is the social process of objectification. This process is conceived as the 

subjective awareness of the cultural object: "Learning does not consist in constructing or 

reconstructing a piece of knowledge. It is a matter of actively and imaginatively endowing 

the conceptual objects that the student finds in his/her culture with meaning" (Radford, 2008, 

p. 223). We think that the cultural object corresponds to the institutional object, while the 

personal object accounts for the outcome of the objectification process. 

                                                                                                                                                   
 



20 

 

Ostensive/non-ostensive 

Objects outside mathematics, such as oranges, trees, etc. are considered to be particular 

and to have a material existence. This type of existence means that they are ostensive in the 

sense that they can be shown directly to another person. This ostensive nature is shared by the 

material representations used in mathematics.  

Another way in which primary objects can be regarded as ‘being’ in mathematical 

practices is therefore related to the ostensive/non-ostensive duality. These two forms must be 

considered in an inter-subjective sense: Something that can be shown directly to another 

person, versus something that cannot itself be shown directly and must therefore be 

complemented by another something that can be shown directly. To put it another way, 

mathematical ostensive objects have a characteristic akin to things like oranges, tables, etc. 

that is, they have real existence in time and space. By contrast, this kind of existence is not 

attributed to non-ostensive objects, which are usually considered to have an ideal existence. 

One problem in the philosophy of mathematics is to define the nature of this ideal existence. 

In the ostensive category, one must, as a minimum, consider the material representations 

(for example, f´(x) on the blackboard) and material examples (for example, three oranges) 

that are normally considered as extra-mathematical. We also believe it useful to include in 

this category the so-called instruments that form part of mathematical practices (for example, 

the compass). However, there are several reasons why, in mathematical discourse, a 

distinction is made, whether implicitly or explicitly, between ostensive representations and 

non-ostensive objects. Here we will focus on just two, the first being that in mathematics 

discourse it is possible to talk about ostensive objects representing non-ostensive objects that 

do not exist. The second reason is that there are different representations which are regarded 

as representations of the same mathematical object.  

The type of existence that can be ascribed to non-ostensive objects is a key question in 

the philosophy of mathematics. In addition to Platonism, which argues that these objects exist 

in a different world to that of their material representations, a number of different theoretical 

approaches have been proposed as regards the possible objects: (a) the Meinongian approach, 

which attempts to construct a general theory of objects other than ordinary, concrete, existing 

objects; (b) possibilist realism; and (c) actualist representationism. Possibilist realism takes 

non-actual
6
 possible objects to be (real, genuine) objects, that is, their metaphysical status is 

taken to be on a par with that of actual objects. By contrast, in actualist representationism, 

existence is conceptually prior to actual existence. When possibilist realists assert that “non-

actual possible objects exist”, the word exist has the same linguistic meaning as when 

actualists state that “actual objects exist” (Yagisawa, 2009). Other approaches worthy of 

mention in this context are the fictionalism that derives from the ontology of the philosopher 

Roman Ingarden (Błaszczyk, 2005; Smith 1975), and the nominalist fictionalism of Field 

(1980, 1989). Fictionalism argues that we can think about mathematical objects in the same 

                                                 
6
 The terms ostensive and non-ostensive can be considered as equivalent, respectively, to the terms actual and 

non-actual. 
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way as we do about a fictional character in a novel, in other words, the number 13 has the 

same ontological status as a fictional character. 

As argued in Section 2, our ontological approach considers that in the context of 

classroom mathematics a language game is developed which leads students to regard 

ostensive material representations as being different from both the thoughts which people 

have when using them and the objects they represent. Moreover, both people’s thoughts and 

these objects are regarded as having an existence that is different from the material form. For 

example, the ostensive text 1
2 

+ 2
2 

+… + n
2 

= 
6

)12)(1(  nnn
 can be considered as an 

ostensive representation or as an objective non-ostensive proposition represented by this text, 

and both these possibilities can be considered as being different from the mental process that 

occurs in the subject who thinks about this proposition.  

Our ontological proposal therefore contemplates two kinds of existence for non-

ostensive objects. The first corresponds to personal non-ostensive objects, which are located 

within the subject, whereas the second corresponds to the rules for manipulating ostensive 

objects that are employed in the context of problem-solving practices, and which we therefore 

locate within the configurations of institutional primary objects. Consequently, their form of 

existence is not independent of people, whether considered individually or socially. 

This refinement of the internal/external duality by means of the ostensive/non-ostensive 

and personal/institutional dualities is a theoretical tool that enables us to clarify and 

differentiate between processes and objects which, despite being very different, are often 

presented simply in terms of the internal/external classification. For example, the 

mathematical notion of derivative function would be considered as external according to the 

duality internal/external, as would be the symbol f’(x) written in ink in a mathematical text. 

Yet if we apply jointly the dualities ostensive/non-ostensive and personal/institutional, then 

the former example would be regarded as a non-ostensive institutional object, while the latter 

would be an institutional ostensive object. 

Having postulated that one way in which primary objects participate in mathematical 

practice is in the form of non-ostensive objects, the problem to be addressed is as follows: In 

mathematical discourse a language game is produced that leads to the emergence of an 

object, one that is not considered to be ostensive, cannot be identified with any of the primary 

objects of the configuration, and which, moreover, is considered to be the referent for that 

configuration when considered as a whole. According to our ontological proposal, this latter 

type of non-ostensive object, which serves as the referent for the configuration as a whole, 

has a virtual existence, since mathematical practices, in fact, make use of socio-epistemic 

configurations which are rules of convention resulting from a process of intersubjective 

construction. This approach therefore assumes, in part, a certain degree of fictionalism as 

regards the kind of existence which can be ascribed to these objective non-ostensive objects 

that cannot be identified with some of the primary objects contained within the socio-

epistemic configurations, an existence made possible by, among other things, the human 

capacity to engage in processes of idealization on the basis of ostensive objects. In the first 
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section we saw how this fiction emerges and how it promotes a realist view of mathematics 

among pupils. 

In the philosophy of mathematics it is also usual to consider the duality 

concrete/abstract, which is often regarded as equivalent to the duality particular/universal. In 

our proposal, however, it is considered important to make a clear distinction between these 

two dualities, since, in our view, a failure to do so render the particular and abstract 

categories invisible. An exemplar such as “a tiger” is considered to be an object in space-

time, whereas in mathematics, particular objects are usually regarded as ideal. This issue 

cannot be addressed simply in terms of particular vs. general, but requires use of the 

ostensive/non-ostensive duality. As argued by Font and Contreras (2008), it is not possible to 

identify processes of generalization with those of idealization (as illustrated, for example, in 

Activity 1 of Section 5). Neither, therefore, can the dualities concrete/abstract and 

particular/universal be identified with one another, and thus we replace them with 

ostensive/non-ostensive and extensive/intensive. 

Extensive/intensive 

We constantly seek to break reality down, in some way or another, into a multiplicity of 

identifiable and discriminable objects, to which we refer by means of singular and general 

terms (this chair, a table, etc.). This also occurs when we analyse mathematical practices (the 

letter x on the board, the function f(x) = 3x +2, etc.). The extensive/intensive facet 

(exemplar/type; particular/general) acts upon these objects. 

Hence, another way in which primary mathematical objects can be regarded as ‘being’ in 

mathematical practices is related to this extensive/intensive duality. Such objects may be 

participating as particular or general objects and, depending on the language game, they may 

shift from being particular to general or vice-versa. For example, in the problem posed in 

Activity 2B of Section 5 it is obvious that certain propositions are considered as particular 

cases of more general propositions. 

The extensive/intensive duality can be used to explain one of the basic characteristics of 

mathematical activity: the use of generic elements (Font & Contreras, 2008). Specifically, 

this duality enables attention to be focused on the dialectic between the particular and the 

general, which is a key issue in the construction and application of mathematical knowledge. 

According to widespread usage a universal is something that can be instantiated by different 

entities, and the distinction between particulars and universals can thus be made in terms of a 

relationship of instantiation: We can say that something is a universal if and only if it can be 

instantiated by more than one entity whether by particulars or universals, otherwise it is a 

particular. Therefore, while both particulars and universals can instantiate entities, only 

universals can be instantiated. If whiteness is a universal then every white thing is an instance 

of it (Rodriguez-Pereyra, 2008). 

In our proposed ontology, intensive objects correspond to those collections or sets of 

entities, of whatever nature, which are produced either extensively, by enumerating the 

elements when this is possible, or intensively, by formulating the rule or property that 

characterizes the membership of a class or type of objects. The elements of these intensive 
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objects may be other intensives, which in this case will be regarded as extensive objects. In 

other words, our distinction between extensive and intensive is a relative one that depends on 

the context or language game in which the objects participate. Therefore, in addition to not 

identifying the particular/universal duality with the concrete/abstract one, we also interpret 

the extensive/intensive duality in a broader sense than is usually the case for the distinction 

between the particular and the universal. 

Although the extensive/intensive duality can be applied to a single primary object of an 

epistemic configuration, we believe that a useful approach as regards mathematics education 

is to apply it to the configurations of primary objects. For example, if a term is considered to 

be a derivative or a natural number, then this derivative (or natural number) will have 

participated in many different mathematical practices throughout the history of mathematics. 

This set of practices can be grouped into different sub-sets of practices that are carried out 

due to the activation of certain socio-epistemic configurations, some of which may be 

regarded as reorganizations or generalizations of previous ones. By applying the 

extensive/intensive duality to epistemic configurations it is possible to develop, in its 

institutional facet, the idea behind Radford’s cultural semiotics, that is, the mathematical 

object as an entity stratified in layers of generality: “First, the conceptual object is not a 

monolithic or homogenous object. It is an object made up of layers of generality” (Radford, 

2008, p. 226). 

Unitary/systemic 

When one studies a new topic a systemic presentation is made, since what one studies 

are socio-epistemic configurations and the practices that these configurations enable. 

However, when a new topic begins, the previously studied configuration and the practices it 

enables are considered as a whole. When addition and subtraction are studied in the final 

levels of primary education, the decimal number system (tens, hundreds, etc.) is regarded as 

something known and, consequently, as consisting of unitary (elemental) entities. In the first 

year of school, however, these same objects have to be considered systemically in order to be 

learned. 

Both socio-epistemic configurations and the primary objects of which they consist may 

be considered from a unitary perspective. However, we may, at times, be interested in 

adopting a systemic perspective on them, for example, considering what can be done with 

them or with the parts of which they consist. Consequently, another way in which primary 

mathematical objects and socio-epistemic configurations can be regarded as ‘being’ in 

mathematical practices is related to the unitary/systemic duality. They may participate as 

unitary objects or as a system, and, depending on the language game, they may shift from 

being unitary objects to being a system.  

As a summary of the above, Figure 5 shows the types of objects that are involved in 

mathematical practices and the different ways in which they may participate therein. This 

constitutes an initial proposal for the ontological dimension of a philosophy of mathematics 

education. 
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Figure 5. Ontology for an Educational Mathematics Philosophy 

Both the dualities and the configurations of primary objects may be analysed from the 

process/product perspective. The objects of a configuration (problems, definitions, 

propositions, procedures and arguments) emerge through the respective mathematical 

processes of communication, problematization, definition, enunciation, development of 

procedures (algorithms, routines, etc.) and argumentation. For their part, the dualities give 

rise to the following cognitive/epistemic processes: institutionalization–personalization; 

generalization – particularization; analysis/ decomposition – synthesis/ reification;   

materialization/ concretion– idealization/abstraction; expression/representation–signification. 

In Activities 1 and 2 of Section 5 we discussed the role that some of these processes play in 

the emergence of primary objects. However, a more detailed exploration of the typology of 

processes illustrated in Figure 5 is beyond the scope of the present paper. 

6.4. Singularity and Plurality of the Mathematical Object 

The ontology that has been developed above can now be used to answer the third question 

posed in this paper: Is it possible to offer a non-realist explanation of how mathematical 

objects emerge from mathematical practices? 

Firstly, it should be noted that it is not difficult to explain the emergence of properties or 

definitions, etc. As pointed out in the examples used in Section 5, the new primary objects 

appear as a result of mathematical practices and become institutional primary objects due, 

among other things, to processes of institutionalization. In order to explain how objects 

emerge from socio-epistemic configurations a useful metaphor is that of “climbing stairs”. 

When we climb stairs we have to stand on one foot as we move, but that foot then moves 

progressively to a higher stair. Mathematical practice can be considered as climbing stairs. 

The stair on which we stand in order to carry out the practice is an already-known 
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configuration of primary objects, whereas the higher stair which we then reach, as a 

consequence of the practice carried out, is a new configuration of objects. 

This explanation has been illustrated with two examples in Section 5. However, in these 

two examples we have not addressed the specific emergence of linguistic terms. With regard 

to that emergence we could solve the above objection: How can linguistic terms be 

considered emerging objects since they are constitutive of the practice from which primary 

objects emerge? The following definition of derivative function, taken from a Spanish 

textbook for 16–17-year-old students, is an example of an institutionalization process from 

which the definition of derivative, as well as different representations of the derivative 

function, emerge: 

Given a function y = f(x), we can consider a new function h

xfhxf
xf

h

)()(
lim)´(

0




   

that associates at each point of the domain of f its derivative f’(x) when it exists. This 

function is the derivative function of y = f(x) and is represented with f’(x) or y’.   

 

Two objects are institutionalized, the terms f’(x) and y’, which implicitly appear as 

objects referring to other objects. 

Moreover, the history of algebra suggest that an essential step in its development was the 

passage from considering mathematical signs as objects that represent other objects to 

consider them as objects on which actions can be performed. 

Despite having explained how primary objects emerge from socio-epistemic 

configurations, we still have to explain the emergence, in the mathematics classroom, of the 

object that is considered to be the referent for the epistemic configuration as a whole. This 

mathematical object is considered, implicitly or explicitly, to be defined, represented and 

described, etc. by the primary objects of socio-epistemic configurations, and, moreover, these 

can be defined and represented in different ways, with different properties, etc., in other 

words, it serves as a referent for several different socio-epistemic configurations.  

What, in the Platonic or empiricist approach to philosophy, would be considered a 

mathematical object that existed independently of people (for example, the limit or the 

derivative) is, in the ontology proposed here, regarded as a virtual or fictitious object that 

emerges from the different ways of, globally (i.e. holistically), seeing, speaking about, or 

operating on all the objects of the socio-epistemic configuration(s). In other words
7
, this 

object would be the content that, explicitly or otherwise, is globally referred to by the pair: 

mathematical practices and the socio-epistemic configuration which activates them. Let us 

consider the case of the derivative function defined as the limit of rates of variation. This 

definition forms part of a socio-epistemic configuration in which there are properties that are 

assumed to belong to this object called the derivative, and procedures that are understood to 

be those which enable the object to be used. Furthermore, when studying the derivative, one 

studies, in addition to the socio-epistemic configuration limit, the socio-epistemic 

                                                 
7
 In phenomenological terms this would be the intentional object. 
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configuration slope of the tangent line, which leads to the understanding that the derivative 

can be defined and represented in various ways. The result is that one considers there to be an 

object, called the derivative, which serves as the global referent for one or several socio-

epistemic configurations.   

The emergence of this virtual or fictitious object can be explained by the combined 

effect of different dualities. The unitary/systemic duality enables the configuration(s) to be 

considered as an object. The expression/content duality allows the object to be duplicated by 

considering the representation and the object represented. As regards the represented object, 

the ostensive/non-ostensive duality enables it to be considered as non-ostensive, whereas 

according to the personal/institutional duality it is objective.  

In the context of mathematical activity this virtual or fictitious object presents itself in 

the form of an epistemic configuration, and it is therefore this configuration which determines 

what can be done with the object. This statement implies that the point of view being 

proposed here regarding the emergence of mathematical objects has aspects in common with 

structuralist perspectives (Resnik, 1988; Shapiro, 1997), which consider that the substance of 

mathematics is not individual mathematical objects but, rather, the structures through which 

they are constituted. 

Furthermore, it should be taken into account that this object emerges over time from 

various systems of different practices. A given object may be considered as singular for 

reasons of simplicity (for example, the whole number), but, in each subset of practices, the 

configuration of objects in which it presents itself varies (different constructions of the whole 

number) and, therefore, different practices become possible (Godino, Font, Wilhelmi, & 

Lurduy, 2011).  

In a way this object can be considered to be one and many at the same time. On the one 

hand, it can be regarded in a unitary way as emerging from various systems of different 

practices and from the configurations that activate them. In this case it would be the object 

associated, as the global referent, with the pairs of mathematical practices and the socio-

epistemic configurations that activate them; this association would explain how it is possible 

to consider that the object can be defined in different, equivalent ways, or that it can be 

represented by different representations, etc. On the other hand, we can consider that, in each 

configuration, the object associated as the global referent of that configuration is different, 

even in the event that it is possible to establish an isomorphism between two structures
8
.  

7. The OSA ontology within the current debates in mathematics education 

The reflection on mathematical objects is present in most mathematics education research 

programs, more explicitly in some of them. Research programs in which mathematical 

objects play a central role have very different theoretical basis, ranging from cultural semiotic 

                                                 
8
 According to this latter interpretation the point of view being expressed here regarding the emergence of 

mathematical objects would have certain commonalities with the way in which phenomenology 

characterizes such objects (Błaszczyk, 2005; Smith 1975). 
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positions (Radford, 2006), cognitivist approaches (APOS Theory), or frameworks based on 

cognitive linguistics (Lakoff & Núñez, 2000). 

The theory of knowledge objectification suggests that mathematical objects are 

historically being generated along the individuals’ mathematical activity. More precisely, 

“mathematical objects are fixed patterns of reflexive activity incrusted in the ever changing 

world of social practice mediated by artefacts” (Radford, 2008, p. 222). We believe that the 

onto-semiotic approach complements this notion of object in three aspects. On one hand, the 

ontology explained in the previous sections conceives the nature of mathematical objects as 

rules and, on the other hand, it proposes a typology for these rules (the primary objects of 

configurations). It also suggests that the elements of each configuration and of the whole 

configurations can be related through semiotic functions, which in some cases relate 

extensive with intensive objects.  

While the extensive-intensive duality can be applied to the primary objects, in our 

opinion, its application to configurations of objects is still more useful for mathematics 

education. For example, let us consider the term derivative. Derivatives have been used 

throughout the history of mathematics in many different mathematical practices. This set of 

practices can be partitioned into different subsets of practices carried out by activating certain 

epistemic configurations, some of which can be considered as reorganizations and 

generalizations of the above. These last two aspects help to operationalize the statement that 

makes the theory of objectification (Radford, 2008, p. 226): "The conceptual object is not a 

monolithic or homogenous object. It is an object made up of layers of generality." As stated 

Santi (2011): 

 Although the cultural semiotic approach and the onto-semiotic approach have 

different systems of principles, they are complementary theories that can be integrated 

to investigate the issue of meaning. This integration is accomplished by the social and 

cultural understanding of mathematical objects they share: a fixed pattern of reflexive 

activity stratified in layers of generality and objects with a regulatory nature whose 

rules determine different types of objects (configurations of primary entities), 

respectively. (Santi, 2011, pp. 306-307) 

In the APOS theory (Asiala et al., 1996; Dubinsky & McDonald, 2001) encapsulation 

and de-encapsulation of objects play an important role. APOS theory begins with actions and 

moves through processes to objects. These are then integrated into schema which can 

themselves become objects. In this theory basically two uses of the term object is made. An 

object is considered as the result of the encapsulation process, or the result of the 

thematization scheme. This way of conceptualizing the emergence of objects in the APOS 

highlights partial aspects of the complex process that according to the OSA brings up the 

students’ personal mathematical objects from mathematical practices carried out in the 

classroom. The OSA helps explain relevant aspects of the complexity of both mechanisms, 

revealing that they produce the emergence of different objects (primary objects in 

encapsulation) and a global reference (in the thematization). 

The notion of object also plays an important role in the Cognitive Science of 

Mathematics (CSM). Lakoff and Núñez (2000) state that the mathematical structures that 
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people build should be looked for in everyday cognitive processes, such as image schemas 

and metaphorical thinking. People use these basic schemas, called image schemas, to make 

sense of their experiences in abstract domains through metaphorical mappings. These authors 

claim that metaphors create a conceptual relationship between the source domain and the 

target domain. They distinguish between two types of conceptual metaphors in relation to 

mathematics: (a) grounding metaphors that relate a source domain outside mathematics with 

a target domain inside mathematics; and (b) linking metaphors with both source and target 

domains within mathematics. 

Grounding metaphors include ontological metaphors, where we find the object 

metaphor. This is a conceptual metaphor that originates in our experiences with physical 

objects, and enables us to interpret events, activities, emotions and ideas as if they were real 

entities with properties. This metaphor is combined with other ontological, classical 

metaphors such as that of the “container” and that of the “part-whole”. Their combination 

leads to the interpretation of ideas and concepts, etc. as part of other entities and constituted 

by them.  

We believe that Lakoff and Núñez’s methodology of “mathematical idea analysis” is 

very important to explain the emergence of mathematical objects, but it is insufficient to 

describe adequately this emergence and the nature of mathematical objects. This limitation 

was pointed out by various authors in the discussions that followed the publication of Lakoff 

and Núñez’s book (e.g. Sinclair & Schiralli, 2003).  

The way in which the OSA explains the emergence of mathematical objects does not 

only extends and improves the explanation offered by the CSM, but it also clarifies one 

central process considered by the latter, namely the metaphorical process (Malaspina & Font, 

2010). The epistemic/cognitive configurations explain and make precise the structure that is 

projected onto the conceptual metaphors. There is a source domain with an 

epistemic/cognitive configuration structure (no matter whether the adopted point of view is 

institutional or personal) and which projects itself onto a target domain with the same 

structure (epistemic/cognitive configuration). 

A more detailed analysis of the concordances, complementarities and possible links 

between these theories on the mathematical object (and others, such as the Sfard (1991)’s 

theory of reification) and the model proposed by the OSA should be addressed in other 

papers. 

 

8. Final considerations 

This paper has illustrated the interpretative potential of our ontology of mathematical objects 

and has offered an explanation of how the latter emerge from mathematical practices. This 

theoretical framework enables us to understand how, in the classroom, students come to be 

convinced, explicitly or otherwise, that there are mathematical objects which exist 

independently of people (in the Platonic world or in nature) and which are defined or 

represented by some of the primary objects of socio-epistemic configurations. 
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When performing mathematical practices we make reference to an already-known socio-

epistemic configuration of primary objects and, as a result, access a new configuration of 

primary objects in which one (or more) of these objects was previously unknown. This leads 

to the emergence of the object that serves as the global referent. This emergence is due to the 

combined effect of different dualities, as explained in the previous section. If to this we add 

the discourse about the objectivity of mathematics, its application to the real world and the 

use of certain words (for example, discovered), then we have a plausible explanation of how, 

in the classroom, there emerges the descriptive/realist view of mathematics which considers 

(a) that mathematical propositions describe properties of mathematical objects, and (b) that 

these objects have a certain kind of existence that is independent of the people who encounter 

them and the language through which they are known. This view is hard to avoid since the 

reasons why it is adopted are always operating, albeit subtly. More than a consciously 

assumed philosophical position we are dealing here with an implicit way of understanding 

mathematical objects. 

Without going into detail it is also worth noting that this descriptive/realist view of 

mathematics is not only generated by students but also by prospective mathematics teachers 

in the initial stages of their training, many of whom continue to take this view after 

qualifying. Although there is no direct relationship between conceptions of mathematics and 

ways of teaching, the descriptive/realist view does, in certain cases, influence the type of 

mathematics that is taught and the criteria used by teachers to assess students’ performance 

(Morgan & Watson, 2002). 

We consider the notion of emergence useful to describe not only mathematical activity at 

the individual level (learning processes) but also the progressive social construction of 

mathematical knowledge from a historical and epistemological point of view. Moreover, 

when applied to mathematics as a science, this notion explains the latter as a social 

construction, whereas when applied to individuals, it does not necessarily involve a 

constructivist perspective of teaching.  

By assuming a first-level emergence of primary objects (understood as conventional 

rules), we partly adopt a kind of constructivism. Our assumption is that mathematics does not 

describe a certain reality pre-existing to the mathematician’s activity; these rules are created 

by human minds and therefore are the result of mental constructions. However, its 

conventional acceptance involves the existence of social institutionalization processes. This 

conception of emergence can be applied to both the subjects’ cognitive configurations and to 

the shared epistemic configurations within a community of practice (institution).  

This leads us to share some features of constructivist theories that conceives construction 

as follows: The person, who has been formed within a community  (institution) and that, 

therefore, is sharing an intersubjectivity, builds a personal cognitive configuration from 

his/her actions on the physical and social environment. This configuration can be represented 

in the material world by different systems of signs subject to certain rules (syntactic, semantic 

and pragmatic) conveyed by the language and agreed by intersubjectivity (epistemic 

configuration). 
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Opting for emergence rather than the notion of construction therefore enables us to 

occupy a common ground with both social constructivism (Ernest, 1998) and Radford’s 

cultural semiotics (Radford, 2006). Indeed, although the explanation offered in this paper 

regarding the emergence of mathematical objects has its own specific features, it also shares 

or at least does not contradict a number of principles associated with other theories of how 

these objects emerge from mathematical activity. These theories would include activity 

theory (Engeström, 1987) as applied to mathematics (e.g. Jurdak, 2006), Radford’s theory of 

knowledge objectification (Radford, 2008), the anthropological theory of didactics 

(Chevallard, 1992), social constructivism (Ernest, 1998) and socio-epistemology (Cantoral, 

Farfán, Lezama, & Martínez-Sierra, 2006). It is also compatible with, or at least does not 

contradict, the explanation offered by the theory of commognition (Sfard, 2008) and, more 

generally, with all those approaches which consider that mathematical discourse and its 

objects are mutually constitutive.  

This paper has developed a conventionalist position that, in ontological terms, occupies a 

middle ground between nominalism and realism. With respect to the nature of mathematical 

objects our approach shares with other theoretical models the idea that their emergence is 

intra-discursive, even though this statement says nothing about their nature. We therefore 

believe it is necessary to go one step further and state that they are basically conventional–

normative  entities, in other words, and as Wittgenstein proposed, they should be regarded as 

the grammatical rules we follow when working with the languages we use to express our 

worlds. Our way of conceiving of the emergence of mathematical objects enables us to 

understand how such objects, regarded as emerging from a system of practices, can be 

considered as singular. Yet it also shows that, in each subset of practices, the socio-epistemic 

configuration in which the object in question presents itself varies and, therefore, different 

practices become possible.  
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