
1 
 

COGNITIVE CONFIGURATIONS OF PRE-SERVICE TEACHERS 
WHEN SOLVING AN ARITHMETIC-ALGEBRAIC PROBLEM1 

 
Walter F. Castro. University of Antioquia. Colombia 

Juan D. Godino. University of Granada. Spain 
 
The objective of this paper is to describe the cognitive configurations exhibited by the 
students when solving word problems which could be solved using arithmetic-
algebraic methods. The configurations will be described in terms of theoretic 
elements provided by the onto-semiotic approach to mathematics knowledge and 
instruction.  
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INTRODUCTION  
A number of researchers recommend the incorporation of elementary algebraic 
reasoning at different levels of primary education (e.g., Booth, 1988). Carraher and 
Schliemann (2007) state that algebra at the primary school is not simply a subset of 
the high school syllabus; rather, it is a rich sub-domain of mathematics education 
with its own approaches and problems to research. 
The introduction of student primary teachers to elementary algebraic reasoning is a 
long and complex process (Van Dooren, Verschaffel and Onghema, 2003). It is 
considered that primary teachers should be able to recognize and to foster the 
algebraic reasoning manifested spontaneously by their students (Carraher and 
Schlieman, 2007). Therefore, research about fostering elementary algebraic reasoning 
in student teachers is of great relevance to initial teacher education (Borko et al, 
2005).  
On this research domain there are two questions posed by Carraher and Schliemann 
(2007, p.675): ‘can young students really deal with algebra?’ and, ‘can elementary 
school teachers teach algebra?’. Some researchers have tackled the second question. 
For example, Schmidt and Bernarz (1997) detail student teachers’ resistance and 
conflicts in the passage from arithmetic reasoning to algebraic reasoning. Similar 
findings are reported by Van Dooren et al. (2003). 
Our purpose is to present the initial findings of a student teachers educational 
proposal on mathematics reasoning. The proposal offers opportunities to student 
teachers to develop didactic analysis knowledge (Godino, J. D., Rivas, M., Castro, W. 
F. y Konic, P, 2008) that could aid student teachers to recognize and to foster 
elementary algebraic reasoning in their pupils. 

                                                      
1 Paper presented at the meeting of the CERME 6, Group 4: Algebraic Thinking. Lyon, France, 2009. 
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We focus the attention on the notion of cognitive configuration introduced by the 
“onto-semiotic approach”, OSA, (Godino, Batanero, and Roa, 2005; Godino, 
Batanero, and Font, 2007) to characterize the mathematic knowledge that is 
mobilized in order to solve an arithmetic-algebraic problem. We consider that this 
notion offers a wider view of the construct of strategy by considering the conceptual, 
propositional, argumentative, representational and situational aspects of knowledge 
alongside the traditional procedural approach.  
INSTITUTIONAL CONTEXT AND METHODOLOGY 
The research has been carried out with a sample of 94 primary student teachers 
enrolled in a mathematics method course at University of Granada, Spain. The course 
aims to develop mathematical knowledge as well as didactical reflection. It is to 
mention that algebra as such was not studied in the course. During the course several 
mathematical problems that could be solved using elementary algebraic reasoning 
were given to students. In this paper we analyze the students’ solutions to one of 
these problems which were given during a test.  

A ball is thrown from an unknown altitude; it bounces up to one fifth of the 
altitude it was thrown from. If after three rebounds the ball reaches an 
altitude of 6 cm, a) What is the altitude it fell from the first time?, b) 
Explains the resolution  using algebraic notation. 

The problem belongs to a category of very well studied word problems. However, 
within the framework of this course, we are specifically interested in the arithmetic 
and algebraic solutions provided spontaneously by students. 
EPISTEMIC ANALYSIS OF THE PROBLEM2 
The OSA focuses on five dimensions in analysing the objects and meanings used in 
solving a mathematical problem: linguistic objects, concepts, properties, procedures 
and arguments. In what follows we analyse the problem using OSA3. This analysis 
has two purposes for the teacher educator: to explore the objects and meanings put 
into effect during the solution of the problem, and to identify eventual meaning 
conflicts and to foresee difficulties and errors that could emerge in students’ solutions 
to similar problems. 
The word problem is stated in terms of linguistic elements, which refer to quantities, 
magnitudes and relationships between them. These can be expressed in arithmetic or 
algebraic terms.  
The statement “A ball is thrown from an unknown altitude” refers both to a real 
experience and to the unknown value of a quantity. Next it enounces a condition “it 
bounces up to one fifth of the altitude it was thrown from” that establishes the 
numeric relationship, invariant during the bouncing, between the altitude the ball falls 
from and the altitude to which it bounces, expressed by the fraction 1/5.  
                                                      
2 To see an example of such analysis, we refer the readers to the work of Godino et al. (2008). 
3 A priori analysis of the solution to the problem done by an expert. 
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The statement “If after three rebounds the ball reaches an altitude of 6 cm” 
establishes that the numeric relationship is compounded three times with itself, 
fraction of fraction. Additionally it assigns a value to the last altitude.   
Finally the statement, “What is the altitude it fell from the first time?” establishes the 
quantity that must be identified in terms of the given information in the problem 
wording.  
The linguistic terms refer to mathematic concepts (e.g., fraction, equality, unknown, 
operation), whose meanings, properties and procedures are related argumentatively in 
a complex way and favors or inhibits the solution to the problem.   
It is worth to mention that both the eventual arithmetic and algebraic solutions place 
the primary entities in different configurations. For instance, in an arithmetic 
solution, if it is assumed that 6 is the fifth of an unknown quantity, then we can find 
the unknown quantity by multiplying for five, inverting the fractioning operation 
used initially. However, in an algebraic solution, it is not necessary to use either this 
property or the associated concept. The unknown quantity is multiplied, three times, 
by 1/5 and this is equated to 6. Subsequently the unknown is isolated using a 
procedure that frames the solution in terms of multiplication/division.  
 
COGNITIVE ANALYSIS OF THE STUDENTS’ SOLUTIONS 
In what follows we will describe our typology of cognitive configurations evident in 
the solutions produced by the students. In each case, we identify the mathematical 
objects and meanings used by the students in representing their solutions.  
Algebraic configurations4  
Algebraic solutions are those where the use of unknowns is clearly manifested. The 
types of algebraic solutions are: use of unknown, assigning tags to equations, use of 
three unknowns, and additive relationships.  
ALC15: Use of unknown.  On this type of procedure the unknown appears explicitly 
written and it is isolated. The students have attributed meaning to the linguistic 
objects “a bounce” and “If after three rebounds”, and have represented such 
linguistic elements in procedural objects, this can be deduced from the actions carried 
out on fractions, on relationships established and expressed by the equal sign and, 
finally, on isolating the unknown.  
ALC2: Assigning tags. Students explicitly associate each rebound with an equation. 
They use a process made of three steps: initially identify the unknown “altitude the 
ball fell from” which is named x, later name the equation corresponding the first 
bounce as “first rebound”, and so two times more, up to the point where they write 

                                                      
4 See Godino et al. 2008.) 
5 The code ALC and ARC stands for algebraic and arithmetic configurations, respectively. 
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the equation that corresponds to the third bounce, and name it “third rebound”, 
equate to six and obtain the sought value.   
Every solution on this category is correct. It seems that students control the alleged 
difficulty that rises when dealing with unknowns by assigning a tag that lets them to 
isolate each rebound, represented linguistically, and at the same time allocated it in 
the problem context. On this type of solution the students have isolated the linguistic 
object “it bounces up to one fifth of the altitude it was thrown from”, and have 
identified it as an operative invariant in the whole process and have given it a 
procedural role expressed by multiplying by one fifth. 
The procedural and linguistic objects are materialized argumentatively through the 
appropriate use of the equality in its relational meaning and by means of numerical 
operations and properties that are carried out on the equation with the purpose of 
isolating the unknown.  
ALC3: Use of three unknowns. Students use three unknowns, each one of them 
associated to the unknown’s numerical values corresponding to each bounce. Then 
they propose an equation and they execute a nested replacement of variables, from 
the expression corresponding to the last one up to the expression corresponding to the 
first bounce, and they proceed to isolate the unknown.  
The problem is tackled by means of a procedure that breaks up it in three moments; 
the first and the second are represented by an equation with two unknowns, and the 
third, by an equation with one unknown. The mastering of linguistic elements that 
describe the relationships is predominant on this procedure. 
The possible meaning conflicts on the description of the problem are overcome by 
assigning a semiotic function, whose antecedent corresponds to each and every 
bounce, and the consequent is a relationship, expressed as an equation.   
On this procedure the students operate “with” and “on” the unknown (Tall, 20001) 
and spontaneously use the transitive property of equality (Filloy, Rojano and Solares, 
2004). 
It is observed, on this solution strategy, the use of procedures on two levels, the first 
that involves the “process” of dividing the problem in three parts, and the second, the 
use of properties and procedures, in the usual manner as mathematical procedures are 
used.  This type of solution is illustrated on Figure 1.6 

 

                                                      
6 A translation is provided  
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a is the initial height from which the ball is thrown. Each bounce a, b, 6 
cm is 1/5 of the previous bounce. We isolated the first equation in 
order to substitute it in the others. 
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Figure 1. Use of three unknowns (ALC3) 
CAL4: Additive relationships. On this type of solution, the students use an unknown 
and produce expressions and equations that relate arithmetic data by means of 
additive expressions. Some students wrote expressions (not equations) to represent 
the problem. The operative invariant “one fifth” appears multiplying the unknown 
that is operated, additively with the numbers three and six but without establishing a 
relationship expressed by an equation. In some cases the fragility of knowledge about 
properties of rational numbers is manifested.  
In some other solutions it can be seen that some relationships are proposed among the 
numerical values “three” and “six”, where “one fifth” multiplies the unknown, the 
students identify the presence of an unknown and recover the numbers out of the 
problem wording, however they do not related them in any way. 
Arithmetic configurations 
Arithmetic solutions were classified as those where only arithmetic operations are 
used without any reference to unknowns. The types of arithmetic solutions identified 
are: Reverse multiplication, multiplicative relationship, additive relationship, and rule 
of three. 
ARC1: Reverse multiplication. The solution procedure consists of inverting the 
operation: it is known that the altitude to which the ball bounces is one fifth of the 
altitude it was thrown from, as 6 is the last altitude, therefore the previous altitude is 
6x5 and the previous altitude to the last one is 6x5x5. Finally the altitude the ball was 
thrown from is: 6x5x5x5.  
Students using ARC1 exhibit competence and fluency in the use of the multiplication 
operation in the context of known quantities. It is of note that this aspect of 
“operation sense” underlies algebraic thinking Slavit (1999, p.256).  
On this category are located the right arithmetic answers given by the students. The 
only meaning conflict found on some answers is considering four bounces instead of 
three. Figure 2 illustrates this type of solution. 
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Figure 2. Reverse multiplication (ARC1)7 
ARC2: Arbitrary use of multiplication. Students focus their attention simply on the 
numbers contained in the problem: 6, 3 and 5, and the solution they offer is an 
arbitrary combination of multiplicative operations among these three numbers. The 
students appear to construct their solution without paying any attention either to the 
conditions on numbers or to relationships among them. According to Garolafo 
(1992), these students do not exhibit a “numeric approach”, because they do not 
display strategies neither to decide which operations to use nor to assess a plan to 
solve the problem.  
It is deduced from the students´ solutions that they have not comprehended the 
meaning, in operative terms, of the linguistic objects “first”, “second” and “third” 
bounce, nor in relational terms of “If after three rebounds the ball reaches an altitude 
of 6 cm”. The students are incapable of expressing numerically the relationships 
present in the problem. 
The two approaches to rational numbers duplicator/partition and stretcher/shrinker   
(Behr, et. al.  1997) are stressed on this strategy due to the fact that 6 cm is not 
identified as the last bounce, corresponding to one fifth of a quantity that can be 
found by multiplying for five, inverting the operation initially implemented, 
fractioning by five. The operative actions corresponding to adding up fractions are 
carried out correctly even though it seems to be a lack of meaning that students attach 
to the numbers and operations between them. 
ARC3: Arbitrary use of addition. As with ARC2, the students only pay attention to 
numeric data, and simply add up the numbers, in some cases, without appearing to 
establish any relationship among them. It seems that students have assumed that the 
problem has an additive structure, where the length of the bounces are added up and 
the data 6cm, corresponds to the sum of the altitudes of the three bounces.  
The meaning conflicts are located in the linguistic elements corresponding to “first”, 
“second” and “third” bounce, as well as, to the statement “one fifth of”, which is 
interpreted only in its numeric dimension. It seems that the relationships among the 
numbers and expressed linguistically in the problem wording are superfluous to 
students.  

                                                      
7 The translation for the Spanish in the graph is: 1) Ball was thrown from 750 cm; 2)  Bote  stands for  bounce  
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ARC4: Rule of three. The students establish a proportionality relation between the 
number three, that corresponds to the bounces and 6cm, then formulate the question: 
what is the altitude corresponding to one bounce? The meaning conflicts on this 
category are much more profound. It seems that students have associated the data 
format presentation and the problem wording to the archetypal format of 
proportionality problems that are solved through the so called “rule of three”. 
On this type of solution the students carry out the change of type of register 
procedure that lets them to produce meaning in numerical terms but with no link to 
the problem. It seems that problem complexity compels students to veer towards 
more familiar grounds and to perform arithmetic operations (Herscovics & 
Linchevski, 1994). 
A discussion of results 
The last three types of arithmetic solutions (ARC2, ARC3 and ARC4) are 
characterized by a wrong meaning assignment to linguistic objects. Understanding 
the statement of a word problem requires recognition of the existence of dependence 
among meaning corresponding to elementary entities. Anghileri (1995) suggests that 
the close relationship between real settings and the procedures used to solve problems 
characterized the initial states in learning mathematics. The students have not 
succeeded in writing a numerical “argument” that links different objects appearing 
during the resolution process.  
The difficulties in representing the problem arithmetically or algebraically are evident 
from the analogy between ALC4 and ARC3. Nonetheless the meanings and the ways 
they are related differ essentially. Along with each type of resolution it has been 
shown that the problem structure raises a number of interpretative challenges, and 
how the solutions correspond to particular configurations of primary entities, where 
these facilitate or hinder the arithmetic or algebraic problem representations. The 
mathematic objects invoked in the problem are the same but the meanings, the 
relationships among them and the meaning conflicts are diverse to students. 
To Filloy, Rojano and Puig (2007), “the mode of thought- be arithmetic or algebraic- 
appears to be determined by the type of ‘relational calculation’ that underlies the 
problem structure” (p.216). We consider that the relational calculation can be 
expressed and objectified in terms of primary entities, which could be useful for the 
teachers to recognize both the mathematic tasks complexity and the variety of 
mathematical reasoning leading to the solution.  
 
RESULTS SUMMARY 
Table 1 gives a detailed breakdown of the number and proportion of each type of 
algebraic and arithmetic solution. 
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Types of algebraic solutions  
Number of students 

ALC1
25 

ALC2
17 

ALC3
5 

ALC4
11 

Correct/incorrect
37/58 

Types of arithmetic solutions  
Number of Students 

ARC1
4 

ARC2
14 

ARC3
3 

ARC4
2 

10/23 

Do not answer 13     

Table 1: Type of configuration and number of students in each one 
 
It can be seem that the number of algebraic solutions as the number of right solutions 
outnumbered the corresponding arithmetic solutions. The proportion between right 
solutions and solutions of each type is bigger for the case of algebraic solutions.  
Even though students are asked to provide an algebraic solution in the second 
problem’s item, they could have provided an arithmetic solution in the first problem 
item as well. Given that algebra was not studied during the course, it is worth noting 
the students’ algebraic preference. 
  
 IMPLICATIONS FOR STUDENT TEACHER TRAINING 
A finding of this research is that the algebraic methods used by the students to solve 
the problem outnumber in quantity and in effectivity the arithmetic strategies. Just a 
small number of students choose to solve the problem by means of a right arithmetic 
strategy in contrast to the findings reported by Nathan and Koedinger (2000). 
Another finding is the apparent disarticulation among the linguistic, conceptual and 
procedural elements in the cognitive configurations exhibited by the students, who do 
not manage to elaborate an “argument” leading to a problem solution.  
We consider that teacher’s activity not only concerns with planning mathematic tasks 
but also with the promotion and recognition of the meaning present in the students´ 
solutions, where the primary entities are articulated. Recognizing the entities 
involved students´ solutions could help teachers guide their didactic actions.  
Therefore it is important to make teachers conscious of the network of objects, 
meanings and configurations that are put into effect during the mathematics problems 
solutions to help identifying the meaning conflicts manifested by pupils and 
therefore, to give answers to those conflicts in the classroom context. As a 
consequence, it is convenient to use the cognitive-epistemic analysis (Godino et al. 
2008) in initial teacher training programs. 
Some researchers have contended that teacher’s competence to understand and to use 
the mathematic knowledge adapting it to students’ achievements is important (Ball, 
1990; Wilson, Shulman and Richert, 1987). More recently Hill, Rowan and Ball 
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(2005) found that content knowledge is related meaningfully to students’ 
achievements.  
We conclude with the observation about the arithmetic strategies that we have 
discussed above. Our study suggests that algebraic thinking underlies successful 
problem solutions. We believe that a focus on elementary algebraic reasoning can aid 
teachers in enabling their pupils to more fully understand the arithmetic domain. 
 
Acknowledgement  
This research work has been carried out in the frame of the project, SEJ2007-
60110/EDUC. MEC-FEDER. 
 
REFERENCES 
Anghileri, J. (1995). Language, arithmetic, and the negotiation of meaning. For the Learning of 

Mathematics 13(3), 10-14. 

Ball, D. L. (1990). Prospective elementary and secondary teachers´understanding of division. 
Journal for Research in Mathematics Education, 21, 132-144. 

Behr, M., Khoury, H. A., Harel, G., Post, T., & Lesh, R. (1997). Conceptual units analysis of 
preservice elementary school teachers' strategies on a rational-number-as-operator task. 
Journal for Research in Mathematics Education, 28(1), 48-69. 

Booth, L. R. (1988). Children´s difficulties in beginning algebra. In A. F. Coxford & A. P. Shulte 
(Eds.), The Ideas of Algebra, K-12: 1988 Yearbook (pp.20-32): Reston, VA: National 
Council of Teachers of Mathematics. 

Borko, H., Frykholm, J., Pittman, M., Eiteljorg, E., Nelson, M., Jacobs, J., et al. (2005). Preparing 
teachers to foster algebraic thinking. ZDM The international Journal on Mathematics 
Education, 37(1), 43-52. 

Carraher, D. W., & Schlieman, A. (2007). Early algebra and algebraic reasoning. In F. Lester 
(Eds.), Second Handbook of Research on Mathematics Teaching and Learning (pp. 669-
706; Vol. 2). Charlotte, NC: IAP & NCTM. 

Davis, R. B. (1989). Theoretical considerations: Research studies in how humans think about 
algebra. In S. Wagner & C. Kieran (Eds.), Research Issues in the Learning and Teaching of 
Algebra (Vol. 4, pp. 266-274). Reston, VA: NCTM & Laurence Erlbaum Associates. 

Filloy, E., Rojano, T., & Puig, L. (2007). Educational Algebra: A theoretical and Empirical 
Approach (Vol. 43). Berlin: Springer. 

Tall, D. (2001). Reflections on early algebra. In van den Heuvel-Panhuizen, Marja (Ed.) 
Proceedings of the 25th Conference of the International Group of the Psychology of 
Mathematics Education, Vol. 1 (pp.149-152).Utrech, Netherlands.  

Filloy, E., Rojano, T., & Solares, A. (2004). Arithmetic/algebraic problem-solving and the 
representation of two unknown quantities. In Marit Johnsen Høines, Anne Berit Fuglestad 



10 
 

(Eds.) Proceedings of the 28th Conference of the International Group for the Psychology of 
Mathematics Education,Vol. 2.(pp. 391-398). Bergen, Norway. 

Garolafo, J. (1992). Number-considerations strategies students use to solve word problems. Focus 
on Learning Problems in Mathematics, 14(2), 37-50. 

Godino, J. D., Batanero, C., & Font, V. (2007). The Onto-semiotic approach to research in 
mathematics education. ZDM The International Journal on Mathematics Education, 39(1-
2), 127-135. 

Godino, J. D., Batanero, C., & Roa, R. (2005). An onto-semiotic analysis of combinatorial 
problems and the solving processes by university students. Educational Studies in 
Mathematics, 60(1), 3-36. 

Godino, J. D., Rivas, M., Castro, W. F. & Konic, P. (2008). Epistemic and cognitive analysis of an 
arithmetic – algebraic problem solution. ICME 11, TSG 27: Mathematical knowledge for 
teaching. Downloaded from http://tsg.icme11.org/document/get/391 

Herscovics, N., & Linchevski, L. (1994). Cognitive gap between arithmetic and algebra. 
Educational Studies in Mathematics, 27(1), 59-78. 

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers' mathematical knowledge for 
teaching on students achievement. American Educational Research Journal, 42(2), 371-406. 

Linchevski, L., & Livneh, D. (1999). Structure sense: the relation between algebraic and numerical 
contexts. Educational Studies in Mathematics, 40, 173-196. 

Nathan, M. J., & Koedinger, K. R. (2000). An investigation of teacher beliefs of students´algebra 
development. Cognition and Instruction, 18(2), 209-237. 

Schmidt, S., & Bernarz, N. (1997). Raisonnements arithmétiques et algébrique dans un contexte de 
résolution de problèmes: difficultés rencontres par les futurs enseignants. Educational 
Studies in Mathematics, 32(2), 127-155. 

Slavit, D. (1999). The role of operation sense in transition from arithmetic to algebraic thought. 
Educational Studies in Mathematics, 37, 251-274. 

Tall, D. (2001). Reflections on early algebra. In van den Heuvel-Panhuizen, Marja (Ed.) 
Proceedings of the 25th Conference of the International Group of the Psychology of 
Mathematics Education, Vol.1 (pp.149-152).Utrech, Netherlands. 

Van Dooren, W., Verschaffel, L., & Onghema, P. (2003). Pre- service teachers´ preferred strategies 
for solving arithmetic and algebra word problems. Journal of Mathematics Teacher 
Education, 6, 27-52. 

Wilson, S. M., Shulman, L. S., & Richert, A. E. (1987). 150 different ways'  of knowing: 
Representations of knowledge in teaching. In J. Calderhead (Ed.), Exploring Teacher 
Thinking (pp. 104-124). London: Cassell. 


