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Based on the onto-semiotic approach to mathematical knowledge and instruction a 

characterization of algebraic reasoning in primary education has been proposed, 

distinguishing three levels of algebraization. These levels are defined taking into 

account the types of representations used, generalization processes involved and the 

analytical calculation at stakes in mathematical activity. In this paper we extend this 

previous model by including three more advanced levels of algebraic reasoning that 

allow to analyze mathematical activity carried out in secondary education. These new 

levels are based on the consideration of 1) using and processing parameters to 

represent families of equations and functions; 2) the study of algebraic structures 

themselves, their definitions and properties. 
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INTRODUCTION 

Recognizing characteristic features of algebraic thinking is an issue that has attracted 

attention to many researchers in the field of mathematics education, because it is 

necessary to promote such reasoning at different levels of elementary and secondary 

education (Kieran, 2007; Filloy, Rojano & Puig, 2008). Depending on how school 

algebra is conceived, decisions concerning how to introduce such algebra will be taken 

since early levels, or be delayed until secondary education; it may also change the 

corresponding instructional strategies. In fact, the research and development program 

based on “early algebra” (Carraher & Schliemann, 2007; Cai & Knuth, 2011) is 

supported by a conception of algebra recognizing signs of algebraic thinking in 

mathematical activities on initial educational levels, as shown in NCTM (2000). 

However, while progress has been made in the characterization of school algebra, the 

problem is not completely solved, particularly because algebras in primary and 

secondary education are related. 

In previous publications (Ake, Godino, Gonzato & Wilhelmi, 2013; Godino, Ake, 

Gonzato & Wilhelmi, 2014) a model of algebraic thinking for primary education has 
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been proposed, with three distinguished levels of algebraic thinking. Furthermore, 

criteria was stablished to delimit these algebraic levels from 0 (arithmetic nature of 

mathematical activity) to 3 (clear algebraic activity), with two intermediate levels of 

proto-algebraic activity.  The criteria to define these levels are based on the type of 

mathematical objects and processes involved in mathematical activity, according to 

the onto-semiotic approach (OSA) of mathematical knowledge (Godino, Batanero and 

Font, 2007). Algebraization levels are assigned to operative and discursive practices 

performed by a mathematical subject (individual or epistemic) that solves a 

mathematical task, rather than the task itself, which can be solved in different ways, 

and may bring into play different algebraic activity. 

In this paper, we extend that model of algebraization levels for mathematical activity 

to secondary school, also supported by the onto-semiotic distinctions suggested by the 

OSA, particularly in the presence, use and processing of parameters in functions and 

equations. The work is organized in four sections. The following section summarizes 

features of algebraic reasoning levels in elementary education; next, we define the 

three new levels of algebraization, include some illustrative examples and connect 

these levels to the presence of discontinuities in the onto-semiotic configurations 

involved in mathematical practices. 

LEVELS OF ALGEBRAIC REASONING IN PRIMARY EDUCATION 

Table 1 summarizes the essential features of the three preliminary algebraization 

levels described by Godino et al. (2014), completed by level 0 (absence of algebraic 

characteristics). An example is also included to help to understand the distinction 

among levels. In summary the definition of levels are based on the following onto-

semiotic distinctions: 

 Presence of intensive algebraic objects (i.e., entities of general or indeterminate 

character). 

 Transformations (operations) applied to these objects based on the application 

of structural properties. 

 Type of used language. 

Table 1: Characteristic features of elementary algebraic reasoning levels 

Task: In a certain school, students either go by car or by walk. For every student who goes by car 

there are 3 going by walk. If there are 212 students at that school, how many of them use each means 

of transportation? 

LEVELS OBJECTS TRANSFORMATIONS LANGUAGES 

0 No intensive 

objects are 

involved. 

In structural tasks 

unknown data can 

be used.  

 

Operations are carried out with 

extensive objects. 

 

 

Natural, numerical, iconic, 

gestural; symbols referring 

extensive objects or 

unknown data can take part.  

 

Example of resolution:  



For every 3 students who walk, there is 1 that goes by car. Hence, in every bunch of 4 

students (3 + 1) there is 1 which goes by car (a fourth part). Thus, 50 out of 200 students 

go by car and 3 out of 12 students would also go by car. Therefore, 53 students would go 

by car and three times that amount, that is, 159, by walk. 

1 In structural tasks 

unknown data can 

be used.   

In functional tasks 

intensive objects 

are recognized.  

In structural tasks relations and 

properties of operations are applied.  

In functional tasks calculation 

involve extensive objects. 

 

Natural, numerical, iconic, 

gestural; symbols referring 

to intensive recognized that 

can be used. 

Example of resolution: 

For every 4 students there are 3 which go by walk. We write out the following 

proportion:  

                            4 (children) ------> 3 go by walk  

                       212 (children) ------> x go by walk  

 ; x = 3 × 212/4 = 159. 

Once we obtain the number of children who go by walk, the number of students going by 

car is easily obtained, 212 - 159 = 53. 

2 Indeterminate or 

variables are 

involved. 

 

In structural tasks equations are of 

the form Ax ± B =C.   

In functional tasks generality is 

recognized but operations with 

variables are not carried out to get 

canonical forms of expressions.  

Symbolic - literal, used to 

refer the intensive 

recognized, although linked 

to the spatial, temporal and 

contextual information. 

Example of resolution:  

212=x + 3x 

212 = 4x;    x = 212 / 4;    x = 53 

53 children go by car and 212-53 = 159 by walk. 

3 Indeterminate or 

variables 

intervene. 

In structural tasks equations are of 

the form Ax ± B =Cx ± D.   

Operations with indeterminate or 

variables are carried out. 

Symbolic – literal; symbols 

are used analytically, 

without referring to 

contextual information.  

Resolution example: 

x = Children going by car 

y = Children going by walk  

x+y = 212                      x+3x = 212;  

    y = 3x                             4x = 212; x = 212/4 = 53 
 

The algebraization levels we propose are related to two aspects that Kaput (2008) 

identifies as characteristic of algebraic reasoning, namely, algebra as: 

a) Systematic symbolization of generalizations of regularities and constraints. 

b) Syntactically guided reasoning and actions on generalizations expressed in 

conventional symbolic systems. 

Aspect a) is specified in our model as levels 1 and 2 of proto-algebraic reasoning, 

while b) is associated with level 3, where algebra is already consolidated. 



Obviously, these levels do not exhaust the processes of "algebraization". Instead, they 

do refer the gradual enrichment of tools for solving problems with an increasing 

degree of symbolization in other contexts of use. These processes, taken from the end 

of primary school and junior secondary school, must evolve to higher levels of 

algebraization. 

LEVELS OF ALGEBRAIC REASONING IN SECONDARY EDUCATION 

In this section, we extend the model of algebraization levels to secondary and high 

school mathematical activity, recognizing three additional algebraization levels for 

this educational stage. 

Using parameters and its treatment can be a criterion for defining higher levels of 

algebraization as it is linked to the presence of families of equations and functions, and 

therefore imply new "layers" or levels of generality (Radford, 2011). The intervention 

of parameters will be linked to the fourth and fifth level of algebraization, while the 

study of specific algebraic structures leads to recognizing a sixth algebraization level 

of mathematical activity. 

Fourth level of algebraization: using parameters  

The use of parameter for expressing equations and function families is indicative of a 

higher level of algebraic reasoning, regarding the third algebraization level considered 

by Ake et al. (2013), which is linked to the processes of "operate with a unknown or 

variable." This is a “first encounter” with parameters and coefficient variables 

involving discrimination of domain and range of the parametric function, i.e. the 

function that assigns to each value of the parameter a specific function or equation. As 

Ely and Adams (2012, p. 22) claim, “A significant conceptual shift must occur in 

order for students to be comfortable using placeholders in algebraic expressions 

rather than just numbers”. 

Example 1: The linear function 

In the algebraic expression, y = 2x, the literal symbols x and y are interpreted as 

variables, as symbols that can take any value from the previously established number 

set, usually R. The numerical values x and y co-vary one in terms of the other, 

according to the rule laid down in the corresponding expression, in this case, 

multiplying by 2 the value assigned to x. The x coefficient can be generalized to any 

value within a certain domain, which is indicated by an expression of the type y = ax; 

letter a intervenes as a parameter: it can take different values within a certain domain, 

so that for each taken value a particular function is obtained. For example, for a = 2  

we have y = 2x.  

Thus, we could say that a parameter is a literal symbol involved in an expression with 

other variables, such that for each particular value assigned to it, a function is 

obtained. It is therefore a mean of expression of a functions family F = {f(x) = 



ax/a R}, or more precisely, a family of functions family depending on the domain D 

of definition of the functions f: FD = {f(x) = ax | a R; x D}. 

The letter symbols x and y (f(x)) are indicative variables of a first level of generality, 

whose domains of definition and range are the numeric sets in which they are defined. 

The symbol a is also a variable, but with a second level of generality, whose domain 

of definition could either be the same as before (D) or just another number set, and the 

range of values is the family of functions FD. 

Example 2: Quadratic equation 

Parameters are used not only to express and operate with function families, but also 

equation families (Ely and Adams, 2012). For example, ax
2
 + bx + c = 0 (a ≠ 0) is the 

general expression for the quadratic equations family. There is only one unknown, x. 

Letters a, b, c, usually considered as varying coefficients, take specific values within a 

set of possible values (real numbers and a ≠ 0) to produce a particular equation.  

It is said, therefore, that a parameter is a variable that is used with two or more other 

variables to specify a family of functions or equations. For families of equations 

commonly the parameter is named coefficient. In a way, the parameter plays the role 

of independent variable in a function whose domain is the set in which the parameter 

takes values and their rank is a set of functions. For each value assigned to the 

parameter a function image is obtained. Therefore, the expression y = ax
2
+bx+c, is 

not a function but a family of functions, though it is usually referred to as "the 

quadratic function." It is an expression in which three parameters indicated by the 

letters a, b, c are involved. Giving a particular value to each of the parameters a 

specific quadratic function is obtained. 

Example 3: General matrix with n rows and m columns 

Matrixes are more than simple arithmetic objects, since the relative position of a 

particular number in the box gives structured information. Furthermore, the study of 

matrixes in secondary school is full of symbolic notation, because each element in a 

cell on a general matrix has its own index, A = (aij)m,n, indicating row and column. 

These indexes are parameters and, therefore, the discursive practice defining a matrix 

belongs to a fourth algebraization level, even though the study of operations and 

structural properties of matrixes could belong to a higher level, as seen in Figure 1. 

Matrixes are numerical rectangular tables: 
A=(a11 a12 a13…a1n; a21 a22 a23…a2n; a31 a32 
a33…a3n; …; am1 am2 am3…amn). This matrix has 
m rows and n columns. It has dimension mxn. 
Elements aij are real numbers (aijeR). The matrix 
below could be simplified as (aij)i=1,…m;j=1,…,n, 
A(aij)m,n, (aij). 
When m=n, the matrix is named square. 

Two matrixes are identical when their dimensions are 
equal and their elements agree one by one. 
A=(aij)m,n, B=(bij)m,n; A=B iff aij=bij 
The transpose of matrix A=(aij)m,n is a matrix 
At=(aji)n,m where rows and columns have been 
interchanged. 
A matrix A is symmetric if At=A. A symmetric matrix 
must be square. 

Figure 1. Matrix (Colera and Oliveira, 2009, p.50) 



This example suggests the possibility to analyze algebraization levels when working 

with matrixes and when applying them in the resolution of equation systems. 

Fifth level of algebraization: treatment parameters 

We can link a higher level of algebraization to mathematical activity displayed when 

analytical (syntactic) calculations are carried out in which one or more parameters are 

involved. Operations with parameter involve greater semiotic complexity level, since 

objects emerging from these systems of practices put at stake algebraic objects of the 

previous level (equations or functions families). 

Example 3: Obtaining the general formula for quadratic equations 

We proceed by symbolic manipulation and successive equivalences. Assuming the 

director coefficient a is not 0 (a  0)  otherwise the equation would not be quadratic 

  we have: 

ax2 + bx+c= 0Û x2 +
b
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x+
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b
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=
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Thus, in this case the structure of the solutions is written in terms of the coefficients 

linked by rational operations (addition, subtraction, multiplication, division) and 

square roots calculation. 

Example 4: Geometric progressions  

Defining the general term of a geometric progression (figure 2) is performed by 

discursive practices in which two parameters, a1 (first term of the sequence) and r 

(progression ratio) are involved. The sequence is a function whose domain is N and 

range is R; therefore the parameters a1 and r define a family of functions (sequences), 

so this discursive practice put at stake algebraization level 4. The statement and proof 

of the property that states the sum of the first n terms of a geometric progression (r ≠ 

0) involves calculating with parameters, as shown in figure 1, so implying the level 5 

of algebraization. 

36.8 Finite Geometric Series 
When we sum a known number of terms in a 
geometric sequence, we get a finite geometric 
series. We know that we can write out each term 
of a geometric sequence in the general form: 

an = a1 ・ r
n-1

  

where 
• n is the index of the sequence; 
• an is the nth-term of the sequence; 

By simply adding together the first n terms, we are 
actually writing out the series 
Sn = a1 + a1 r + a1 r

2
 + . . . + a1 r

n-2
 + a1 r

n−1
  

We may multiply the above equation by r on both 
sides, giving us 
rSn = a1r + a1r

2
 + a1r

3
 + . . . + a1r

n−1
 + a1r

n
 

.... 
Dividing by (r − 1) on both sides, we arrive at the 
general form of a geometric series: 



• a1 is the first term; 
• r is the common ratio (the ratio of any term to 

the previous term). 
 

Figure 2: Finite geometric series (Free High School Science Texts, Mathematics 

Grades 10 – 12, p. 469, 2008) 

 

Sixth level of algebraization 

The introduction of certain algebraic structures (such as vector spaces, or groups) and 

the study of function algebra (addition, subtraction, division, multiplication, and 

composition) start at high school, bringing into play algebraic objects and processes of 

higher level of onto-semiotic complexity than those considered at level five. It may be 

useful, therefore, to characterize a sixth algebraization level that should help us to 

focus our attention on the specific nature of the mathematical activity involved. High 

school books include texts and activities corresponding to this sixth algebraization 

level: 

Example 5: Vector space 

Figure 3 shows a general formulation of the algebraic structure of a vector space. This 

is a first encounter with the algebraic structure of vector spaces which brings into play 

a set of mathematical objects (vectors) on which operations satisfying a set of specific 

properties are defined. This requires an initial "structural study" of vectors, since in 

this type of (axiomatic) presentation properties of vector addition and multiplication of 

vector by numbers have to be established.  

The vector idea as an arrow leads to vector 
space: sets of vectors among some operations 
satisfying certain properties are defined. But 
there are other mathematic entities with the 
same operations and properties. So, the vector 
space definition is much broader and open than 
collections of “arrows”. We have a set, V, 
among whose elements (called vectors) there 
are two operations defined: 

SUM OF TWO ELEMENTS OF V: if   , 

then   

PRODUCT BY A REAL NUMBER: if aϵR and 
uϵV, then a.uϵV 

If (V, +, .) satisfies the following properties then 
is a vector space on R. 

 SUM OF VECTORS 

ASSOCIATIVE 
 

COMMUTATIVE 
 

NULL VECTOR It is a vector called  such that if  

 fulfils:  

 
OPOSITE 

ECTOR 

All   has its opposite :   

 

 
MULTIPLYING A VECTOR BY A NUMBER 

ASSOCIATIVE 
 

DISTRIBUTIVE I 
 

DISTRIBUTIVE II 
 

PRODUCT BY 1 If  then  1.  
 

Figure 3: Vector space (Colera & Oliveira, 2009, p. 62) 

Example 6: Composition of functions 

In Figure 4 the notion of function is put into play in all its generality, replacing a 

particular family of functions by any function. Operations are carried out over 

functions to produce new functions whose properties will be studied in general. For 



example, statements such as “the composition of functions is not commutative” would 

arise. In fact, a set of functions (polynomials, for example) satisfying certain 

operations (addition, multiplication, etc.) is an "algebra". 

It is possible to combine two functions by adding, subtracting, multiplying or dividing two given 
functions.  
There is another way to combine two functions to create a new function. It is called composition 
of two functions. It is a process through which we will substitute an entire function into another 
function.  
First let’s get acquainted with the notation that is used for composition of functions. When we 

want to find the composition of two functions we use the notation .  

Another way to write this is . This is probably the more practical notation although the 
first notation is what appears most often in books.  

Figure 4: Composition of functions (AlgebraLAB. Project Manager. Mainland High 

School) 

Algebraization levels and onto-semiotic discontinuities  

Algebraization levels are basically levels of generality, combined with the use of 

various registers of semiotic representation (RSR), theirs transformations and 

conversions (Duval, 1995). Under the OSA these levels can be characterized by the 

presence of different types of onto-semiotic configurations (Godino, Font, Wilhelmi 

and Lurduy, 2011) which involve practices, objects and processes implying new levels 

of generality or syntactic calculus, supported by symbolic representations of the 

corresponding objects. This furthermore implies the intervention of unitization, 

materialization and reification processes involved in the generalization and 

representation processes (Godino et al., 2014). 

The proposal of considering algebraization levels of mathematical activity can help 

raise awareness of gaps or discontinuities within the sequence of configurations on 

epistemic trajectories of the corresponding processes of mathematical study (Godino, 

Contreras and Font, 2006). These gaps refer to the use of different registers of 

semiotic representation, their treatment  and conversion, as well as the intervention 

and establishment of relations between conceptual, propositional, procedural and 

argumentative objects of greater generality (intensive objects emerging from other 

intensive). In other words, these gaps can be explained by analyzing how, numerical-

iconic and analytical - algebraic onto-semiotic configurations involved are articulated, 

and not only for the treatment or conversion of RSR. 

Recognizing algebraization levels can be helpful to analyze the articulation of these 

onto-semiotic configurations. The identification of objects, processes and meanings 

involving access to different levels of algebraization allows the design of operative, 

normative and discursive practices aimed at learning progression. This progression 

will involve coping with discontinuities in levels of generality, representation, 

calculation and construction of algebraic objects in different educational institutions. 

SYNTHESIS AND IMPLICATIONS FOR TEACHER EDUCATION 

http://www.algebralab.org/
http://www.mainlandhighschool.org/
http://www.mainlandhighschool.org/


In this work we have completed the work started in Ake et al. (2013) and Godino et al. 

(2014) on the identification of algebraization levels of mathematical activity in 

primary education, including three new levels that characterize secondary 

mathematics. As a summary we propose the following six levels of algebraic thinking 

in primary and secondary education (along with level 0, indicating absence of 

algebraization): 

Level 0: Operations with particular objects using natural, numerical, iconic, gestural 

languages are carried out. 

Level 1: First encounter with the "generic number", the algebraic structure properties 

of N and the algebraic equality (equivalence). That is, relational thinking.   

Level 2: First encounter with the alphanumeric representation of functions and 

equations and simplifying expressions. 

Level 3: First encounter with the treatment of unknowns and variables using structural 

properties (cancellation, replacement, etc.) and the algebraic and functional modeling. 

Level 4: First encounter with the use of parameters in functions and variable 

coefficients, that is, with the expression of families of equations and functions, which 

are second order intensive objects. 

Level 5: First encounter with the joint treatment of unknowns, variables and 

parameters as well as the structure of the solution emerging from the parameter 

treatment. 

Level 6: First encounter with the study of algebraic structures themselves, their 

definitions and structural properties. 

These algebraic reasoning levels have implications for teacher training, both in 

primary and secondary education. It is not enough to develop curriculum proposals 

(NCTM, 2000) including algebra from the earliest levels of education; the teacher is 

required to act as the main agent of change in the introduction and development of 

algebraic reasoning in elementary classrooms, and its progression in secondary 

education.  Reflexing on the recognition of objects and processes of algebraic thinking 

can help identify features of mathematical practices on which teachers can intervene to 

gradually increase the algebraization levels of students’ mathematical activity. 

Recognizing algebraization levels 4, 5 and 6 by secondary school teachers, along with 

its articulation with the previous levels, can help raise awareness of the gaps or onto-

semiotic discontinuities which may occur when carrying out tasks proposed to 

students. 
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