

DETERMINANTES DEL CRECIMIENTO DE LA ECONOMÍA PORTUGUESA

Econometría II

Profesor: Jorge Chica

Alumnos: Olga Ibáñez Moya

Oliva Ruiz Rivera

Grado en Economía 2018/2019

ÍNDICE

1. INTRODUCCION	2
2. MOTIVACIONES	3
3. PLANTEAMIENTO DEL PROBLEMA	3
4. ESTIMACIÓN DEL MODELO.	4
5. ESTADÍSTICOS DESCRIPTIVOS	4
6. MODELO DE MÍNIMOS CUADRADOS ORDINARIOS.	5
7. MULTICOLINEALIDAD	8
8. NORMALIDAD.	9
9. HETEROCEDASTICIDAD	11
10. AUTOCORRELACIÓN	16
11. CONCLUSIONES	17
12. BIBLIOGRAFÍA	20
13. ANEXO	20

1. INTRODUCCION

El crecimiento económico es para muchos, no solo economistas, un medio para alcanzar las mejores condiciones de vida siendo considerado una medida de progreso para la sociedad.

Portugal tiene fuertes periodos de expansión de la actividad económica, así como, periodos de fuertes recesiones debido a factores endógenos y exógenos.

Existen diversas formas de analizar esos factores. Primeramente, las teorías económicas nos dicen que el PIB puede ser calculado por la óptica del gasto través de la siguiente ecuación:

 $PIB = Consumo \ Privado + Consumo \ Público + Inversión + Exportaciones$ - Importaciones

La teoría económica también nos dice que todas las economías sufren frecuentemente choques económicos de diferentes intensidades y que muchas veces cambian la estructura de la propia economía. Por ejemplo, si consideramos la reciente gran crisis financiera, pensamos que es fácil concluir que la economía portuguesa cambió mucho debido a esta crisis, es decir, las componentes del PIB no se mantuvieron en los mismos niveles después de la crisis. Conocemos que a lo largo de las últimas décadas Portugal ha sufrido numerosos choques exógenos que afectaron a la economía en diferentes décadas.

También se sabe que existen variables que afectan a las componentes macroeconómicas del PIB, por tanto, en este trabajo nuestro gran objetivo es ver la influencia de cada una de esas variables para explicar la evolución del PIB en Portugal, teniendo siempre en mente las variables que influencian directamente a las componentes del PIB de la óptica del gasto.

Para finalizar, tenemos un modelo de previsión para la evolución del PIB portugués teniendo en cuenta todas las variables estudiadas y referidas anteriormente.

2. MOTIVACIONES

Al ser estudiantes de Economía de la Universidad de Granada, haber cursado asignaturas econométricas y haber podido cursar otro año en un país extranjero, vimos de gran interés como podíamos analizar uno de los dos países donde hemos realizado nuestro Erasmus.

Elegimos Portugal por su proximidad a España y para ver como su economía ha evolucionado.

Bajo las directrices de nuestro profesor de Jorge Chica Olmo, realizamos este trabajo que exponemos a continuación.

3. PLANTEAMIENTO DEL PROBLEMA

En el trabajo que exponemos a continuación, llevamos a cabo el análisis econométrico basado en el estudio de la economía portuguesa a través del PIB.

El primer paso fue la obtención de los datos para el PIB nominal, consumo privado, consumo público, inversión, exportaciones e importaciones. Todos estos datos mencionados fueron obtenidos a través del INE. El periodo de la muestra va desde el 1º trimestre de 2000 hasta el 2º trimestre de 2017, teniendo una periodicidad trimestral y siendo referentes a la economía portuguesa.

En este modelo, el principal objetivo, como ya fue expuesto, es analizar el peso de las componentes y como la óptica del gasto del PIB cambiaron a lo largo de los años. Por tanto, la variable dependiente es el PIB y las variables independientes son:

Pibrealzonaeuro	Pib Real de la Zona Euro
Txcambioeu	Tipo de cambio euro-dolar
Txjuro	Tipo de interés
Pbrent	Precio del Barril de Petróleo
Txcut	Variación de los Costes Unitarios Nominales
Divpib	Deuda Pública

4. ESTIMACIÓN DEL MODELO.

La ecuación de nuestro modelo se corresponde con:

PIB real portugués = β_1 + β_2 Pib real zona euro + β_3 Tipo de cambio eurodólar + β_4 Tipo de interés + β_5 Precio del barril del Petróleo + β_6 + β_7 Deuda Pública + Ut.

Variable	Tipo	Unidades	Signo esperado
Pibrealzonaeuro	Explicativa/	Unidad monetaria	Positivo
	Cuantitativa		
Txcambioeu	Explicativa/	Puntos porcentuales	Positivo
	Cuantitativa		
Txjuro	Explicativa/	Puntos porcentuales Positivo	
	Cuantitativa		
Pbrent	Explicativa/	Puntos porcentuales	Positivo
	Cuantitativa		
Txcut Explicativa/		Puntos porcentuales	Positivo
	Cuantitativa		
Divpib	Explicativa/	Puntos porcentuales	Positivo
	Cuantitativa		

5. ESTADÍSTICOS DESCRIPTIVOS

Variable	Media	Asimetría	Curtosis	Mediana	D.T.	Min.	Max.
pibrealzona	2.3414e+006	-0.37536	-0.9038	2.3923e+006	1.2130e+006	2.0999e+006	2.5741e+006
Txcambioeu	1.2224	-0.38399	-0.5491	1.2586	0.17811	0.84800	1.5812
Txjuro	73.547	5.7342	31.174	4.4715	403.56	2.4030	2617.0
Pbrent	51.043	0.39182	-1.1221	47.835	20.576	21.570	90.350
Txcut	0.30351	0.21510	1.1925	0.22400	1.1330	-3.0220	4.0070
Divpib	87.650	0.36507	-1.5604	70.550	31.397	50.100	133.00

En la tabla anterior, observamos que las variables tales como el PIB real en la zona euro y la tasa de cambio euro-dólar son asimétricos a la izquierda mientras que el tipo de interés, los precios del barrio de petróleo, las variaciones en los costes unitarios nominales y la deuda pública son asimétricos a la derecha. Por otro lado, en el coeficiente de curtosis observamos que las variables tales como el PIB real de la zona euro, el tipo de cambio euro-dólar, los precios del barril de petróleo, las variaciones en los costes unitarios nominales y la deuda pública son platicúrticas con una distribución menos apuntada que una distribución normal. Por el contrario, el tipo de interés presenta características leptocúrticas, es decir, con una distribución más apuntada.

6. MODELO DE MÍNIMOS CUADRADOS ORDINARIOS.

PIB real portugués = β_1 + β_2 Pib real zona euro + β_3 Tipo de cambio eurodólar + β_4 Tipo de interés + β_5 Precio del barril del Petróleo + β_6 + β_7 Deuda Pública + Ut.

	Coeficiente	Desviación Típica	Estadístico t	valor p	
Const	13072,0	1758,32	7,434	<0,0001	***
pibrealzona euro	0,0144695	0,0009154 83	15,81	<0,0001	***
txcambioeu	522,172	505,023	1,034	0,3051	
txjuro	64,9526	34,1131	1,904	0,0615	*
pbrent	-7,69064	5,85231	-1,314	0,1936	
txcut	-99,5131	50,0350	-1,989	0,0511	*
divpib	-47,4422	3,58874	-13,22	<0,0001	***

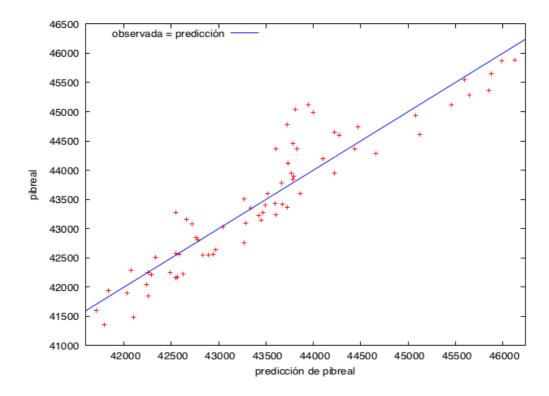
Media de la vble. Dependiente.	43480,54	D.T. de la vble. Dependiente.	1184,214
Suma de cuad. residuos	11794568	D.T. de la regres	sión 432,6839
R-cuadrado	0,878109	R-cuadrado corregido	0,866500
F(6, 63)	75,64233	Valor p (de F)	6,84e-27
Log-verosimilitud	-520,5386	Criterio de Akaik	e 1055,077
Criterio de Schwarz	1070,817	Crit. de Hannan- Quinn	1061,329
rho	0,767679	Durbin-Watson	0,467052

Interpretación de las variables en nuestro modelo:

Con los datos obtenidos en la tabla anterior podemos decir que:

- Constante: Cuando todas las variables se mantienen constantes el PIB real portugués es de 13.072€.
- PIB Real de la Zona Euro: Al aumentar en una unidad el PIB de la Zona Euro, el PIB real portugués aumenta en 0,0144695 unidades porcentuales.
- Tipo de cambio Euro-Dólar: Cuando aumenta en una unidad el tipo de cambio euro-dólar, el PIB real portugués aumenta en 522,172 puntos porcentuales.
- Tipo de interés: El aumento en una unidad del tipo de interés hace que aumente en 64,9526 puntos porcentuales el PIB real portugués.
- Precio del Barril del Petróleo: Cuando el precio del barril del petróleo aumenta en una unidad, el PIB real portugués disminuye en 7,69064 puntos porcentuales.
- Variación de los Costes Unitarios Nominales:
 Cuando la variación de los costes unitarios aumenta en una unidad, el PIB real portugués disminuye en 99,5131 puntos porcentuales.
- Deuda Pública: Cuando la deuda pública aumenta en una unidad, el PIB real portugués disminuye en 47,4422 puntos porcentuales.

En el R² de este modelo hemos obtenido un 0,878107 y el R² corregido disminuiría encontrándose en un valor de 0,866500. Sobre el nivel de significación podemos decir que nos encontramos con dos variables significativas; el PIB real de la zona euro y la deuda pública. El tipo de interés y la variación de los costes unitarios nominales también son significativas, aunque no tanto como las dos mencionadas anteriormente. Como podemos



observar, ni el tipo de cambio euro-dólar ni el precio del barril del petróleo son significativas individualmente.

En cuanto al p-valor de F, podemos comprobar es muy pequeño, 6,84e⁻, por lo tanto podemos decir que el modelo conjuntamente es significativo.

Gráfico de la variable estimada:

En este gráfico se muestra la relación que hay entre el PIB real de la economía portuguesa y su predicción. A simple vista se observa que los valores se ajustan bastante a la línea de ajuste. En los casos donde encontramos que los valores oscilan por arriba de la línea, diremos que el PIB real ha superado la predicción y los valores que encontramos por debajo se sobreentiende que no han sido bien predichos.

7. MULTICOLINEALIDAD

Como bien hemos estudiado desde el principio de las econometrías propuestas en este curso, sabemos que existe multicolinealidad cuando existen relaciones lineales entre dos o más variables explicativas del modelo uniecuacional múltiple y sus principales causas de pueden deber a:

- Relación causal entre variables explicativas del modelo.
- Escasa variedad en las observaciones de las variables independientes.
 - Tamaño muy reducido de la muestra.

Dado que el número de muestra del que disponemos en nuestro modelo de todas las variables es muy amplio, pasaremos a analizar la posible multicolinealidad que pueda existir en el primer caso, la relación causal entre variables explicativas del modelo.

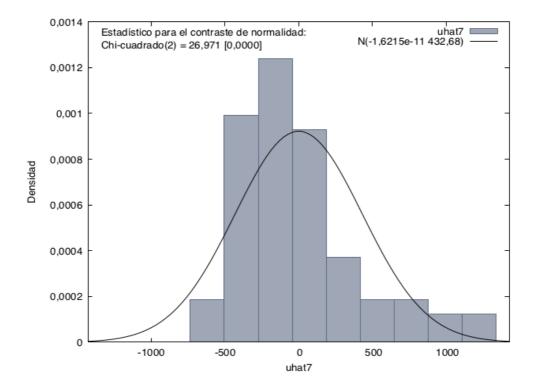
Para realizar el análisis de multicolinealidad utilizaremos el factor inflación de la varianza (FIV). Este factor es una de las medidas más usadas para detectar si el grado de multicolinealidad presente en el modelo es preocupante, y muestra en qué medida se agranda la varianza del estimador como consecuencia de la relación lineal existente entre las variables independientes.

Su fórmula es la siguiente:

 $FIV(j) = \frac{1}{1 - R(j)^2}$, donde R(j) es el coeficiente de correlación múltiple entre la variable j y las demás variables independientes.

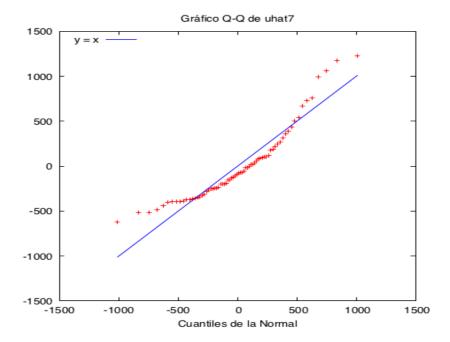
Unos valores del FIV superiores a 10 indicarán que el grado de multicolinealidad presente en el modelo es preocupante:

PIBrealzonaeuro	4,545
Txcambioeu	2,982
Txjuro	2,191
Pbrent	5,344
Txcut	1,185
Divpib	4,679



En nuestro caso, descartamos la posibilidad de multicolinealidad viendo que todos los valores de nuestras variables independientes son inferiores a 10.

8. NORMALIDAD.


El siguiente objetivo propuesto es comprobar si nuestro modelo sigue una distribución normal con un nivel de significación del 5%.

A continuación, visualizamos el histograma de los residuos y la línea de la distribución normal.

En el gráfico que se muestra a continuación, gráfico Q-Q, es mucho más fácil estudiar la normalidad de los residuos.

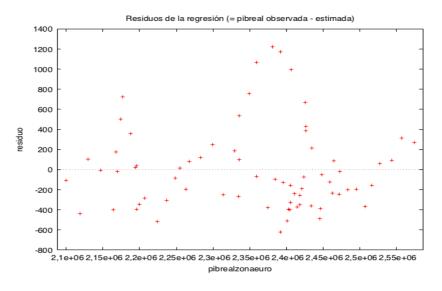
Se puede ver que la nube de puntos generada por los residuos de nuestro modelo se ajusta muy poco a la bisectriz.

Para poder decir si nuestro modelo sigue normalidad, vamos a analizar el contraste de Jarque-Bera, para con nuestros residuos, ver si el p valor obtenido es mayor que el nivel de significación del 0,05.

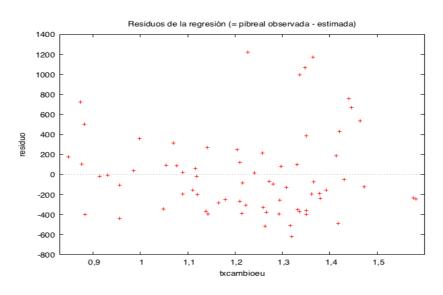
Contraste de Jarque-Bera = 20,2804, con valor p = 3,94618e-05<0,05

Como podemos comprobar, el p-valor obtenido en el contraste es inferior a nuestro nivel de significación, por lo tanto, se rechaza la hipótesis nula de normalidad.

Era de esperar observando el gráfico anterior en el que hemos comentado que muy pocos puntos se encontraban cerca de la bisectriz.



9. HETEROCEDASTICIDAD


Se dice que un modelo de regresión lineal presenta heterocedasticidad cuando la varianza de los errores no es constante en todas las observaciones realizadas.

A continuación, veremos los gráficos de cada una de las variables exógenas de nuestro modelo, para comprobar que no exista este supuesto de constancia.

Gráfico de los residuos con respecto al PIB real de la Zona Euro

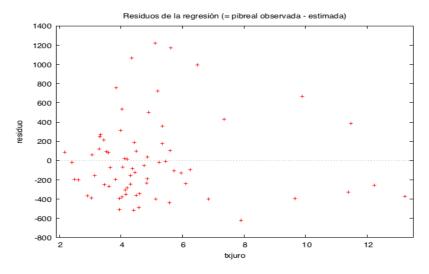
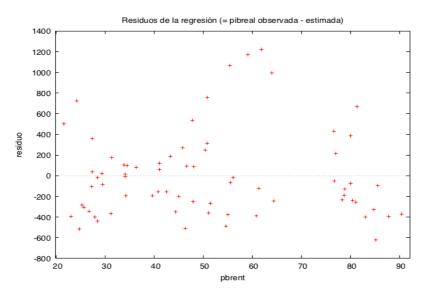


Gráfico de los residuos respecto al tipo de cambio euro-dólar



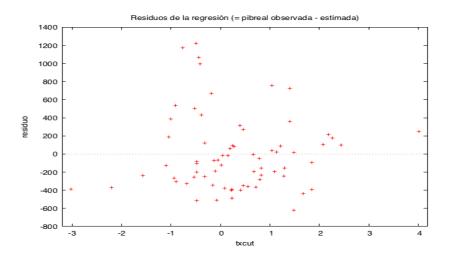

Gráfico de los residuos respecto al tipo de interés

Gráfico de los residuos respecto al precio del barril de petróleo

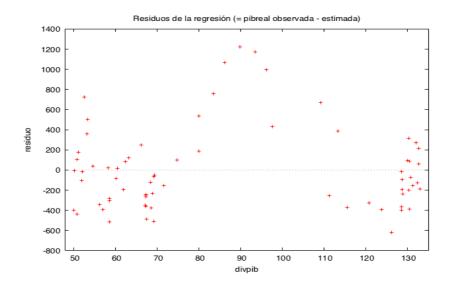


Gráfico de los residuos respecto a la variación de los costes unitarios

Gráfico de los residuos respecto a la deuda pública

A continuación, para comprobar la hipótesis de que haya o no heterocedasticidad, vamos a realizar distintos test que nos den una respuesta ante este problema:

Test de White:

	Coeficiente D	esv. Típica Es	stadístico t	valor p
const		6,18602e+0	7 –1,066	- 0,2927
pibrealzonae	uro 60,5474	60,7465	0,9967	0,3246
txcambioeu	-7,31947e+06	2,04381e+07	7 -0,3581	0,7220
txjuro	2,50263e+06	2,11907e+06	1,181	0,2442
pbrent	-315688 2	45251 -	-1,287 (0,2051
txcut	2,82972e+06	1,77228e+06	1,597	0,1178
divpib	11120,6 21	7144 0	,05121 0	,9594
sq_pibrealzona	aeu~ −1,63431e-0	5 1,58493e-0	05 -1,031	0,3084
X2_X3	7,91005	10,9000	0,7257	0,4721
X2_X4	-0,719000	1,03064	-0,6976	0,4893
X2_X5	0,0982488	0,121653	0,8076	0,4239
X2_X6	-1,29007	0,922664	-1,398	0,1694
X2_X7	0,0713167	0,109370	0,6521	0,5179
sq_txcambioe	u −4,37395e+06	2,78279e+06	-1,572	0,1235
X3_X4	-576810	421414	-1,369	0,1784
X3_X5	74886,5	60694,9	1,234	0,2241
X3_X6	34492,1	320875	0,1075	0,9149
X3_X7	-24873,8	46242,5	-0,5379	0,5935

sq_txjuro	-28848,2	14871,5	-1,940	0,0591 *
X4_X5	3269,34	5874,83	0,5565	0,5808
X4_X6	-43580,8	24294,4	-1,794	0,0800 *
X4_X7	1021,83	3952,30	0,2585	0,7973
sq_pbrent	-475,983	436,152	-1,091	0,2814
X5_X6	3943,26	3627,95	1,087	0,2833
X5_X7	162,448	363,874	0,4464	0,6576
sq_txcut	-7322,56	22508,9	-0,3253	0,7466
X6_X7	1512,80	3205,99	0,4719	0,6395
sq_divpib	-822,146	246,675	-3,333	0,0018 ***

 $R^2 = 0.653601$

Estadístico de contraste: $TR^2 = 45,752056$, con valor p = P(Chi-cuadrado(27) > 45,752056) = 0,013527

Como podemos comprobar, el valor obtenido es menor que nuestro nivel de significación de 0,05. Según White, hay heterocedasticidad en el modelo por lo que se rechazaría la hipótesis nula de homocedasticidad.

Ahora vamos a pasar a analizar el test de Breusch-Pagan para comprobar si la heterocedasticidad persiste y cuál de los dos test tendría más peso.

- Test Breusch-Pagan:

Coeficiente	Desv. Típica	Estadístico t valor p	

	,	7,30784 06e-07 3,8048	,	0,9613 .09267	0.9265
•	1,26747		0,6039		,
txjuro	0,0470793	0,141779	0,3321	0,7409	
pbrent	0,00177828	0,0243231	0,07311	0,9419	9
txcut	-0,243994	0,207953	-1,173	0,2451	
divpib	-0,00376788	3 0,0149154	-0,2526	0,801	4

Suma de cuadrados explicada (SCE) = 12,6971

Estadístico de contraste: LM = 6,348566,con valor p = P(Chi-cuadrado(6) > 6,348566) = 0,385297.

En este caso, como podemos observar, el p-valor es superior a 0,05 por lo que tendríamos homocedasticidad y ahora se aceptaría la hipótesis nula de que existe homocesasticidad.

Dado que el test de Breusch-Pagan sólo detecta formas lineales de heterocedasticidad y el de White permite contrastar formas no lineales utilizando los cuadrados y los productos cruzados de todos los regresores, nos quedaremos con que tiene más peso este último porque además de que el contraste de Breusch-Pagan tiene limitaciones, en el siguiente gráfico se muestra claramente que la varianza de los errores no es constante, porque tienen varianza heterogénea, por lo tanto el que prevalece es el test de White.

A continuación, vamos a proceder a corregir este problema de heterocedasticidad obteniendo un nuevo modelo:

	Coeficiente	Desv. Típica	Estadístico t	valor p	
const	13143,6	1076,66	12,21	<0,0001	***
pibrealzona euro	0,0146034	0,0005566 19	26,24	<0,0001	***
txjuro	31,7557	26,7641	1,187	0,2399	
txcut	-46,2175	31,7114	-1,457	0,1500	
divpib	-47,5607	2,26520	-21,00	<0,0001	***
txcambioeu	115,034	291,241	0,3950	0,6942	
pbrent	-4,57215	3,54978	-1,288	0,2025	

Estadísticos basados en los datos ponderados

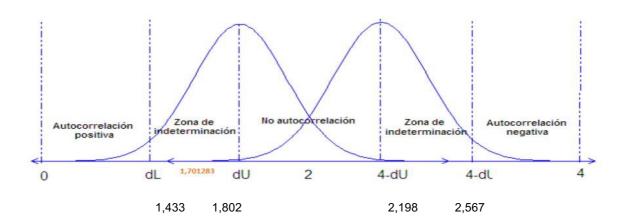
Suma de cuad. residuos	155,8365	D.T. de la regresión	1,572767	
R-cuadrado	0,953230	R-cuadrado corregido	0,948776	
F(6, 63)	214,0035	Valor p (de F)	6,30e-40	
Log-verosimilitud	-127,3366	Criterio de Akaike	268,6732	
Criterio de Schwarz	284,4127	Crit. de Hannan- Quinn	274,9251	
rho	0,835826	Durbin-Watson	0,331890	

Estadísticos basados en los datos originales:

Media de la	43480,54	D.T. de la vble. Dep.	1184,214
vble. Dep.			
SCR	13504372	D.T. de la regresión	462,9850

Ahora nos encontramos con un nuevo modelo en el que ya no existe heterocedasticidad.

10. AUTOCORRELACIÓN


Dado el problema recién solucionado de heterocedasticidad, el programa gretl no deja realizar el estudio de autocorrelación de las variables por lo que, para finalizar este estudio, volveremos a nuestro modelo anterior y analizaremos la correlación de éste.

El análisis que es necesario llevar a cabo para determinar si hay autocorrelación o no es el estadístico Durbin Watson. Para ello, observamos los valores que nos salieron al calcular los MCO y obtuvimos lo siguiente:

D.T. de la vble. Dependiente.	1184,214
D.T. de la regresión	432,6839
R-cuadrado corregido	0,866500
Valor p (de F)	6,84e-27
Criterio de Akaike	1055,077
Crit. de Hannan- Quinn	1061,329
Durbin-Watson	0,467052

El valor del estadístico Durbin-Watson es de 0,467052. Para ver este contraste, necesitamos los valores dL y dU.

El valor de este estadístico cae en la región de autocorrelación positiva. Tal problema se podría solucionar en series temporales, estimando el modelo por mínimos cuadrados generalizados (MCG) y estableciendo un modelo autorregresivo de orden 1.

11. CONCLUSIONES

Para encontrar un buen modelo para explicar cuáles son los factores determinantes del crecimiento económico, en primer lugar hay que utilizar las componentes de una ecuación que fue creada en la macroeconomía Keynesiana, siendo llamada a la ecuación "contabilidad nacional". Esta ecuación permite ver el nivel de actividad económica, el número de periodos, en sus diversas componentes. Por tanto, el principal objetivo de la contabilidad nacional es proporcionar las principales medidas de las componentes económicas, es decir, cuantificar la producción, el consumo y la inversión, ya que estas componentes influencian significativamente el valor de la riqueza creada de un país, influenciando así el crecimiento económico.

Por tanto, la contabilidad nacional es un sistema que ayuda a cuantificar la riqueza creada en un país, a través del análisis de diversas componentes macroeconómicas. Entonces, para saber si el peso de estas componentes macroeconómicas se altera a lo largo del tiempo en Portugal, nuestro modelo y son las siguientes componentes:

- Consumo (privado y público);
- Inversión;
- Exportaciones;
- Importaciones.

Sabiendo también cuales fueron las componentes macroeconómicas podemos ver como las variables influencian a estas componentes. Para eso nuestro modelo tuvo el objetivo de englobar factores que pueden influenciar en las principales componentes macroeconómicas del PIB.

- Tipos de interés;
- Tasa de crecimiento del PIB en la Zona Euro;
- Costes unitarios del trabajo nominales.

Las conclusiones que se sacaron del modelo están de acuerdo con la teoría económica, pues un aumento en los tipos de interés y en los costes unitarios de trabajo afectan negativamente al crecimiento económico y un aumento en la tasa de crecimiento del PIB en la Zona Euro influencia positivamente el crecimiento económico portugués.

A través del modelo estimado, se pueden llegar también a las siguientes conclusiones:

El tipo de interés, que depende de la política monetaria del BCE, también es un factor que explica el crecimiento económico, pues puede influenciar, por ejemplo, al nivel de consumo e inversión. También hay teorías económicas que dicen que cuando las tasas del tipo de interés son elevadas y más caro apelar el crédito bancario. Esto hace que se incentive el ahorro en detrimento del consumo.

Relativamente a los costes unitarios del trabajo nominales, lo que concluye es que los salarios y costes asociados al trabajo no deben subir por encima de la productividad, pues si eso sucede lleva a una ineficiencia del mercado de trabajo perjudicando de esta forma a la inversión, producción y crecimiento económico. Esta teoría está de acuerdo con la teoría neoclásica del Mercado de Trabajo, pues mayores costes unitarios del trabajo reducen la competitividad de la economía perjudicando de esta forma al crecimiento económico.

Para finalizar, es también crucial tener en cuenta que la economía portuguesa depende mucho de los factores exógenos, tales como los tipos de interés, tasas de crecimiento de los países de la Zona Euro ya que los países europeos son los principales mercados de las exportaciones portuguesas y que la economía portuguesa también depende de las Políticas Monetarias del Banco Central Europeo, que están sujetas a los ciclos económicos.

12. BIBLIOGRAFÍA

Los datos se han obtenido:

- INE
- Libro de Jefrey M. Woldridge. Introducción a la econometría.
- Libro de Jorge Chica Olmo y Román Salmerón Sánchez.
 Econometría II.

13. ANEXO

Para el estudio de nuestro modelo, hemos utilizado los datos que aparecen a continuación:

date	pibreal	pibrealzonaeuro	txcambioeu	txjuro	pbrent	txcut	divpib
2000q1	41.598,70	2.099.902,00	0,9553	5,733	27,23	-0,481	51,9
2000q2	41.356,80	2.118.669,00	0,9556	5,58	28,4	1,675	50,8
2000q3	41.935,70	2.130.019,00	0,8765	5,603	33,73	2,07	50,9
2000q4	42.254,10	2.146.551,00	0,9305	5,463	34,1	0,659	50,3
2001q1	42.153,70	2.164.414,00	0,8832	5,13	27,93	0,411	50,1
2001q2	42.512,30	2.167.872,00	0,848	5,357	31,23	2,27	51,2
2001q3	42.566,50	2.169.343,00	0,9131	5,25	28,33	0,05	52,1
2001q4	43.160,90	2.173.895,00	0,8813	4,897	21,57	-0,517	53,4
2002q1	43.271,30	2.176.977,00	0,8724	5,207	24,13	1,408	52,6
2002q2	43.075,30	2.187.426,00	0,9975	5,35	27,27	1,407	53,2
2002q3	42.812,90	2.196.258,00	0,986	4,867	27,4	1,039	54,6
2002q4	42.543,90	2.199.574,00	1,0487	4,6	26,7	-0,154	56,2
2003q1	42.570,20	2.194.136,00	1,0895	4,13	29,27	1,128	58,4
2003q2	42.229,50	2.195.508,00	1,1427	3,953	22,97	1,849	57,1
2003q3	42.545,50	2.206.798,00	1,1652	4,217	25,27	0,794	58,7
2003q4	42.754,10	2.223.820,00	1,263	4,413	24,73	-0,484	58,7
2004q1	43.144,90	2.236.766,00	1,2224	4,147	25,57	-0,901	58,7
2004q2	43.406,90	2.248.299,00	1,2155	4,38	29,47	-0,481	60,2
2004q3	43.353,60	2.254.846,00	1,2409	4,217	34,03	1,489	60,6
2004q4	43.275,50	2.263.430,00	1,3621	3,83	34,17	1,086	62
2005q1	43.603,20	2.267.414,00	1,2964	3,603	36,33	0,272	62,5
2005q2	43.785,80	2.282.749,00	1,2092	3,293	41,07	-0,326	63,2
2005q3	43.514,40	2.299.722,00	1,2042	3,323	50,43	4,007	66,2
2005q4	43.605,30	2.313.652,00	1,1797	3,477	47,87	-0,321	67,4
2006q1	43.955,10	2.334.529,00	1,2104	3,607	51,43	-0,939	67,3
2006q2	44.363,50	2.359.237,00	1,2713	4,067	55,53	-0,055	69,2
2006q3	44.287,40	2.374.514,00	1,266	4,043	55	0,087	68,7
2006q4	44.613,00	2.400.911,00	1,317	3,943	46,3	-0,084	69,2
2007q1	45.111,70	2.418.676,00	1,3318	4,157	44,27	0,463	67,2
2007q2	45.288,30	2.433.927,00	1,3505	4,493	50,97	0,548	67,3

2007q3	45.367,10	2.445.985,00	1,4179	4,593	54,57	0,235	67,6
2007q4	45.868,20	2.458.772,00	1,4721	4,45	61,33	0,023	68,4
2008q1	45.881,50	2.471.973,00	1,5812	4,313	64,37	1,285	67,4
2008q2	45.646,50	2.462.419,00	1,5764	4,84	78,3	0,83	69
2008q3	45.540,60	2.448.243,00	1,4303	4,767	76,67	0,784	69,4
2008q4	44.928,60	2.406.091,00	1,3917	4,303	42,47	0,823	71,7
2009q1	43.895,30	2.335.391,00	1,3308	4,507	34,5	2,442	74,8
2009q2	43.954,10	2.328.985,00	1,4134	4,44	43,33	-1,046	80,1
2009q3	44.365,30	2.336.232,00	1,4643	4,043	47,8	-0,914	80,1
2009q4	44.362,50	2.349.080,00	1,4406	3,853	50,73	1,037	83,6
2010q1	44.785,40	2.359.025,00	1,3479	4,347	55,4	-0,437	86,2
2010q2	45.035,80	2.381.332,00	1,2271	5,113	61,8	-0,498	89,9
2010q3	45.117,20	2.392.125,00	1,3648	5,627	59,07	-0,762	93,6
2010q4	44.991,40	2.406.389,00	1,3362	6,497	63,97	-0,416	96,2
2011q1	44.653,40	2.426.403,00	1,4207	7,36	76,57	-0,385	97,6
2011q2	44.450,00	2.425.967,00	1,4453	9,893	81,33	-0,191	109,3
2011q3	44.118,70	2.426.106,00	1,3503	11,47	80,03	-1,006	113,4
2011q4	43.420,70	2.418.001,00	1,2939	12,23	81,07	-0,54	111,4
2012q1	43.232,40	2.414.403,00	1,3356	13,22	90,35	-2,205	115,6
2012q2	42.640,00	2.406.095,00	1,259	11,39	84,7	-0,685	120,9
2012q3	42.173,20	2.402.522,00	1,293	9,667	87,8	0,237	123,8
2012q4	41.481,50	2.392.382,00	1,3194	7,913	85,1	1,484	126,2
2013q1	41.607,50	2.384.829,00	1,2805	6,247	85,5	1,845	128,8
2013q2	41.902,70	2.395.844,00	1,308	5,97	78,83	-1,097	132,4
2013q3	41.851,60	2.404.440,00	1,3505	6,843	83,07	0,213	128,6
2013q4	42.249,40	2.410.769,00	1,3791	6,117	80,4	-1,578	129
2014q1	42.044,60	2.421.018,00	1,3788	4,86	78,73	-0,111	133
2014q2	42.217,10	2.424.014,00	1,3658	3,66	80,07	-0,134	130,8
2014q3	42.290,10	2.434.709,00	1,2583	3,447	77	2,18	132,7
2014q4	42.556,50	2.446.633,00	1,2141	3,05	60,77	-3,022	130,6
2015q1	42.847,70	2.464.904,00	1,0759	2,183	47,97	1,22	130,5
2015q2	43.024,50	2.472.536,00	1,1189	2,403	56,1	0,15	128,6
2015q3	43.088,70	2.483.940,00	1,1203	2,617	45	-0,481	130,3
2015q4	43.228,60	2.495.296,00	1,0887	2,49	39,63	0,678	128,8
2016q1	43.363,20	2.507.608,00	1,1385	2,927	31,13	0,723	128,6
2016q2	43.437,10	2.516.106,00	1,1102	3,157	40,7	1,301	131,3
2016q3	43.848,00	2.527.231,00	1,1161	3,077	41,03	0,19	132,8
2016q4	44.191,10	2.543.349,00	1,0541	3,527	46,5	0,249	130,1
2017q1	44.591,80	2.557.423,00	1,0691	3,993	50,83	0,398	130,4
2017q2	44.738,20	2.574.119,00	1,1412	3,343	45,77	0,458	132,1