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Abstract. In the last decade, there was a growing interest in conversa-
tional speech in the fields of human and automatic speech recognition.
Whereas for the varieties spoken in Germany, both resources and tools
are numerous, for Austrian German only recently the first corpus of read
and conversational speech was collected. In the current paper, we present
automatic methods to phonetically transcribe and segment (read and)
conversational Austrian German. For this purpose, we developed an auto-
matic two-step transcription procedure: In the first step, broad phonetic
transcriptions are created by means of a forced alignment and a lexi-
con with multiple pronunciation variants per word. In the second step,
plosives are annotated on the sub-phonemic level: an automatic burst
detector automatically determines whether a burst exists and where it
is located. Our preliminary results show that the forced alignment based
approach reaches accuracies in the range of what has been reported for
the inter-transcriber agreement for conversational speech. Furthermore,
our burst detector outperforms previous tools with accuracies between
98% and 74% for the different conditions in read speech, and between
82% and 52% for conversational speech.
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1 Introduction

In the last decade, there was a growing interest in spontaneous and conversa-
tional speech in the fields of human and automatic speech recognition. Therefore,
large conversational speech corpora have been created for many languages (e.g.,
for English [17], for Japanese [13], for Dutch [5]), and for French [28]). For con-
versational German, large speech resources are limited to the varieties spoken
in Germany (e.g., [7],[31],[12]). For the varieties of Austria, only recently the
first corpus of conversational speech was recorded (i.e., Graz corpus of Read and
Conversational Speech (GRASS) [27]). In order to make the GRASS corpus ac-
cessible for speech technology as well as linguistic and phonetic research, it needs
to be segmented and transcribed phonetically. The aim of the current paper is
to present a transcription tool for read and conversational German. The tool is
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operating in two subsequent steps. First, a broad phonetic transcription is cre-
ated by means of a forced alignment (i.e., with a HMM-based approach). Second,
a non-stochastic MATLAB tool annotates whether plosives are realized with a
burst and, in case of an existing burst, where it is positioned. The resulting
transcriptions are exported to PRAAT TextGrid format [3].

1.1 STEP 1: Broad Phonetic Transcription

Traditionally, phonetic transcriptions are produced manually by one or more
transcribers. Since this approach is time consuming, methods have been devel-
oped to create broad phonetic transcriptions with the help of an ASR system
(e.g., [2], [4], [9]). The accuracy of these systems has steadily increased and the
agreement between automatic and manual transcriptions for some systems al-
ready is in the range of the agreements reported for human transcribers (e.g.,
[26]). Furthermore, automatically created transcriptions have successfully been
used for phonetic investigations concerning pronunciation variation (English:
[34]; German: [1]; French: [2] and Dutch: [26]).

There are different methods for creating broad transcriptions automatically.
For instance, free and constrained phone recognition have been reported to work
well for read speech but not for spontaneous telephone dialogues [30]. Since we
aim at using the transcription tool for the casual conversations, which are part
of the GRASS corpus, we did not follow this approach.

A method which does not make use of a phone recognizer based on Hidden
Markov models, has been presented by Leitner et al.[11]. Their example-based
approach is non-parametric and uses methods from template-based speech recog-
nition. This tool has been trained on isolated words read by male trained Aus-
trian speakers. Even though this tool reaches a high accuracy on carefully pro-
nounced speech, it does not capture the variation found in spontaneous Austrian
German.

Another method for creating broad phonetic transcriptions automatically is
forced alignment (e.g., [4],]2]). For instance, the tool MAUS (Munich Automatic
Segmentation) is a forced-alignment based tool which is available for German
(among other languages)[20]. It works as follows: The orthographic transcrip-
tion and the speech files of an utterance are uploaded to an online-tool. Then, a
canonical transcription is created for each word with the Balloon tool [19]. Then,
possible pronunciation variants are created based on phonological rules. Finally,
an HMM based ASR system chooses the most probable pronunciation variant
for each word and places the segment boundaries. We have tested this tool for
our Austrian German data of the GRASS corpus and we have observed a good
accuracy of the segmentation for the read speech component. For the conversa-
tional speech, however, the MAUS tool did not cover well typical characteristics
of Austrian German pronunciation. For instance, MAUS annotated the alveolar
fricative, which in Austrian German is typically pronounced voiceless, as voiced.
Furthermore, words which tend to be reduced in spontaneous speech were not
transcribed correctly. For example, the highly frequent word ich 'I’, which in
Austria is typically pronounced as [i:], was transcribed in its canonical form
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Fig. 1. Three realizations of /t/ in spontaneous Dutch. Left panel: canonical
/t/. Middle panel: reduced /t/. Right panel: absent /t/[23]

/ie/. To conclude, none of the existing transcription tools fulfilled our require-
ments. Therefore, we decided to develop a HMM based ASR system in forced
alignment mode to transcribe Austrian German. The main difference of our ap-
proach to the MAUS tool (described above) is that our method to creates an
Austrian German pronunciation dictionary with several variants per word type
(see Section 3.2). Most importantly, MAUS does not provide a sub-phonemic
annotation of plosives, which is the task of Step 2.

1.2 STEP 2: Sub-phonemic Annotation of Plosives

Figure 1 shows three examples for different realizations of /t/ in conversational
Dutch. The example of the left panel is the canonical realization of /t/, which
consists of a voiceless complete closure followed by a strong burst and a sub-
sequent release friction. The example on the right panel shows a realization of
/t/ where all characteristic properties of a plosive are absent. [25] showed that
80.4% of /t/s in conversational Dutch are realized somewhere in between these
two extremes (e.g., example in the middle panel). Recently, numerous studies
investigated the different realizations of plosives in spontaneous speech and the
conditions for their occurrence (for English (e.g., [18]), for Dutch (e.g., [22]), for
French (e.g., [29]) and for German (e.g., [10],[35]). In these studies, sub-phonemic
annotations of the plosives were created manually for a relatively small set of
tokens. At the same time, they used high level statistical modeling techniques
to estimate which are the predictors for the variation observed. In this paper,
we propose a method to create such annotations automatically, which allows to
enlarge the amount of data available for future phonetic investigations.



4 B. Schuppler, S. Grill, A. Menrath, and J. A. Morales-Cordovilla

2 Speech Material

The speech material transcribed with the developed tool is the Graz corpus of
Read And Spontaneous Speech (GRASS) [27]. For each of the 38 speakers (male
and female), this corpus contains 62 phonetically balanced sentences, 20 (read
and spontaneous) commands elicited with pictures and one hour of conversation
(approximately 1200 utterances per speaker). All conversations were between
family members or friends and the speakers were relaxed and talked completely
freely about everyday topics (in the absence of an experimenter). Therefore, the
style of the conversational speech is informal and casual. The speakers are gender
balanced, with a similar average age per group. They were born in one of the
eastern provinces of Austria and they all were living in Graz at the time of the
recordings.

Since the corpus was collected with speech technology applications in mind,
it fulfills the requirements for automatic processing (e.g., [26]): the recordings
took place in a soundproof studio with both head-mounted and large-membrane
microphones at 48kHz. The relative position of the speakers and the according
directivity of the microphones was adjusted to optimize the SNR in the presence
of overlapping speech. On average over all conversations, the resulting SNR was
46.4 dB [27].

Since for a forced alignment, the orthographic transcription is needed as input
(see Section 3), the quality and consistency of the orthographic transcriptions is
especially relevant. For instance, [6] reported that mistakes on the orthographic
level can not be compensated on the overlying transcription layers, the con-
trary is the case. The orthographic transcriptions of the GRASS corpus were
created having also such further (semi-) automatic transcription layers in mind:
Speakers were transcribed on separate tiers with speech stretches of less than six
seconds. Transcriptions contain information of overlapping speech, hesitations,
disfluencies and other vocal and non-vocal noises [27].

3 STEP 1: Creation of a Broad Phonetic Transcription

As motivated in Section 1, we used a forced alignment to create broad pho-
netic transcriptions automatically. For this purpose, we used the HTK speech
recognition toolkit [33]. A forced alignment needs the following input: (1) the
acoustic signal, (2) the orthographic transcriptions, (3) acoustic phone models
and (4) a lexicon containing pronunciation variants for each word. With this
input, the alignment system determines the most likely pronunciation variant
for each word appearing in the transcription of an utterance and places the cor-
responding segment boundaries. Finally, we exported the output of HTK to the
PRAAT TextGrid format [3].

3.1 Monophone Acoustic Models

The 35 (34 phones + silence) acoustic models were continuous density 3-state
monophone acoustic models with 5 Gaussians per state. The models have been
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trained on 5000 utterances from 50 German speakers of the BAS read speech
corpus [21]. The acoustic parameterization was as follows: 16 kHz sampling fre-
quency, frame shift and length of 10 and 32 ms, 1024 frequency bins, 26 mel
channels and 13 cepstral coefficients with cepstral mean normalization. After
adding delta and delta-delta features, each final MFCC vector had 39 compo-
nents (see also [24]).

3.2 Pronunciation Dictionary

The only existing pronunciation dictionary is the Austrian Phonetic Database
[15]. It is based on isolated words produced by a trained speaker and thus does
not cover the pronunciation variation found in the conversational speech of the
GRASS corpus. In the following, we describe how we created a pronunciation
dictionary for Austrian German, with several pronunciation variants per word
type.

First, for each word a canonical pronunciation (German standard) was cre-
ated with the Balloon tool [19], which makes use of a set of 49 SAMPA phoneme
symbols providing syllabic and morphological boundaries, as well as primary
and secondary stress. This tool is also used by the MAUS transcription sys-
tem [20]. Whereas in MAUS the output is not corrected manually, we corrected
the resulting canonical transcriptions. Errors mainly concerned proper names,
foreign words and compounds, especially regarding the syllable boundaries and
primary and secondary stress marks. The correction of the syllable boundaries
and stress marks is especially important since the automatic creation of pronun-
ciation variants is based on rules which are specific for certain syllabic structures
(e.g., deletion of /r/ in coda position) and certain stress patterns (e.g., schwa
deletion in unstressed syllables).

Subsequently, we applied a set of 32 rules to the canonical pronunciations.
These rules can be divided into three groups. The first group is formed by those
rules covering co-articulation, assimilation and reduction rules which are also
typical for spontaneous German spoken by speakers from Germany. These rules
include those mentioned by Wesenick et al. [32] and by Schiel, F. [20]. Secondly,
we applied rules formulated on the basis of literature on standard Austrian Ger-
man. Several of these rules have earlier been used for a text-to-speech engine
for Austrian German [16]. The majority of these rules, however, have been for-
mulated on the basis of phonetic studies and have not yet been used in speech
technology (e.g., [14]). These rules include the deletion and lenition of plosives
in all word positions. For a detailed description of each rule and their frequencies
see [24].

Finally, variants were created manually for the 150 most frequent words and
for certain verbs which tend to have typical Austrian realizations which cannot
be easily derived from the citation form (e.g., mdchte ‘would like to’: citation
form /m'oxto/ as /m'exatn/).



6 B. Schuppler, S. Grill, A. Menrath, and J. A. Morales-Cordovilla

Read Commands Conversational

Total # Phones 1826 429 10836
Deletions| 0.4 % [8] 0.0 % [0] 1.3 % [133]
Insertions| 1.7 % [31] 0.2 % [1] 2.1 % [228]

Substitutions|16.8 % [307] 17.0 % [73] 15.1 % [1637]
Total discrepancy|18.9 % [346] 17.2 % [74] 18.4 % [1998]
Table 1. Discrepancy between automatically created and manually corrected broad
phonetic transcriptions in absolute number of phones and in % of deletions, insertions
and substitutions

3.3 Validation

In order to validate the created broad phonetic transcriptions, a phonetically
trained transcriber corrected the labels of the created transcriptions of part of
the GRASS material. Then the number of substitutions, insertions and dele-
tions was calculated (for all phones but the silence segments). Table 1 shows
the discrepancies between the automatically created and the manually corrected
transcription, separately for the three components of the corpus. Overall, there
was a 18.5% discrepancy between the phone labels of the forced alignment and
the manually corrected ones. This was mainly due to substitutions, with only a
small number of insertions and deletions. These deviations between automatic
and manual transcriptions are in the range of earlier reported inter-annotator
discrepancies on manual transcriptions (21.2% for spontaneous speech [9]). Fur-
thermore, the accuracy of our system lies within the range of other automatic
transcription systems. For instance, [4] reported a discrepancy of 24.3% for spon-
taneous speech.

4 STEP 2: Automatic Sub-phonemic Annotation of
Plosives

The following section describes the components of a burst-detector which is used
to annotate plosives at the sub-phonemic level. The detector determines whether
the plosive contains a closure and a burst and in case of a burst, it determines
its position. Similar as in [8], the detector uses the power and its derivative with
respect to time as principal source of information. We, however, developed a
more elaborate decision stage.

4.1 Preprocessing

In a first step, the signal is Fourier transformed, high pass filtered and subse-
quently the power densities for each sample are accumulated to a power curve.
Then, the signal passes an envelope generator that interpolates all local max-
ima. To suppress erroneous behavior, the interpolation stage discards all envelope
points previous to the first or after the last detected maximum.



Automatic Phonetic Transcription in Two Steps 7

/

power spectral

FFT density » HP

/ power f>f_hg

audio segment

y
™M

A
A

envelope

burst y/n decision
burst fime Stage 1 derivative

lof power d/dt

thresholds

Fig. 2. Block diagram of the complete algorithm: FFT: Fouriertransform/Spectral anal-
ysis; HP: High Pass; Y ,: Generation of power curve from power spectral densities; d/dt:
Discrete Derivative

If insufficient supporting points are found to generate an envelope, the de-
tection is categorically aborted and the result is set to contain no burst, as the
majority of signals which result in such a condition do not contain any significant
spikes in power that would hint at a burst event. We tested the positive impact
of this feature on detection performance (see Section 4.3). Finally, the discrete
derivative of the resulting envelope is calculated. The resulting two signals are
then passed to the decision stage.

4.2 Decision Stage

First, the maximum of the derivative is compared to a plosive dependent thresh-
old (i.e., different for /p/, /t/, /k, etc.). If the threshold is not exceeded, the
decision process is aborted with the decision that no burst is present.

Second, thresholds for power as well as for the derivative are obtained by
taking the maximum value of each signal multiplied by a manual parameter set.
These parameters are chosen individually for each plosive. The algorithm then
starts at the maximum power and proceeds backwards along the time axis until
both power and its derivative fall below their respective threshold. If the values
do not fall below the threshold, the decision is that no burst is present. If these
two conditions are met, the process is aborted and a burst is detected.

Finally, if a burst was detected, a plosive dependent offset is added to the
sample at which the algorithm stopped to obtain the burst time. The reason for
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this offset stems from the usage of an envelope in the power signal, which shifts
the onset of the burst forward, as well as there being an optimization problem
between overall burst detection and temporal precision. If parameters are opti-
mized to obtain optimal burst detection, the temporal precision suffers and vice
versa. We found that an offset was an easy method to avoid this optimization
conflict.

4.3 Sub-phonemic Annotation of Plosives in Read Speech

For evaluating the accuracy of the burst detector in read speech, we used a
subset of the German Kiel Corpus [7]. The subset contains German read speech
of the same text spoken by nine male and seven female speakers. The corpus
comes with detailed manually created phonetic transcriptions, also at the sub-
phonemic level of plosives, which made it an ideal reference to validate the burst
detector. In total, we used 1579 bursts for the validation of our automatically
created sub-phonemic annotation of the plosives.

We evaluated both the decision of the detector (is there a burst?, yes or no)
and the position of the plosive (distance from manual burst in ms). For the anal-
ysis, we calculated the deviations from the manual transcription separately for
the different plosives (/p/,/t/,/k/,/b/,/d/,/g/) and we grouped them in terms
of position within the word (word initial, word medial and word final). For each
of these combinations the following measures were calculated to estimate the
accuracy of the burst detector:

— Py: A burst was detected and it was present in the manual transcription.

— P5: No burst was detected and it was absent in the manual transcription.

— P: Detector decision is correct.

— Ab: Arithmetic mean of the temporal error between the detected and the
manually labeled burst position (in numbers of samples).

Table 2 show the results separately for the different plosives as well as the
overall result. The numbers in the squared brackets represent the number of
occurrences of the respective case. In 161 cases spanning all plosives in all possi-
ble positions, no burst was detected because insufficient supporting points were
found to generate a hull curve (also see section 4.1). This detector decision was
correct in 98% of the cases.

Overall plosive categories, the decision of whether a burst was present was
correct in 93% of the cases, with a maximum of 98% for initial, voiceless plo-
sives and a minimum of 74% for word-final /k/. These values are much better
than previously reported. [8], for instance, reached a similarly high maximum of
97% agreement for the presence of bursts in word-initial position, but only 47%
agreement for the absence of bursts in word-medial position.

4.4 Sub-phonemic Annotation of Plosives in Austrian German

In order to evaluate the accuracy of the burst detector on Austrian German, we
extracted 2071 word tokens containing a plosive from the GRASS corpus. For
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Total | /p/ /t/ /k/ /b/ /d/ /8/

Owerall
P [0.93 [1579]|0.96 [50] 0.96 [673] 0.92 [119][0.02 [112] 0.89 [494] 0.87 [131]
P: | 0.91 [822] |0.92 [12] 0.92 [263] 0.91 [93] | 0.97 [35] 0.89 [351] 0.88 [68]
P> | 0.95 [757] |0.97 [38] 0.98 [410] 0.92 [26] | 0.90 [77] 0.91 [143] 0.86 [63]
Ab | 43 [744] | 76 [11] 50 [243] 44 [85] | 50 [34] 37 [311] 35 [60]

Initial
P 0.92 [528] - 0.98 [48] 1.00 [16] | 0.94 [64] 0.92 [352] 0.88 [48]
P, |0.93 [407] - - 1.00 [16] | 1.00 [33] 0.93 [313] 0.89 [45]
P> |0.90 [121] - 0.98 [48] - O 87 [31] 0.85[39] 0.67 [3]
Ab 39 [379] - - 25 [16] 1[33] 38[290] 37 [40]
Medial

P 0.92 [801] [0.97 [32] 0.96 [424] 0.95 [80] | 0.90 [48] 0.82 [134] 0.87 [83]
P, 0.89 [338] | 1.00 [6] 0.94 [208] 0.95 [61] | 0.50 [2] 0.55 [38] 0.87 [23]
P> | 0.94 [463] |0.96 [26] 0.98 [216] 0.95 [19] | 0.91 [46] 0.93 [96] 0.87 [60]
Ab 46 [302] 26 [6] 48 [196] 50 [58] 38 [1] 27 [21] 32 [20]
Final

P [0.94 [250] |0.94 [18] 0.96 [201] 0.74 [23] - 1.00 3] -
P, | 0.82[77] | 0.83[6] 0.85[55] 0.69 [16] - - -
P, |0.99 [173] [1.00 [12] 0.99 [146] 0.86 [7] - 1.00 [8] -

Ab 58 [63] | 135 [5] 54 [47] 39 [11] - - -
Table 2. Automatic annotation of bursts in plosives in the Kiel Corpus of
Read Speech. Percentages P; - P3: Pi: Burst detected and it was present in the
manual transcription. P2: No burst detected and it was absent in the manual tran-
scription. P: Detector decision is correct. Ab: Temporal error (in numbers of samples,
the sampling frequency was 44 kHz)

these tokens, the bursts in the plosives were annotated manually by a trained
transcriber. The results for the different plosives are shown in Table 3. Since
basically all tools work better for read than for spontaneous speech, it could be
expected that also our burst detector did not achieve as high accuracies for the
material from the GRASS corpus as for the carefully pronounced speech from
the Kiel Corpus. Nevertheless, the tool reached a maximum accuracy of 82% for
/g/ and a minimum for /b/ of 52%. These values are still within the range of
what [8] (max. 97%, min. 47%), and [23] (average 63%) reported for spontaneous
American English.

One explanation for the lower accuracy reached for detection of bursts in
/b/ might be that /b/ is frequently realized as voiced labiodental fricative in
spontaneous Austrian German. Another reason might be the different recording
conditions of the two corpora. In future work, we will develop automatic meth-
ods to optimize the parameterization for the different plosives, specifically for
conversational speech.
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/p/ /t/ /k/ /b/ /d/ /8/

P |0.59 [144] 0.68 [917] 0.81 [198]|0.52 [158] 0.67 [466] 0.82 [188]

P.|0.39 [95] 0.60 [676] 0.84 [176]|0.26 [102] 0.63 [355] 0.82 [137]

P> | 0.98 [49] 0.90 [241] 0.64 [22] | 0.98 [56] 0.82 [111] 0.82 [51]

Ab| 4 [37] 13 [403] 9 [147] 5 [27] 10 [222] 9 [112]
Table 3. Automatic annotation of bursts in plosives in the GRASS corpus.
Percentages P - P3: P1: Burst detected and it was present in the manual transcription.
P2: No burst detected and it was absent in the manual transcription. P: Detector
decision is correct. Ab: Temporal error (in numbers of samples; the sampling frequency
was 16kHz)

5 Conclusions

In the current paper, we presented automatic methods to phonetically transcribe
and segment the recently collected GRASS corpus, which is the first corpus of
read and conversational Austrian German [27]. For this purpose, we developed
a two-step procedure: In the first step, broad phonetic transcriptions were cre-
ated by means of a forced alignment and a lexicon with multiple pronunciation
variants per word. In order to create pronunciation variants typical for Austrian
German, we applied 32 rules to the canonical pronunciations of the words. In a
second step, all plosives were annotated on the sub-phonemic level: a burst de-
tector automatically determined whether a burst existed in a plosive and where
it was located. After this step, both the broad phonetic transcription and the
sub-phonemic plosive annotation are exported in form of a PRAAT TextGrid.

The quality of both steps was evaluated separately by comparison with man-
ually created transcriptions. We found that the forced alignment based approach
reached accuracies in the range of what has been reported for inter-transcriber
agreement for conversational speech. Furthermore, our burst detector outper-
formed previous tools with accuracies between 98% and 74% for the different
conditions in read speech, and between 82% and 52% for conversational speech.

In future work, we will tune the parameters of the burst detector for the con-
versational speech. Then, we will use the created annotations to model which
are the predictors for plosive reduction in read and conversational Austrian Ger-
man in comparison to the varieties spoken in Germany. These plosive-reduction
models will not only inform linguists interested in conversational speech, but
they will also be incorporated into the pronunciation model of an ASR system
for Austrian German.
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