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Abstract

The problem of room localization is to determine where, in
a multi-room environment, a person is producing a speech ut-
terance. In our work, we are exploiting the information gained
from a network of microphones installed all over a house, where
the lack of calibration of the microphone energies creates an ad-
ditional challenge. This paper compares room localizers based
on different features (such as energy and cross-correlation be-
tween microphones) and classifiers (such as neural networks
and discriminative analysis). In order to evaluate the differ-
ent room localizers in terms of word accuracy this paper also
presents a complete distant speech recognition system which
tries to take advantage of synergy between the different compo-
nents without using any oracle information. Finally, the system
is analyzed in terms of computational and time resources.
Index Terms: Distant speech recognition; microphone net-
work; VAD; room localization; machine learning classification;
enhancement; reverberant and noisy environment.

1. Introduction

Different challenges such as the recent REVERB [8] and
projects such as CHIL, CHIiME [2] and the current Distant-
speech Interaction for Robust Home Applications (DIRHA, [3])
have been introduced to address the problems which appear in
a home automation system controlled by a distant speech rec-
ognizer. These problems can be: the wake-up of the system
(distinction between human-human conversations and human-
system commands), the degradation of the speech signal due
to the background noise or reverberation, and the localization
of the command emitted by the speaker. This last problem is
not only interesting because of the enhancement of the signal
(by means of beamforming, etc.) but also because it can help
the dialog system to distinguish, in an ambiguous situation, the
device which the speaker wants to control. In this paper we fo-
cus on the determination in which room a person is producing a
speech utterance. This can be solved in different ways such as
using the WLAN signal emitted by a device [7] or with video
cameras [14]. Some literature has tried to estimate the speaker
position inside of a room using a microphone array [5] or a mi-
crophone network [1, 6]. The innovation of this paper is to lo-
calize the room using a microphone network. In addition this
paper also presents a complete distant speech recognition sys-
tem which exhibits synergy between the different components
without using any oracle information.

The paper is structured as follows: Section 2 describes the
database and the proposed system. Different room localization
approaches are presented in Sec. 3. Sec. 4 analyses the results
over the full system and gives some qualitative information on
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the computational cost of the system. Finally, Sec. 5 summa-
rizes the most important ideas presented in this paper together
with some future work.

2. Database and system
2.1. Database

The DIRHA-GRID database [9, 3] used to evaluate our al-
gorithms has been proposed by the organizers of the Inter-
speech2014 special session: Multichannel Processing for Dis-
tant Speech Recognition. This database has 3 test sets: Devl,
Testl and Test2 sampled at 16 kHz. Only the Devl (develop-
ment set) has oracle spatial information and time boundaries of
the utterances. Each audio file of around 1 minute of duration
contains 40 microphone channels distributed in the 5 rooms of
the ITEA apartment [3]. Each file has around 6 embedded utter-
ances emitted randomly at different positions of the apartment
in a noisy and highly reverberant (£60=0.8 sec) ambient. The
speaker utterances correspond to the GRID corpus [2] where
they have a very restricted grammar (verb colour prep letter
number coda), one utterance example is ’bin blue at f two now”.
The utterances fulfil the non-overlapping condition, i.e., cross
the time and rooms only one utterance is spoken. This condition
simplifies the problem and is very realistic if we are interested
in localizing the commands of one user. The organizers provide
a training set with 17000 GRID clean utterances without any re-
verberation to train the automatic automatic speech recognition
(ASR) system.

2.2. Description of the distant speech recognition system

The proposed distant speech recognition system is depicted in
Fig.1. For each room we have a single-channel voice activity
detector (VAD). These detectors use the following microphones
[9]: KA6, LA6, R1C, C1R and B2C for 1 (kitchen), 2 (living-
room), 3 (bathroom), 4 (corridor) and 5 (bedroom) rooms, re-
spectively. The VAD decision is passed through a dilation mor-
phological filter [4] of 0.5 sec of half length to obtain the seg-
mented utterance. This point forward, we assume that the VAD
provides utterances and not speech segments. After that, we
localize the room of the utterance, estimate its position inside
the room (using the pentagonal microphone arrays) and apply
beamforming. Note that only if we detect the utterance in the
living-room or in the kitchen we do beamforming with the cor-
responding pentagonal arrays, otherwise we use the reference
single-channel signal of the room. Finally we enhance the ut-
terance and recognize it. Other block configurations would be
possible, such as to execute in this order: VAD, position esti-
mation and beamforming for each room and later room localiza-
tion. This last configuration would provide a very slow response
until the utterance is completely segmented and localized in the
room due to the expensive computational cost of our position
estimation (see Sec. 4.2). In conclusion, our system configu-
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Figure 1: Block diagram of the proposed system for distant
speech recognition which consists of a 40-elements microphone
network, VAD for each room, room localization of the utter-
ance, estimation of its position in the room, beamforming, en-
hancement of the single-channel signal and ASR.

ration is chosen basically because it segments and localizes the
room relatively fast (Sec. 4.2).

2.3. ASR baseline

Our ASR is similar to the one proposed by the organizers: the
same number of states per words and 7 Gaussians per state. The
grammar for one utterance starts and ends with silence. The fea-
ture vector consists of a standard mel frequency cepstral coeffi-
cients (MFCCs) using these parameters: frame shift and length
of 10 and 32 ms, 1024 frequency bins, 26 mel channels and 13
cepstral coefficients with cepstral mean normalization. Delta
and delta-delta features are also appended, obtaining a final fea-
ture vector with 39 components. To compare our ASR with
the one provided by the organizers we are going to recognize
without any enhancement the signal provided by the LAS mi-
crophone assuming oracle segmentation. First, we train an ini-
tial HMM using the training set and later we adapt it (doing 4
more EM iterations) using the 436 utterances of the Dev1 set of
the LAS microphone. The word accuracy (WAcc) on the Devl
is 89.07 % (we concatenate all the transcriptions and compare
with the true transcription). Note that in the following we will
drop the % of the WAcc result. This result is different from the
organizers (61.39) because their grammar recognize all the 1
min. signal but we recognize segment by segment. If we assume
true room localization and we use the reference microphone of
each room (Sec. 2.2) we improve our baseline to 92.89.

3. Room localization

In this section we compare different features on different clas-
sifiers for room localization assuming true VAD.

3.1. Maximum energy selection approach

When a speaker pronounces an utterance this can be detected
not only by the VAD of the current room but also by the VADs
of the surrounding rooms due to the omni-directional sound
propagation through the open doors between the rooms. In Fig.
2 we can observe this phenomenon when we see vertically how
most of the utterances appear repeatedly in all rows. If we con-
sider the non-overlapping condition (Sec. 2.1), we can estimate
the true room localization by means of a maximun selection
along the rooms of the averaged noisy energy of the VAD seg-
mented utterances. For one utterance this is computed as fol-
lows:
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Figure 2: VAD estimations by the deep belief network (DBN)
for the five rooms of the apartment for the signal sim2 of Devl.
The abscissa represents the frame number.

where N is the number of frames of the utterance. FE,(7)
is the noisy energy at frame ¢, computed as Ey,(i) =

S y(t)2/ L where y(t) is the noisy signal of the room ref-
erence microphone at frame ¢ and L is the frame length. Note
that we will employ the notation of y, « and n for noisy, clean
and noise signals respectively. To separate the room localizer
from the rest of the system blocks we are going to test the local-
izer over the Dev1 assuming perfect VAD (i.e., the utterance is
detected in all rooms, even if its SNR at the room is very low).
For true room localization and with the above mentioned max-
imum energy selection the WAcc are: 92.89 (100) and 78.98
(56). In parenthesis we provide the F-Score comparing room by
room the true with the estimated VAD after room localization.
The F-Score is the harmonic mean between the frame precision
and recall. We can see that the energy approach yields a poor
performance mainly in the F-Score. This can confuse a lot the
dialog system which can receive a correct command (such as
”open the window!””) but may associate it with the wrong room
(Sec. 1).

3.2. Classification approach

The energy approach can produce localization errors because
either the calibration of the microphone gains are not correct
or the reverberation characteristics of the rooms enhance dif-
ferently the speech. To mitigate this problem, we can train a
classifier which learns the true utterance room localization de-
pending on the energies observed in the five rooms. The input
is a vector with the energies (Eq. 1) and the output is a vector
with the five probabilities of observing the utterance in every
room. For training purpose, we use Devl and we can directly
take the true room localization as the probability vector, putting
a 1 at the element corresponding to the room of the utterance
and 0 otherwise. Due to the non-overlapping condition the sum
of the probability elements is always 1. The Devl provides
around 500 unique vectors of energies and probabilities. We
use four standard classifiers from supervised machine learning:
a multilayer perceptron neural network (NN, with a topology of
2 hidden layers of 10 and 5 neurons), linear and quadratic dis-



Table 1: Averaged word accuracies (WAcc, %) over the (Devl,Testl,Test2) sets of the DIRHA-GRID database for different room
localizations and configurations of the proposed system. * means not available result because not oracle information.

VAD | Pos., beamf. Room localization

& enhanc. True [ Energy [ SNR [ NN [ LDA QDA SVM
True No 93 (93,%,* 79 (79,%,* 83 (83,*,* 80 (80,*,* 90 (90,*,* 89 (89,* * 87 (87,%*
True Yes 96 (96,** 82 (82,*%* 85 (85,*%,* 85 (85,%,* 92 (92,** 92 (92,%* 90 (90,%,*
DBN No 93 (93,%* 52 (60,46,49) | 45 (55,38,43) | 55(67,48,49) | 60 (74,51,55) | 57 (71,50,51) | 58 (73,51,52)
DBN Yes 96 (96,*,* 52 (60,44,52) | 46 (53,40,44) | 55(66,49,52) | 61 (72,54,57) | 59 (70,55,52) | 60 (72,54,54)

criminant analysis (LDA and QDA) and support vector machine
(SVM; which due to its binary decision there is one per room).
All of them are taken from Matlab2012. The new room local-
izers use the same maximum selection as before but now the
feature for comparison is not the energy but the classification
probability averaged over the whole utterance. For NN, LDA,
QDA and SVM the results are: 81.96 (65), 80.62 (66), 79.59
(60) and 81.77 (68). We see that using the probabilities as the
comparison features improves the previous energy result (78.98
(56)), especially for the NN classifier.

3.3. SNR approach

Another possibility for the maximum selection is to use the SNR
of the utterance as the comparison feature instead of the energy
or the probabilities. Here, we estimate the averaged noise en-
ergy of the utterance (F“**) by averaging the 20 frames of noisy
energy Ey (i) placed before and after the utterance. Then, the
clean energy is E, (i) = E, (i) — EX*" (we set to 0 if it is nega-
tive). The SNR of the averaged utterance energies is computed
as follows:
utt
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where E“** is the averaged clean energy of the utterance. When
we use the SNR as comparison feature the WAcc (F-Score) is:
82.68 (48). We see that we improve regarding the classification
approaches but the F-Score is very low. This was expected be-
cause for ASR a high SNR is important but not for the dialog
system (Sec. 1). However, we could use one method with the
highest WAcc as the selection method for the ASR input and an-
other method with the highest F-Score as the selection method
to inform the dialog manager about the room localization.

3.4. High-SNR classification approach

The problem with the previous classification approach is that
if, in a room, the energy of the speech signal is dominated by
another source, then the energy of this other source can con-
fuse the classifier in the room estimation. So in case of low
SNR it would be better not to include this energy information
in the classification even if the VAD detected this utterance in
the room. We can compute the instantaneous SNR at frame ¢ as
SNR(i) = 20log,, E.(i)/Ex*. If the frame percentage of
SN R(%) higher than 0dB is lower than 15% (empirically cho-
sen value) in a utterance then we set to O the corresponding
element of the energy vector passed to the classifier. If we train
and test the previous classifiers applying this high-SNR classifi-
cation approach, for NN, LDA, QDA and SVM the results are:
82.00 (58), 88.11 (73), 87.81 (77), 86.93 (72) and 82.76 (43).
We can see that the results improve and that now the best result
is obtained by the LDA and not by the NN.

3.5. Coherence classification approach

Until now, we have employed only the energy as the input fea-
ture to the classifier. Other features which make a difference
between the rooms can also be used and even combined with
the energy to improve the localization. Here we propose to em-
ploy the cross-correlation between close microphone pairs be-
cause if the utterance is spoken in the same room as the pair,
then the maximum of the cross-correlation will be higher than
the maximum of another pair in other room. This is not only be-
cause of the attenuation of the sound when it travels through the
rooms. This is because the microphone pairs of the true room
receive the direct sound (with less reflections than the others)
and a more coherent signal. If y1 and y2 are the noisy signals
of a microphone pair p we define its coherence at frame ¢ as:

cp(i) = m]émxrylyg(k,i) 3)
where ry1,42(k, ) is the cross-correlation and & is the lag. If
in a room 7 we have a set of microphones the coherence of the
room is defined as ¢(i) = max, ¢, (). In order to guarantee a
high coherence in all positions of a room, we use pairs on ev-
ery possible room side: (K1R,K1L), (K2R,K2L), ... for room 1,
(L1C,L1L), (L2R,L2L), ... for room 2, etc. The average of ¢(7)
provide the utterance coherence c“**. We train and test the pre-
vious classifiers with the new input vector of 10 elements. This
vector has the previous five high-SNR energies together with the
c¥t of the five rooms. For NN, LDA, QDA and SVM the re-
sults are: 79.85 (50), 89.91 (81), 89.30 (82) and 86.89 (76). We
can see that the addition of this new information improves the
results for all the classifiers specially for the F-Score. Only for
the NN, it is not the case. One reason can be that the topology
of the NN needs to be better tuned because we have increased
the dimension of the input vector. From here on, we will use
this last presented feature, called high-SNR-energy+coherence,
as the input feature to our classifiers.

4. Analysis of the full system
4.1. Experimental results

Now we are going to analyse the performance of the full system
(Fig. 1). The first row of Table 1 summarizes the WAcc (av-
eraged over Devl, Testl and Test2 sets) obtained by the most
important seven room localizers presented along the paper: true
VAD-+room localization, maximum energy selection, maximum
SNR selection, and the high-SNR-energy+coherence feature on
the four classifiers. The results for Testl and Test2, when we
use true VAD or true room localization, are marked with * be-
cause the oracle information of them is not available. The sec-
ond row in contrast to the first one applies position estimation,
beamforming and enhancement. In [10] we study different pos-
sibilities for these blocks in a similar database and we draw the
conclusion that the best performance is obtained when we use



the PoPi position [5], convex-optimized beamforming [11, 12]
and vector Taylor series enhancement (VTS) [13]. Here, the
VTS uses 128 Gaussians trained on a clean version of the Devl
(the organizers provided us the impulse responses). The noise
spectrogram is estimated with the first last 20 frames (FLFr)
as in Sec. 3.3. Note that in order to avoid mismatch, we ap-
ply beamforming and enhancement to Dev1 and later we retrain
our HMM (Sec. 2.3). The comparison of the first two rows
clearly show that the addition of these enhancement blocks im-
prove the results for all the room localizations. The third and
the fourth rows repeat the same experiments but wit a real (not
oracle) VAD based on deep belief networks (DBN) [15, 10]. We
see that now we have less improvement with the addition of the
enhancements. This is explained because when the utterance
boundaries are not correct the VTS uses part of the speech to
estimate the noise and it degradates the clean signal estimation.
The result in bold (61), when we use the LDA room localizer,
shows the best proposed result without using any oracle infor-
mation.

4.2. Computational cost and time resources

We give some qualitative information about the computational
cost as the organizers suggest. In Sec. 2.2 we claim that the
first stage of our system provides a relatively fast response in
the segmentation and room localization. In fact, when we use
a Matlab2012 implementation on a x86-64bit AMD with 1400
MHz, this first stage has an averaged real time of x1.08 (i.e., it
takes 65 seconds in processing the 60 seconds of the 40 chan-
nels). Most of the processing time of this stage is consumed
by the feature extractor for the DBN-VAD (x0.90). The algo-
rithms for DBN-VAD inference and room localization are very
fast (x0.18). Add that they only require a maximum delay of 0.5
second because of the morphological filter (Sec. 2.2). The rest
of the blocks have a real time of: x1.09, x0.05, x1.70, x0.15 for
the position estimation, beamforming, enhancement and ASR,
respectively.

5. Conclusion and future work

This paper has focused on the room localization problem and
has shown that the maximum selection approach, of the VAD
energies, produces a low F-Score. In order to improve this re-
sult, we have proposed different features on several machine
learning classifiers. We have also presented a distant speech
recognition system and shown that the different blocks, together
with the room localizers, create synergy without using any ora-
cle information. Finally, we have provided some complexity in-
formation of the system and have drawn the conclusion that the
segmentation and room localization can almost be implemented
in real time. The best WAcc performance (61%), achieved by
the LDA classifier with high-SNR-energy+coherence as input
feature, is still low to be implemented in a real system. This is
mainly due to the errors of the VAD. As future work, we plan
a further exploration of the relation between the VAD and the
room localization, using multi-microphone VAD.
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