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Abstract. This paper addresses the problem of distant speech recogni-
tion in reverberant noisy conditions employing a star-shaped microphone
array and vector Taylor series (VTS) compensation. First, a beamformer
yields an enhanced single-channel signal by applying convex (CVX) op-
timization over three spatial dimensions given the spatio-temporal posi-
tion of the target speaker as prior knowledge. Then, VTS compensation
is applied over the speech features extracted from the temporal signal ob-
tained by the beamformer. Finally, the compensated features are used for
speech recognition. Due to a lack of existing resources in German to eval-
uate the proposed enhancement framework, this paper also introduces a
new speech database. In particular, we present a medium-vocabulary
German database for microphone array made of embedded clean sig-
nals contaminated with real room impulsive responses and mixed in a
‘natural’ way with real noises. We show that the proposed enhancement
framework performs better than other related systems on the presented
database.
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1 Introduction

The distant interaction of a speaker with a dialogue system, which controls some
mechanisms of a house, is a difficult challenge because of many reasons: the wake-
up of the system (distinction between simple conversations and commands), the
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speech variations for the automatic speech recognition (ASR), and the degrada-
tion of the speech signal due to background noise, reverberation, or the speaker
position. Different projects such as CHIL, DICIT, and the currently finalized
CHIiME [1] have been proposed to solve this challenge but the Distant-speech
Interaction for Robust Home Applications (DIRHA) European project [2] (for
people with disabilities) is different from the others in the use of the microphone
array technology.

To address the above problems, we propose the enhancement framework de-
picted in Fig. 1 which is an improved version of the one presented in [12]. Also
this framework is part of the distant speech recognition systems presented in [6,
7]. This consists of a spatio-temporal localizer (ST-Localizer) which tries to find
when the user is speaking and where. Later, a novel convex (CVX)-optimization—
based beamformer (BF) attenuates the interference signals different from the
user’s direction. Finally, a vector Taylor series compensation method further in-
creases the robustness of the ASR on the still degraded signal provided by the
beamformer. In this paper, we avoid the problem of the spatio-temporal local-
ization and focuses on the beamformer and the compensation method justifying
their proposed configuration with experimental results.

This paper also introduces a new and more realistic German speech database
than presented in the previous work [12] to evaluate the proposed enhancement
framework. In particular, we present a medium-vocabulary German database for
microphone array configuration which contains embedded clean signals contam-
inated with real room impulsive responses and mixed in a ‘natural’ way [1] with
real noises.

The paper is structured as follows: sections 2 and 3 describe the CVX beam-
forming and VTS compensation methods respectively. Section 4 explains the
proposed BAS-embeded database and the ASR configuration. Section 5 presents
and analyses the experimental results, and in section 6 we summarize the most
important ideas presented along the paper together with some future works.

i g ST-Localizer

oo o (M-PoPi) ASR —
o

P \"“0 Vector Taylor
; BF ;
istar-shaped Array o Comeries o

Fig. 1. Block diagram of the proposed system for distant speech recognition which
consists of a 6-element star-shaped microphone array, a spatio-temporal localizer (ST-
Localizer) of the speaker utterance, a beamformer (BF), a vector Taylor series com-
pensation, and an automatic speech recognition (ASR) system.
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2 Convex-optimization—based Beamformer

In our experiments, we employ a novel CVX-optimization—based beamformer.
The beamformer design, first reported in [12], exhibits an improved extension
of the design mentioned in [5]. The remarkable improvements of our modified
beamformer are null-steering, the compatibility with different array geometries,
and an optimization to three spatial dimensions. The last one is a prerequisite to
enable beamforming in three spatial dimensions and to reduce the influence of
reflections from the ceiling and the floor discussed in [11]. The CVX constrains
the white noise gain to be larger than a lower limit ~. It considers the three-
dimensional undistorted capturing response with steering direction (s, 6s) and
nulls placed in different directions as constraints. The beamformer design is based
on least squares computations that approximate a desired three-dimensional
directivity pattern

N
b(w,p,0) = > wy(f)el e Oenbu)
n=1

with
(@, 0, pn,0,) = sin() sin(d,,) cos(v — vn) + cos() cos(b,,),

or, in vector notation,

where f and w represent the linear and angular frequency, ¢ and 6 are steering-
direction—dependent azimuthal and elevation angles, ¢, and 6,, are the angles
of a microphone with index n, IV is the number of microphones, ¢ is the sound
velocity, r, is the distance between a microphone and the center of the coordinate
system, and w(w) = (w;(w), wa(w), ..., wy(w))” is the beamformer coefficient
vector. Moreover, I is the identity matrix, ® denotes the Kronecker product, and
G(w) is an (Ng x [N - N,|) capturing response matrix according to Gy m n(w) =
et n(em 0en,0n) wwhere N, is the number of discretized azimuthal angles ¢,,,,
and Ny is the number of discretized elevation angles 6;. The beamformer assumes
the same desired response for all frequencies, i.e. E(w) =B, and

arg min [|G(w) - [w(w) @ 1] = B|r

subjected to the white noise gain (WNG), the undistorted capturing response
with steering direction (s, 8s), and the optional null-placement constraints

where d(w) = (di(w), d2(w), ..., dy (w))” represents the capturing response with
steering direction (s, 0s), and V = [v1,Vva, ..., vg] is a matrix which consists of
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vectors v(w) = (v1(w), va(w), ..., var—1(w))” that describe the capturing response
of, e.g., competing speakers or other noise sources, S is the number of nulls, ()7
is the transpose, (-) is the Hermitian-transpose, and || - || is the Frobenius
norm. We set the lower limit v and the desired response Bina way that we
were able to distribute the narrow null-lobe marked in Fig. 2 over frequencies
below 1000 Hz. This yields a decreased main-lobe width at lower frequencies
without increasing the width at higher ones. Although null-steering is one of the
beamformer’s big improvements, we did not consider it due to the assumption
of unknown noise source positions in our experiments.
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Fig. 2. The directivity patterns of the CVX without null-steering and the DS (delay-
and-sum, [14]) based on a 6-element star-shaped array with steering direction ¢, = 40°
and 0, = 114°.

3 Vector Taylor Series Compensation

After applying a beamformer, which yields a single-channel signal, a vector Tay-
lor series (VTS) compensation [10] is used to further enhance the signal and
the robustness of ASR. The reason of using VTS rather than other methods,
such as marginalization missing data is that it let the final representation of the
clean estimated signal be in the cepstral domain, which is a more appropriate
representation for a medium or large vocabulary task. In this paper, we apply
VTS in the log-Mel domain (i.e. the log-outputs of the Mel filters) and later we
apply the cepstrum transformation (Sec. 4.2).

Let y¢, ; and n; be the feature vectors at time ¢ for the noisy speech, clean
speech, and noise signals, respectively, expressed in this domain. Given the noisy
observation y;, VTS estimates the clean feature vector as follows,
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K
a0 =yi— Y Plkly)g (n%) 7). (1)
k=1

where fi; is the noise estimate at time ¢ and g(x, n) = log(1+exp(n —x)) is the
so-called mismatch function. To derive the above estimator, a Gaussian mixture
model (GMM) with K components is used as the prior speech model. Thus,

K

p(@) = S 7N (w5, 20, 2)
k=1

with wgﬁ), ug’;), and EEf) being the parameters of the kth Gaussian component,

i.e., its prior probability, mean vector and covariance matrix.

Finally, the noisy speech model p(y;) is required for computing the posterior
probabilities P(k|y:) in (1). To obtain this model, the clean speech GMM is
adapted as follows,

wf) =+ g () (3)
2 = a0 EQ I + (- ) By - 3, (4)

. . . . . . R k
where X' ; is the covariance matrix associated to the noise estimate 7, and Jt( )

is a diagonal matrix whose elements are given by,
1

k .
Jt( ) = diag - ®
1+ exp (nt — Ky )

()

4 Experimental Framework

4.1 Embedded-BAS Database

Due to a lack of existing resources in German to evaluate the proposed en-
hancement framework, this paper also introduces a new German database for
a star-shaped microphone array. More precisely, this array consists of 6 micro-
phones (1 at the center and 5 on the circle) placed on the ceiling of the living
room of the ITEA apartment used by Fondazione Bruno Kessler (FBK) for the
DIRHA project [2] (see Fig. 3).

Embedded noisy signals Each test multi-chanel signal of this database rep-
resents what the microphone array would record if a speaker, in the presence
of noise, repeated the action of pronouncing an isolated utterance at a specific
position in the room and later moved to another position to pronounce another
utterance. We call to this connection of utterances with continuous background
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Fig. 3. Living room of the ITEA apartment of Fondazione Bruno Kessler (FBK) with

the microphone array at the center and the 12 speaker position/directions employed in
this work [provided by FBK].
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Table 1. Word accuracies obtained by different configurations of the proposed systems
tested over the presented Embedded-BAS database for different SNR values.

l Systems HCIean[lO dB[O dB [Average‘
Baseline (central microphone) 93.24179.34 |43.69| 72.09
DS Beamforming 94.73 | 83.61 |51.73| 76.69
CVX Beamforming 95.34|83.65 [51.98| 76.99

Baseline + VTS (FLF noise ) 91.60|84.00 [53.61| 76.40
DS Beamf. + VTS (FLF noise) |/93.82|86.83|55.70| 78.78
CVX Beamf. + VTS (FLF noise ) [|93.60|87.29 |60.20| 80.36
Baseline + VTS (Oracle noise) |/92.93|91.75(79.10| 87.93
DS Beamf. + VTS (Oracle noise) |/94.67]92.42(79.04| 88.71
CVX Beamf. + VTS (Oracle noise)||95.19|93.54 (80.32| 89.68

noise and with different reverberations, which depend on the speaker position,
embedded noisy signal .

For the controllability of the experiments, the next 12 speaker position/directions,
circled in Fig. 3, are only used: (LA/O8, LB/08, etc.). To simulate the different
SNR. noisy conditions in the most possible ‘natural’ way, we follow the indica-
tions of SNR mixture of the CHiME corpus [1] by employing around 3-hours of
real noise, recorded by the FBK group with this microphone array. The way to
obtain an embedded noisy signal for a target SNR is summarized in the following
steps:

1. We randomly select 7 isolated monaural clean (without reverberation) ut-
terances of one speaker, convolve them with the corresponding impulse re-
sponses (obtained by the FBK group) of 7 random speaker position/directions
and obtain a 6-channel embedded clean-reverberant signal by connecting
them with a time gap in the middle. These gaps are randomly selected be-
tween 0.5 and 5 seconds.

2. We randomly select a segment from all available segments, of the 3-hours of
noise, which yields the target SNR within an error of 1.5 dB. The following
formula is used for the SNR:

E centra
SNR = 10logiy —<entral (4 B) (6)

Necentral

where EZcentrar and ENcentrq; are the whole energy of the central micro-
phone of the embedded clean-reverberant signal and of the noise segment
respectively. If no noise segment is found that yields the target SNR, all
channels of the embedded clean-reverberant signal are multiplied by a gain
(which depends on the closest found SNR to the target SNR) to find at least
an appropriate noise segment.

3. The final embedded noisy signal is the sum of this embedded clean-reverberant
signal with the selected noise segment. In addition, sometimes this sum
can produce a saturated signal in some of the channels. In order to avoid
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this problem we multiply all the channels of both, the embedded clean-
reverberant signal and the noise, by a second factor which avoids this prob-
lem.

Database description The proposed Embedded-BAS database exhibits a sam-
pling frequency of 16 kHz and employs the clean sentences of the Bavarian
Archive for Speech Signals (BAS) PHONDAT-1 database [13] as its isolated
monaural clean utterances (Sec. 4.1) due to their temporal similarity with house
control commands. The database consists of the training and test sets.

The training set contains 4999 clean-reverberant isolated utterances corre-
sponding to 50 different-gender speakers (around 100 sentences per speaker) with
a reverberation that corresponds to position LA/O8 of Fig. 3. The inclusion of
the reverberation in the training set is to reduce the mismatch with the test set.
The test set consists of 100 embedded clean-reverberant signals (700 isolated
utterances, Sec. 4.1) corresponding to 100 different speakers (half of them are in
the training set) contaminated at 10 and 0 dB. Both, the training and test sets
share the same medium-vocabulary lexicon and grammar and consist of 1504
words which belong to around 500 different phrases.

4.2 ASR system

Both, the front-end and the back-end, have been derived from the standard
recognizer employed in Aurora-4 database [4].

The front-end takes the enhanced signal and obtains mel frequency cepstrum
coefficients (MFCCs) using 16 kHz sampling frequency, frame shift and length of
10 and 32 ms, 1024 frequency bins, 26 Mel channels and 13 cepstral coefficients.
Then we apply cepstral mean normalization to the MFCCs. Delta and delta-delta
features are also appended, obtaining a final feature vector with 39 components.

The back-end employs a transcription of the training corpus based on 34
monophones to train triphone-HMMSs. This transcription has been derived from
a more detailed transcription (based on 44 SAMPA-monophones) by means of a
careful clustering of the less common monophones. Each triphone is modeled by
a HMM of 6 states and 8 Gaussian-mixtures/state. By means of a monophone
classification (created with the help of a linguistic) a tree-based clustering of the
states is also applied to reduce the complexity and a lack of training data. Tree-
based clustering also allows to create triphones models for the test stage which
have not been observed in the training stage. We train a bigram using the train-
ing word transcription. By means of an expansion based on the grammar, the
triphone transcription of the test lexicon and the triphones, we obtain the final
macro HMMs for the test stage. It is important to point out that only the cen-
tral microphone of the clean-reverberant training set without any enhancement
(beamforming and VTS) is used to train our HMMs-models.
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5 Experimental Results

Tab. 1 shows the different Word Accuracies (WAcc, %) achieved by different
configurations of the proposed systems tested over the presented Embedded-
BAS database for different SNR values.

The Baseline (central microphone) results are obtained when no enhance-
ment is performed over the speech signals, i.e., directly the performance of the
signal captured by the central microphone of the microphone-array. DS Beam-
forming and CVX Beamforming are the results achieved by delay-and-sum [14]
and convex-optimization beamformers (Sec. 2). As mentioned in Sec. 1 , we as-
sume that the ST-Localizer of Fig. 1 provides the oracle spatial and temporal
localization of the speaker, i. e., we cut the embedded noisy signal in pieces
which correspond to the isolated utterances, then each of these pieces together
with its spatial position are sent directly to the beamformer. Following, we can
see the results of the three previous configurations but when the VTS compen-
sation (Sec. 3) is applied with a First-Last-Frames (FLF) noise estimation. This
estimation assumes that the first and last 20 frames of the cut signal correspond
to noise and these frames are used to estimate the log-Mel noise (and its corre-
sponding covariance matrix) by means of a linear interpolation to the remaining
the frames as shown in [8].

The most significant conclusions which can be drawn from the table are the
follows:

1. Using beamformers, specially the CVX, always improves the recognition re-
sults (compare the 72.09 of the Baseline with the 76.99 % of the CVX Beam.
).

2. Considering VTS after applying beamformers additionally improves the re-
sults (compare the 76.99 of the CVX Beamf. with the 80.36 % of the CVX
Beamf. + VTS (FLF noise)).

The results with oracle noise are only displayed to show the upper performance of
this framework. We can see that we should further improve the noise estimation
at 0 dB.

Other compensation mechanisms (such as missing data (MD) imputation
based on binary mask) and types of noise estimations (such as pitch-based noise
estimations) have been employed in [9]. Due to the techniques’ sensitivities to the
MD mask and to the pitch estimation errors, the performance of these techniques
have been lower.

6 Conclusion and Future Work

This paper presented a system for distant speech recognition in reverberant and
noisy conditions, intended to control a room with commands. The proposed
system is an improved version of the system presented in [12]. The improve-
ment consists of a recently presented beamformer based on convex optimization,
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the application of a single-channel enhancement algorithm based on VTS com-
pensation and the presentation of a more realistic database for evaluations. The
database consists of embedded noisy signals which represent, with ‘natural’ noise
mixing, what the microphone array would record if the speaker was emitting
German commands at different positions of the room. This database is a very
suitable challenge for the spatio-temporal localization algorithm of the utterance
which is our next future objective. To do it we plan to make use of the pitch
information provided by the M-PoPi algorithm [3] .
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