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Abstract

This paper addresses the problem of distant speech recognition
in reverberant noise conditions applying a star-shaped micro-
phone array and missing data techniques. The performance of
the system is evaluated over a German database, which has been
contaminated with noise of an apartment of the DIRHA (Dis-
tant Speech Interaction for Robust Home Applications) project.
The proposed system is composed of three blocks. First, a
beamformer yields an enhanced single-channel signal by fil-
tering multi-channel signals and summing up all signals after-
wards. To optimize the filter weights, we apply convex (CVX)
optimization over three spatial dimensions given the spatio-
temporal position of the target speaker as prior knowledge. Sec-
ond, the beamformer output is exploited to extract pitch and es-
timate the stationary part of the background noise. Third, the
system produces a final noise estimate by combining both, the
stationary noise part as well as the harmonic noise estimate ob-
tained from the pitch. Finally, the filter-bank representation of
the enhanced signal and its corresponding missing data mask
obtained from this final noise estimate are sent to the speech
recognition back-end. The purpose of this paper is to analyze
the impact of employing a beamformer followed by a missing
data technique.

Index Terms: distant speech recognition, cvx-optimized beam-
forming, missing data imputation, star-shaped microphone ar-
ray, reverberant and noisy environment, natural mixing, Ger-
man database.

1. Introduction

The distant interaction of a speaker with a dialogue system,
which controls some mechanisms of a house, is a difficult chal-
lenge because of many reasons: the wake-up of the system
(distinction between simple conversations and commands), the
change of the user accent in the automatic speech recognition
(ASR), and the degradation of the speech signal due to back-
ground noise, reverberation, or the speaker position. Differ-
ent projects such as CHIL, DICIT, and the recently finalized
CHIiME [1] have been proposed to solve this challenge, but
the Distant-speech Interaction for Robust Home Applications
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Figure 1: Block diagram of the proposed system for distant
speech recognition, which consists of a 6-element star-shaped
microphone array, a spatio-temporal localizer (ST-Localizer) of
the speaker utterance, a beamformer (BF), a missing data (MD)
binary mask imputation, and an automatic speech recognition
(ASR) system.

(DIRHA) European project [2] (for people with disabilities) is
different from the others in the use of the microphone array
technology.

To address the problems mentioned above, we propose the
enhancement framework depicted in Fig. 1, which is an im-
proved version of the one presented in [10]. It consists of
a spatio-temporal localizer (ST-Localizer), which determines
the user’s position and speech activity. Later, a novel convex
(CVX)-optimization—based beamformer (BF) attenuates the in-
terference signals from directions different from the user’s one.
Finally, a missing data (MD) binary mask imputation method
further increases the robustness of the ASR on the still degraded
signal provided by the beamformer. In this paper, we avoid the
problem of the spatio-temporal localization and focus on the
beamformer and the compensation method justifying their pro-
posed configuration with experimental results.

This paper also introduces a new and more realistic Ger-
man speech database than presented in the previous work [10]
to evaluate the proposed enhancement framework. In particular,
we present a medium-vocabulary German database for a micro-
phone array configuration, which contains embedded clean sig-
nals contaminated with real room impulse responses and mixed
with real noises in a ‘natural” way [1].

The paper is structured as follows: sections 2 and 3 de-
scribe the CVX beamforming and MD imputation methods,
respectively. Section 4 explains the proposed BAS-embedded
database and the ASR configuration. Section 5 presents and an-
alyzes the experimental results, and in section 6 we summarize
the most important ideas presented in the paper together with
some future works.

2. Convex-optimization—based Beamformer

In our experiments, we employ a novel CVX-optimization—
based beamformer. The beamformer design, first reported in



[10], exhibits an improved extension of the design mentioned
in [6]. The remarkable improvements of our modified beam-
former are null-steering, the compatibility with different array
geometries, and an optimization to three spatial dimensions.
The last one is a prerequisite to enable beamforming in three
spatial dimensions and to reduce the influence of reflections
from the ceiling and the floor discussed in [9]. The CVX con-
strains the white noise gain to be larger than a lower limit . It
considers the three-dimensional undistorted capturing response
with steering direction (s, 6s) and nulls placed in different
directions as constraints. The beamformer design is based on
least squares computations that approximate a desired three-
dimensional directivity pattern

N
b(w,0,0) = Y wa(f)e T om0
n=1

with

1,0, ¢n,0n) = sin(0) sin(6) cos(p — pn) + cos(0) cos(0n),

or, in vector notation,
Bw) = GWw) [w(w) ®T],

where f and w represent the linear and angular frequency, ¢
and 0 are steering-direction—dependent azimuthal and elevation
angles, ¢, and 0,, are the angles of a microphone with index
n, N is the number of microphones, c is the sound velocity,
Ty, is the distance between a microphone and the center of the
coordinate system, and w(w) = (w1 (w), wa(w), ..., wn (w))”
is the beamformer coefficient vector. Moreover, I is the iden-
tity matrix, ® denotes the Kronecker product, and G(w) is
an (Ng x [N - N,]) capturing response matrix according to
Glmn(w) = eternmembienbn) where N, is the number
of discretized azimuthal angles ¢.,,, and Np is the number of
discretized elevation angles ;. The beamformer assumes the
same desired response for all frequencies, i.e. E(w) = ]§, and

arg min [G(w) - [w(w) 1] ~ Blls

subjected to the white noise gain (WNG), the undistorted cap-
turing response with steering direction (s, 6s), and the op-
tional null-placement constraints

w’ (w)d(w)|?
7|WH((W))V£((,3‘ >, w(w)dw) =1, w(w)V(w) =0,
where d(w) = (d1(w), d2(w), ..., dn (w))” represents the cap-
turing response with steering direction (¢s,0s), and V. =
[v1, V2, ..., Vs] is a matrix which consists of vectors v(w) =
(v1(w), v2(w), ..., var—1(w))” that describe the capturing re-
sponse of, e.g., competing speakers or other noise sources, S is
the number of nulls, ()7 is the transpose, (-) is the Hermitian-
transpose, and || - || 7 is the Frobenius norm. We set the lower
limit v and the desired response Bina way that we are able to
distribute the narrow null-lobe marked in Fig. 2 over frequen-
cies below 1000 Hz. This yields a decreased main-lobe width at
lower frequencies without increasing the width at higher ones.
Although null-steering is one of the beamformer’s big improve-
ments, we did not consider it due to the assumption of unknown
noise source positions in our experiments.
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Figure 2: The directivity patterns of the CVX without null-
steering and the DS (delay-and-sum, [12]) based on a 6-element
star-shaped array with steering direction ¢s = 40° and 6, =
114°.

3. Missing Data Imputation

A missing data (MD) imputation mechanism based on bi-
nary mask [3] further de-noise the noisy single-channel signal
yielded by the beamformer. After applying this technique, we
obtain the log-mel spectrogram representation (Sec. 4.2) of the
noisy signal and its corresponding MD binary mask. This mask
is obtained by means of a threshold determined by compar-
ing the noisy spectrogram with the noise spectrogram estimate.
Then, using a Gaussian mixture model (GMM) trained with
clean-reverberated speech, we replace the spectro-temporal el-
ements of the noisy spectrogram dominated by the noise with
a imputed estimation. The reason for using imputation rather
than other methods, e.g., MD marginalization, is that it keeps
the final representation of the clean estimated signal in the cep-
stral domain. This is a more appropriate representation for a
medium or large vocabulary task.

The noise estimate used in this paper is a First-Last-Frames
(FLF) noise revised by a harmonic tunnelling (Tun) noise in the
pitch frames [8]. This estimation assumes that the first and last
20 frames of the cut signal correspond to noise, and these frames
are used to estimate the log-Mel noise by means of a linear inter-
polation to the remaining frames. Taking into account that Tun
noise is a celling estimate of the noise [8], we replace the FLF
noise by the Tun where FLF is higher than Tun. We employ the
pitch extractor described in [7] and a MD binary mask threshold
of -3dB (computed empirically from a small development set).

4. Experimental Framework
4.1. Embedded-BAS Database

Due to a lack of suitable resources in German to evaluate the
proposed enhancement framework, this paper also introduces a
new German database for a star-shaped microphone array. More
precisely, this array consists of 6 microphones (1 at the center
and 5 on the circle) placed on the ceiling of the living room of
the ITEA apartment used by Fondazione Bruno Kessler (FBK)
for the DIRHA project [2] (see Fig. 3).

4.1.1. Embedded noisy signals

Each multi-channel test signal of this database represents what
the microphone array would record: a speaker, in the presence
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Figure 3: Living room of the ITEA apartment of Fondazione
Bruno Kessler (FBK) with the microphone array at the center
and the 12 speaker position/directions employed in this work
[provided by FBK].

of noise, repeats the action of pronouncing an isolated utterance
at a specific position in the room and later moved to another
position to pronounce another utterance. We call this connec-
tion of utterances with continuous background noise and with
different reverberations, which depend on the speaker position,
embedded noisy signal.

For the controllability of the experiments, 12 speaker
positions/directions—they are marked with a circle in Fig. 3—
are used: LA/O8, LC/O6, LE/OS8, LI/O2, LO/O2, LQ/O4,
LB/O8, LD/O6, LH/O6, LN/O4, LP/O2 and LR/O4. To sim-
ulate the different SNR noisy conditions in the most possible
‘natural” way, we follow the indications of SNR mixture of the
CHiIiME corpus [1] by employing around 3-hours of real noise,
recorded by the FBK group with this microphone array. The
way to obtain an embedded noisy signal for a target SNR is
summarized in the following steps:

1. We randomly select 7 isolated monaural clean (without
reverberation) utterances of one speaker, convolve them
with the corresponding impulse responses (obtained by
the FBK group) of 7 random speaker positions/directions
and obtain a 6-channel embedded clean-reverberant sig-
nal by connecting them with a time gap in the middle.
These gaps are randomly selected between 0.5 and 5 sec-
onds.

2. We randomly select a segment from all available seg-
ments of the 3-hours of noise, which yields the target
SNR within an error of 1.5 dB. The following formula is
used for the SNR:

Emcentv‘al
SNR =10l ——  (dB 1
o910 Encentv‘al ( ) ( )

where EZcentral and Encentrqi represent the whole en-
ergy of the central microphone of the embedded clean-

reverberant signal and of the noise segment, respectively.
If no noise segment is found that yields the target SNR,
all channels of the embedded clean-reverberant signal
are multiplied by a gain (which depends on the closest
found SNR to the target SNR) to find at least an appro-
priate noise segment.

3. The final embedded noisy signal is the sum of this em-
bedded clean-reverberant signal with the selected noise
segment. In addition, sometimes this sum can produce
a saturated signal in some of the channels. In order to
avoid this problem we multiply all the channels of both,
the embedded clean-reverberant signal and the noise, by
a second factor, which avoids this problem.

4.1.2. Database description

The proposed Embedded-BAS database exhibits a sampling fre-
quency of 16 kHz and employs the clean sentences of the Bavar-
ian Archive for Speech Signals (BAS) PHONDAT-1 database
[11]. The database consists of the training and test sets. The
training set contains 4999 clean-reverberant isolated utterances
corresponding to 50 different-gender speakers (around 100 sen-
tences per speaker) with a reverberation that corresponds to po-
sition LA/OS indicated in Fig. 3. The inclusion of the rever-
beration in the training set reduces the mismatch with the test
set. The test set consists of 100 embedded clean-reverberant
signals (700 isolated utterances, Sec. 4.1.1) corresponding to
100 different speakers (half of them are in the training set) con-
taminated at 10 and O dB. Both, the training and test sets, share
the same medium-vocabulary lexicon and grammar and consist
of 1504 words, which belong to around 500 different phrases.

4.2. ASR system

Both, the front-end and the back-end, have been derived from
the standard recognizer employed in Aurora-4 database [5].

The front-end takes the enhanced signal and obtains mel
frequency cepstrum coefficients (MFCCs) using 16 kHz sam-
pling frequency, frame shift and length of 10 and 32 ms, 1024
frequency bins, 26 Mel channels and 13 cepstral coefficients.
Then we apply cepstral mean normalization to the MFCCs.
Delta and delta-delta features are also appended, obtaining a
final feature vector with 39 components.

The back-end employs a transcription of the training cor-
pus based on 34 monophones to train triphone-HMMs. This
transcription has been derived from a more detailed transcrip-
tion (based on 44 SAMPA-monophones) by means of a careful
clustering of the less common monophones. Each triphone is
modeled by a HMM of 6 states and 8 Gaussian-mixtures/state.
By means of a monophone classification (created with the help
of a linguistic) a tree-based clustering of the states is also ap-
plied to reduce the complexity and a lack of training data. Tree-
based clustering also allows to create triphones models for the
test stage that have not been observed in the training stage. We
train a bigram using the training word transcription. By means
of an expansion based on the grammar, the triphone transcrip-
tion of the test lexicon and the triphones, we obtain the final
macro HMMs for the test stage. It is important to point out that
only the central microphone of the clean-reverberant training
set without any enhancement (beamforming and imputation) is
used to train our HMMs-models and the imputation GMM (Sec.
3).



Table 1: Word accuracies obtained by different configurations of the proposed systems tested over the presented Embedded-BAS

database for different SNR values.

Systems [[ Clean | T0dB | 0dB | Average (clean pitch) ]
Baseline (central microphone) 93.24 | 79.34 | 43.69 72.09
DS Beamforming 9473 | 83.61 | 51.73 76.69
CVX Beamforming 95.34 | 83.65 | 51.98 76.99
Baseline + Imputation (FLF+Tun noise) 91.75 | 80.46 | 40.84 71.02 (74.31)
DS Beamf. + Imputation (FLF+Tun noise) 93.79 | 84.19 | 48.21 75.40 (77.72)
CVX Beamf. + Imputation (FLF+Tun noise) || 94.00 | 85.15 | 49.94 76.36 (78.69)
Baseline + Imputation (oracle mask) 93.24 | 93.06 | 77.92 88.07
DS Beamf. + Imputation (oracle mask) 9473 | 94.67 | 81.58 90.33
CVX Beamf. + Imputation (oracle mask) 95.34 | 95.06 | 82.92 91.10

5. Experimental Results

Tab. 1 shows the different Word Accuracies (WAcc, %)
achieved by different configurations of the proposed systems
tested over the presented Embedded-BAS database for different
SNR values.

The Baseline (central microphone) results are obtained
by considering no enhancement and by using the center-
microphone channel as our monaural signal channel. DS
Beamforming and CVX Beamforming are the results achieved
by delay-and-sum [12] and convex-optimization beamformers
(Sec. 2). As mentioned in Sec. 1, we assume that the ST-
Localizer of Fig. 1 provides the oracle spatial and temporal lo-
calization of the speaker, i. e., we cut the embedded noisy signal
in pieces which correspond to the isolated utterances, then each
of these pieces together with its spatial position are sent directly
to the beamformer. In the remaining part of this section, we can
see the results of the three previous configurations considering
imputation (Sec. 3) with FLF+Tun noise (Sec. 3).

The most significant conclusions which can be drawn from
the table are the follows:

1. Using beamformers, especially the CVX, always im-
proves the recognition results (compare the 72.09 of the
Baseline with the 76.99 % of the CVX Beamforming).

2. Considering imputation after applying beamformers
does not improve the results (compare the 76.99 of the
CVX Beamforming with the 76.36 % of the CVX Beamy.
+ Imputation (FLF+Tun noise)).

The imputation technique is sensitive to MD mask errors, which
is the reason for the lack of improvement. These errors are due
to a bad estimation of the pitch, which produces an erroneous
tunnelling noise and, as a result, mask errors. The parenthe-
sized results with clean pitch show that, with a better pitch esti-
mation, the addition of the imputation to the beamforming can
be useful. Compare the 74.31 of Baseline + Imputation with
the 78.69 of CVX Beamf. + Imputation. The results with oracle
MD mask are only displayed to show the upper performance of
this framework. We can see that we should further improve the
noise estimation at 0 dB.

6. Conclusion and Future Work

This paper presented a system for distant speech recognition in
reverberant and noisy conditions, intended to control a room
with commands. The proposed system is an improved version
of the system presented in [10]. The improvement consists of
a recently presented beamformer based on convex optimiza-
tion, the application of a single-channel enhancement algorithm
based on MD imputation with FLF+Tun noise estimate, and the

presentation of a more realistic database for evaluations. The
database consists of embedded noisy signals, which represent,
with ‘natural’ noise mixing, what the microphone array would
record if the speaker emits German commands at different po-
sitions of the room. This database is a very suitable challenge
for the spatio-temporal localization algorithm of the utterance
which is our next future objective. To do it we plan to make use
of the pitch information provided by the M-PoPi algorithm [4].
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