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Abstract. This paper proposes a robust pitch extractor with applica-
tion in Automatic Speech Recognition and based on selecting pitch lines
of a tonegram (a representation of the different pitch energies at each
frame time). First, the tonegram and its maximum energy regions are ex-
tracted and a Dynamic Time Warping algorithm finds the most energetic
trajectories or pitch lines from these regions. A second stage estimates
the tonegram of the most energetic lines by applying Computational Au-
ditory Scene Analysis rules which reject and group octave-related lines.
The mean pitch of the speaker is estimated and the final pitch is es-
timated by rejecting lines which are outside from the mean pitch. The
proposed pitch extractor is evaluated in a novel way - by means of the
word accuracy of a Missing Data recognizer on Aurora-2 database.

Keywords: pitch extractor, pitch line, CASA, DTW, noise, robust speech
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1 Introduction

Acoustic noise represents one of the major challenges for Automatic Speech
Recognition (ASR) systems. Many different approaches have been proposed to
deal with this problem [10, 1, 3] but if we consider voiced speech (i.e. not whis-
pering speech) and the manner in which the auditory system works, pitch in-
formation can be a very useful cue to separate noise from speech and to obtain
high performance in ASR [5,7, 8].

One of the main challenges for pitch-based ASR techniques is that they need a
robust pitch extractor. We can distinguish two stages in pitch extractors: a frame
stage that obtains the pitch (or pitches) at each frame, and a post-processing
stage which produces a final pitch decision. The result of the first stage is a repre-
sentation indicating at each instant time, the energy or probability of observing
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the different pitch values. We will call tonegram to this representation and dif-
ferent tools such as difference-function [2], comb-filter [4] or auto-correlogram
[5] can be employed to obtain it. The post-processing stage tries to estimate the
final pitch by employing this tonegram and rules which help to distinguish the
target pitch from possible noise pitches. The continuity and smoothness of pitch
lines is the most common rule for speech signals as it is shown by the Hidden
Markov Models (HMMs) or mode filters which many of the pitch extractors have
[5,8]. In addition, Computational Auditory Scene Analysis (CASA) rules, such
as common limits (onset/offset) or even high level information [5], have been
applied in order to group spectro-temporal pixels of the spectrogram and to
obtain, as a result, a final pitch decision.

The goal of the paper is to show how the pitch lines can be extracted from
a tonegram by means of a Dynamic Time Warping (DTW) approach, and how
a final pitch decision can be obtained by means of a post-processing, inspired
on CASA rules, of these lines. The advantage of working with pitch lines is that
it let us associate to the lines different features (such as intensity, mean-pitch,
space-localization, etc.) and later select the lines which fullfill the features of
target speaker.

The structure of the paper is as follows. First, a block diagram gives an
overview of the pitch extractor. Sec. 3 explains the proposed pitch extractor
in greater detail. Sec. 4 presents the experimental framework and the Aurora-2
results by using a pitch-based Missing Data (MD) technique for ASR. The paper
concludes with a summary and a discussion of future work.

2 System overview

The pitch extractor (Fig. 1) has a noisy signal of an utterance (the sum of
clean speech and noise, y = x 4+ n) as input. This signal is segmented and the
autocorrelation of each frame is obtained to produce a tonegram. High energy
regions of the tonegram are identified and their maximum energetic trajectories,
obtained by means of a DTW approach, result in many pitch lines. We select a
set of Maximum Energy Lines (M.E.L.) and their octave factors regarding their
fundamental lines are estimated by using CASA rules. We relocate these lines
at its fundamental period position, and estimate the tonegram which should be
observed if only M.E.L. were presented with the addition of the corresponding
octaves. We estimate the mean pitch of the speaker by means of this tonegram
estimate and the final pitch py is obtained by discarding and selecting those lines
which must correspond to the target speaker.

3 Pitch extractor

The most important blocks and functions of the proposed extractor are detailed
below. Note that the parameters of the blocks were determined through pre-
liminary experiments performed over a set of training sentences of Aurora-2
contaminated with noise.
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Fig. 1. Block diagram of the proposed pitch extractor.

3.1 Tonegram

In order to estimate the tonegram, the unbiased autocorrelation is employed
due to the following properties: fast computation (by means of Fast Fourier
transform), concentration of noise at first coefficients (if it is not correlated [8]),
capacity of representing the pitch energy, and capacity to define regions when a
tone is presented. The power tonegram at pitch value p and frame time ¢ is:

FL-1

TGponprt) = F— > wliln(i =) 1)

i=p

where y; (¢ = 0,.., FL — 1) is the noisy signal in frame ¢ (length F'L = 256,
sampling frequency 8k H z). The frame shift is F'S = 80 samples and p € [pl, ph],
where pl = 10 and ph = 160 samples define the range of human pitch. The
power tonegram is passed through a square root function and normalized to
[0,1] in order to obtain the final tonegram (T'G(p,t)), which is a more suitable
representation of pitch magnitude energy. Fig. 2 shows a tonegram from an
Aurora-2 utterance.

3.2 High energy regions

The mean and the standard deviation of each temporal frame of the tonegram
(TG(t)) increase when a tone is presented, so we can estimate the instantaneous
energy of the tonegram as follows:

Erc(t) = prae) + ora() (2)
where prg ) and opg () denote the mean and the standard deviation of a tone-
gram vector at time ¢. The instantaneous background energy Ebrq(t) is obtained
by passing Er¢(t) through a smoothing mean filter of length W L/5 samples (di-
ameter 2 x WL/5+ 1) followed by a minimum filter of length W L/2 samples.
WL is 30 frames and refers to the expected mean Word Length. A tonegram
pixel is classified with a boolean high energy indicator if TG(p,t) > Ebpg(t).
The high energy regions consist of connected high energy pixels. Regions with
an area lower than 2 x W L/5 pixels are deleted. Fig. 2 shows the resulting high
energy regions. In the following, the I** region will be denoted as T'G(p,t).
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Fig. 2. Tonegram T'G(p,t) and its corresponding high energy regions with the DTW
lines, tonegram estimate of Maximum Energy Lines (M.E.L) and pitch estimate for the
FCJ_1396Z33A Aurora-2 utterance contaminated with babble noise at 0 dB.

3.3 Estimation of pitch lines based on DTW

Due to errors when estimating Ebpg, high energy regions can contain more than
only one pitch line or even two or more crossed lines. An approach based on the
maximum at each time in order to estimate the strongest energy line, can result
in a discontinuous trajectory in these situations. Because of this, an approach
based on searching for the path with maximum energy can be more suitable.

In other words, we can estimate a pitch trajectory through a region T'G'(p, t)
as the path that maximizes the global accumulated energy along axis t. For the
sake of simplicity, in this section ¢ will be a relative index (¢t = 1,..,length!)
where length! is the number of frames covered by the region. In order to find
this path, we employ a method based on Dynamic Programming. The employed
algorithm is quite similar to the well-known standard DTW technique [11], but
introducing certain restrictions that we have found appropriate for pitch trajec-
tory estimation.

Standard DTW is a pattern matching technique that has been used for
decades in speech recognition, as well as in other areas, such as feature align-
ment in music [12]. Briefly, given a matrix TG'(p,t), DTW finds the warping
path through the grid (p,¢) that represents the “best” mapping between the



two axes according to TG'(p,t). This path is represented by a pair of warping
vectors, p' and t!, which give the coordinates of the path at every step i, that is,
pl=1[p,ph, ..., 0l ph] and ¢! = [#,¢L, ... tL ... #}], where I is the number
of steps in the path. In order to find the best path among all possible combina-
tions, DTW minimizes the accumulated cost over the entire path. In our case,
where TG'(p,t) represents energy (not cost), the optimal warping path can be
defined as the one that maximizes the quantity Zf:l TG (pé, té), which measures
the accumulated energy along the path.

In order to obtain a path that represents a meaningful pitch trajectory, some
constraints must be imposed on the warping vectors. Firstly, the path must pro-
vide only a single pitch value for every frame, and secondly, the pitch trajectory
must be smooth and continuous in frequency (and therefore, large hops in p’
should not be allowed). To satisfy both requirements, we impose the following
local continuity constraints:

t' =[1,2,...,length] (3)
pl = [p%U e ’péength’] S't'7 |pé+1 _p“ S h (4)

Clearly, the first constraint implies that each time frame will have only a single
pitch, while the second one avoids pitch hops larger than h (in our experiments,
we set h = 3 samples).

Taking into account these constraints, the DTW algorithm for finding the
optimal trajectory through a region TG!(p,t) with size P! x length! can be
summarized in two steps:

1. Recursion: For 1 <p<Pland2<t< lengthl7 compute
D(p,t) = max[D(p',t — 1) + TG'(p,1)], (5)
p/
whith initialization D(p,1) = TG!(p,1). Here, D(p,t) can be interpreted as
the maximum partial accumulated energy that can be obtained among all
possible paths reaching the point (p,t). Observe that the maximization in
(5) is performed only over the values p’ from which (p,t) can be reached in

a single step, in accordance with the constraint in (4). The best predecessor
for each (p,t) is stored in &, i.e.,

§(p,1) = argmax[D(p', ¢ — 1) + TG (p,t)]. (6)

2. Termination and Backtracking: Finally, the optimal trajectory p' is the path
with higher global accumulated energy up to the end frame, yielding:

pfengthl = arg m}?’X D(p, lengthl)7 (7)
and the complete path is retrieved backwards as follows:
ph= €y t+1), for1<t<length' —1. 8)

Fig. 2 shows the resulting DTW lines corresponding to each T'G!(p,t) region.



3.4 Line features

Once the pitch lines have been extracted we must store the following data vectors
of length length! for every line associated to the region T'G!(p,t): t!, p!, E!
vectors with the time, pitch positions and instantaneous energy. We will also
note E! ..., the mean line energy, and ¢, ., t. .~ pl —pl . the corresponding
maxima and minima.

3.5 Selection of Maximum Energy Lines (M.E.L.)

A vector with the line labels, corresponding to maximum mean energy (E! ....)
at each time, is obtained and passed through a mode filter of length W L/10.
This filter avoids including lines which are maximum for a very short time and
its length is related to the temporal masking effect. The different filtered labels
indicate the M.E.L. set. In the case of an energy tie, the line with lower pitch is
selected because we are looking for the lines corresponding to the fundamental

period. This situation will be addressed in Sec. 3.8.

3.6 Octave estimation

Any line corresponding to a fundamental pitch period should appear repeated at
integer multiples, or horizontally in the tonegram. This can cause octave error
when selecting M.E.L.s. The integer relation between the pitch of a maximum
selected line Im and its fundamental line im0 will be called the octave of Im
(o'™ = p!'™/p!™Y) and is estimated by a grouping-line approach inspired on
CASA [5] in these four steps:

tlh

1. Find horizontal lines close to Im: lines [h which fulfill this condition (¢, >

thm & th < #lm Y are selected.

min min max

2. Measure common movement, limit and intensity between Im and the hori-
zontal lines [h as follows:

O(plm _plh fir
clTZOU =1- ® 11:()) /1) (9)
lh 1 — |tmn B tZszn| + |t£771n¢lzx B tirhiaac| (10)
“lim = lengtht™
|Elh _ Elm|
Céﬁt =1- —pgim (11)

where p'™ and p'* indicate the common pitch part between Im and lh, and
fih = Hptr /ptmy is the horizontal factor. Note that the maximum value for
the common measures is always 1.

3. Select octave-related lines: the lines with common movement, limit and inten-
sity bigger than Th, = (0.9,0.9,0.9) are the octave-related lines lo to Im. In
case of not grouping lines, we try these other thresholds Th, = (0.7,0.9,0.9)
and Th, = (0.9,0.7,0.9).



4. Estimate the octave of maximum line: If horizontal lines have not been se-
lected, octave estimate is 6/ = 1. If horizontal lines have been selected but
not octave-related, 6" = —1. In other case, we estimate the octave consid-
ering that the f'* of an octave-related line has to be an integer multiple of
1/0'™. For example, assuming o™ = 2 the observed vector of octave lines
should ideally be f'° = 0.5,1,1.5,... Taking this into account, the octave
estimate is that which minimizes the distance between the observed and the
ideal factor vector of an octave (6'™ = argmin, (dist(f!°, fidee!))). This dis-
tance is obtained by means of a clustering procedure and increases when
the clustering error and the amount of not matched centroids (elements of
fgdeal) increases. The maximum possible tried octave is always 0,4, = 6.

3.7 Tonegram estimation of M.E.L.

The tonegram of M.E.L. is estimated as follows: we fill an empty tonegram with
the original M.E.L. of Sec. 3.5 but relocated to their correct new position using

the octave estimate (p47,, = p4: /6'™) and with the same original instantaneous

energy. Also, the corresponding octave lines are put at integer multiples of pﬁl“gw

and with the same energy. The lines with 6'™ = —1 are not moved but some
possible octave lines are put at integer multiples and divisions of pfjﬁig and with
the corresponding energy of the original tonegram. We do so because the octave
is unknown. The maximum integer number, for adding octaves, is always limited
tO Omag in order to avoid the inclusion of too many lines. The features of this
new tonegram are extracted and loaded in a structure as in Sec. 3.4. Fig. 2 shows

this tonegram estimate.

3.8 Mean pitch estimation of the speaker

We select again the M.E.L. from the previous estimated tonegram in a similar
way to Sec. 3.5 and a tonegram with these new M.E.L. is constructed. This
tonegram will be denoted as T'G e, and can be considered as a representation
of the perceived tones at each time if we are focusing our attention on maximum
energy tones presented in the auditory scene. The total perceived energy of each
tone (Eperc(p)) is obtained by summing neighboring channels separated one tone
as follows:

nf [px9/8]
Eperc(p) = Z Z TGpeTC(p7 t) (12)
1=1 p=[pr8/9]

where nf is the number of frames and [| the round operator. Considering that,
even at low SNRs, the majority of maximum tones correspond to the target
speaker, we can say that the maximum of Ep... corresponds to the speaker
mean pitch (Pmean)-



3.9 Final pitch selection

If we suppose that the speaker pitch lines are concentrated around an interval
of pmean We can discard many lines from the M.E.L. tonegram of Sec. 3.7, so
the [ lines which do not fulfill this condition (pl,,, > (2/3)Pmean & Phyin <
(3/2)Pmean) are deleted. In a similar way to Sec. 3.5, we select the M.E.L. of this
deleted-tonegram and the corresponding pitches at each time of the line with
maximum total energy conform our previous pitch estimate.

The previous unvoiced frames are those where pitch has not been detected.
In the case that unvoiced frames are not detected, we suppose unvoiced the first
and last 10 frames. In a similar way to Sec. 3.2 we obtain HES, and OB (the
mean and the standard deviation of the instantaneous energy Er¢g of unvoiced
frames) in order to obtain an unvoiced background threshold. The instantaneous
energy of the voiced frames (E?) is smoothed with a mean filter of length W L/10
samples and the frames with EV < pEy, + 5 * OBy, are labeled as unvoiced.
Finally, the value of the previous pitch is made null at unvoiced frames and this
is our final pitch estimate py. Fig. 2 also compares this pitch extraction with the
clean pitch (extracted from the corresponding clean utterance).

4 Experimental framework and results

4.1 Experimental framework

The experiments reported here employ the Aurora-2 database which consists of
digit utterances contaminated by different types of noises at different SNRs [9].
The evaluation of the pitch estimate will be done in a novel and useful way
- by means of a pitch-based technique [6] for robust ASR. This technique has
been presented in [7] and combines two complementary noises [a Voice Activity
Detection noise (suitable for silence frames) and a tunnelling noise (suitable for
voiced frames)| to estimate the noise spectrogram. This noise produces a soft
Missing Data (MD) mask which is passed, together with the noisy spectrogram,
to a marginalization MD recognizer. For the sake of simplicity, here, we will
obtain a hard mask [3](instead of soft) which only requires the optimization of
the threshold (and not also of the slope) to decide wether a feature is reliable
or not. Clean train is always done and the HMM model features of the MD
recognizer are the standards of Aurora-2 when the spectrogram is employed (9
Gauss/state, 23-LogMel-static+23-LogMel-delta feature vector, etc.. [7]).

4.2 Experimental results

Tab. 1 shows the different word accuracies achieved by different systems tested
over the whole (set A, B and C) Aurora-2 database.

FE+CMN is the ETSI Front End (FE) with Cepstral Mean Normalization
and acts on a classical cepstral recognizer [9]. The rest of the systems act on the
MD recognizer explained above with different pitch extractors. PEFAC employs
the pitch extractor proposed in [4] but, in order to improve its results, we apply
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Table 1. Word accuracies obtained by different systems tested with Aurora-2 (set A,
B and C) for different SNR values.

Systems [Clean[20 dB[15 dB[10 dB[5 dB[0 dB[-5 dB[[Mean (20-0 dB)]
FE+CMN 99.12]97.17]92.53] 76.15 [44.16]23.02[ 13.00 66.61
PEFAC pitch 98.6793.56 | 84.69]69.29 |55.23]37.30|18.31 68.01
Yin pitch 98.8994.93[89.32[80.07 |66.47|39.56|14.36 74.07
DTW-lines pitch (proposal)[[98.20]95.07[90.1480.93 [66.15]39.06|14.90 74.27

the following post-processing: frames with voiced probability lower than 0.8 are
selected as unvoiced. This decision is later passed though a mode filter of length 1
frame. Finally, we make null the pitch at unvoiced frames. Yin uses the extractor
described in [2]. Frames with a normalized energy threshold lower than 0.8 and
gross aperiodicity bigger than 0.95 are considered unvoiced. DT W-Lines employs
the proposed pitch extractor. The optimum threshold of the masks was —3dB
in all cases, except for the PEFAC approach (0dB).

We can see that our pitch extractor outperforms all the extractors on average.
In clean conditions, our pitch extractor does not obtain as good results as the
others probably because the background energy thresholds of Sec. 3.2 and 3.9
avoid the detection of some weak regions and pitch values respectively.

5 Conclusions

This paper has proposed a pitch extractor for ASR based on the assumption
that the most energetic pitch lines of the tonegram, around a speaker mean pitch
estimate, correspond to the speaker pitch. The pitch lines have been extracted
with a DTW approach and CASA rules have been employed to group and reject
lines. The proposal has been evaluated on a robust ASR system showing high
performance. Regarding future work, the results at clean and noisy conditions
could be improved by means of a better estimation of the background energy
threshold and a better application of CASA rules in the selection of the target
speaker lines. Also we would like to test this scheme on another more robust
tonegram (such as the difference function [2]), and on the two-talker recognition
problem [5] by using the line features (such as the intensity, mean-pitch or even
space-localization) together with high level information (provided by Speech
Fragment Decoding [1, 5]) in order to separate the pitch lines of the two speakers.
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