
Summary of the Thesis: Pitch-based

Techniques for Robust Speech

Recognition

Juan Andrés Morales Cordovilla
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Abstract

This Thesis proposes and carries out a study of different techniques which,

in some way, use the pitch (which will be understood as the fundamental

frequency of speech) in order to carry out robust ASR (Automatic Speech

Recognition) under noise conditions. The Thesis is not concerned with pitch

extraction itself, but with the best way of using pitch for robust speech recog-

nition.

We will also carry out a study of the related bibliography and the state of art

regarding these pitch-based techniques for robust ASR. Then, we will propose

three pitch-based techniques which will be compared to other similar ones.

Our three proposals are: application of asymmetric windows to the noisy signal

autocorrelation which tries to provide a spectrum less sensitive to noise, two

estimators, named as averaging and sifting estimators, of the autocorrelation

of the clean quasi-periodic signal, and a noise estimation technique which

can deal with non stationary noise by employing pitch information and which

is used to estimate the reliability masks required by a marginalization MD

(Missing Data) recognizer.

Additionally, we will discuss the performance limits of the pitch-based tech-

niques for robust ASR which employ minimal assumptions about the noise.

In order to do so, we will identify the basic robust mechanisms employed by

these techniques for recognizing voiced frames, the optimum mechanisms will

be identified (by means of some equivalences), and the corresponding limit re-

sults will be experimentally obtained by applying MD oracle masks and ideal

pitch. One of our conclusions is that our noise estimation technique for MD

recognition is close to the limits of the pitch-based techniques for robust ASR,

although it would require additional information in order to achieve the per-

formance with MD oracle masks. Finally, we will comment some possibilities

(some of them related to speech without pitch) for future research from the

ideas developed in this Thesis.
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Caṕıtulo 1

Summary of the Thesis: Pitch-based

Techniques for Robust Speech

Recognition

1.1. Introduction

1.1.1. Motivations

Importance of pitch in robust speech recognition

Acoustic noise represents one of the major challenges for ASR (Automatic Speech Recog-

nition) systems. Many different approaches have been proposed to deal with this problem

in monaural signal [38, 22, 48] and many of them try to employ some kind of noise infor-

mation to do robust ASR. However, when one wants to deal with all kind of noises it is

clear that the most important information to separate noise from speech is just speech in-

formation. There exits many cues and informations which help to distinguish speech from

noise but at the end the correct choice will depend on what is defined as speech. Speech

can be emitted in many different ways which mainly depend on the considered type of the

((main source)). These ways can be whispering, vocal harmony speech (in music), etc.. In

this Thesis it will be considered that speech is emitted in its normal way, with vibration

of the vocal folds and with only one pitch at each time instant.

Continuing with the search for the most important cues, this Thesis will particularly

consider the signal pitch due to the three following reasons:

1



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

1. Many psychoacoustics experiments, such as those shown in [12, 48], reach the con-

clusion that very often humans use pitch to separate speech from noise.

2. Pitch is a useful information to distinguish different types of speech segments (voi-

ced, unvoiced and silence) and to separate speech and noise signals.

3. Many robust ASR techniques inspired in human recognition, as shown in [48], use

pitch.

Robust techniques based on pitch

The comparison of the different ASR techniques based on pitch is not an easy matter

because of several reasons:

1. Each author uses a different pitch extractor to evaluate his technique.

2. It is not clear which is the real cause for obtaining different results: different methods

applied to voiced and unvoiced sounds, application of additional techniques (such

as cepstral normalization, missing data approaches,...), etc.

3. Sometimes it is not clear whether an author is proposing either a new technique for

robust ASR based on pitch or a new robust pitch extractor (or both at the same

time).

Because of these reasons, we consider it necessary to do a fair comparison of these pitch-

based techniques, trying to show the equivalences between some of them and trying to

see the limits of pitch-based recognition. Apart from this, we will propose three new

pitch-based techniques but without paying attention to the pitch extractor because this

is beyond the scope of this Thesis.

1.1.2. Objectives

Taking into account the previous motivations, the main objectives of the Thesis can be

summarized as follows:

1. Recognition of monaural speech which is emitted in its normal way (i.e. with pitch)

and contaminated with acoustic noise.

2. Development of a comparative study of both classical and pitch-based techniques

for robust speech recognition considered as the state of the art.

2



1.2 Principles of Automatic Speech Recognition

3. Development and improvement of robust ASR techniques based on pitch, trying

to do minimal assumptions about the noise. In order to do so, we will employ

other techniques and recognition schemes such as SS (Spectral Subtraction) or MD

(Missing Data).

4. We will show the equivalences between some of the different techniques, doing a fair

comparison and trying to answer the question of to what extent recognition can be

made more robust by means of the pitch.

1.2. Principles of Automatic Speech Recognition

The first chapters are devoted to explaining some important concepts which will be used

throughout the Thesis. These concepts refer to: speech, hearing, signal processing, acous-

tic representations (cochleagram, spectrogram and cepstrogram) and their masks, pitch

extractors, and MD (Missing Data) recognizer based on HMM (Hidden Markov Models).

The most important issues described in these chapters are:

The ((main source model)) of speech which considers that speech is a main sour-

ce which is intensity and spectrally modulated and sometimes replaced by short

duration noises (unvoiced sounds). The main source can be a noise in the case of

whispered speech, but in a normal situation speech will be identified with a voiced

sound and, if pitch is known, the rest of the elements of the speech can be also

located (unvoiced sounds and silences) as well. This model is a simplified definition

of speech which will be considered to develop a VAD.

The soft mask of a given time-frequency signal representation (i.e. spectrogram or

cochleagram) can be estimated through local SNR estimates or through harmonicity

(in the case of voiced frame with pitch p(t)) by means of a sigmoid function. The

local SNR and the harmonicity can be estimated by means of a noise estimate

MN̂(f, t) and a correlogram Ay(f, t, p(t)) as follows:

SNR(f, t) = 20log10
MY (f, t)−MN̂(f, t)

MN̂(f, t)
(1.1)

H(f, t) = Ay(f, t, p(t))/Ay(f, t, 0) (1.2)

3



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.1: ([38] adapted) A possible classification of different conventional robust ASR
techniques.

1.3. Conventional and pitch-based robust techniques

1.3.1. Conventional robust techniques

Conventional robust ASR techniques can be outlined with the scheme of Fig. 1.1 as follows:

Preprocessing: the noisy signal is cleaned or modified in temporal domain. We can

mention offset and pre-emphasis in the ETSI front end [47], windows such as Hamming,

SWP [29] and the variants of enhanced Wiener filter (such as in AFE [45]).

Parametrization: when a suitable acoustic representation is chosen that is robust to

the speech and noise variabilities.

Compensation: the noisy features are modified to obtain an estimate of clean ones.

We can mention MMSE techniques such as SPLICE [14] and VQ-MMSE Compensation

[19], and the variants of SS (Spectral Subtraction) to avoid musical noise [16, 6, 24].

Normalization: when both clean and noisy representations are transformed so that

the resulting features are less sensitive to noise. We can mention HEQ [13], CMN (Cepstral

Mean Normalization) [35] and CTN [44].

Model adaptation: when clean models are modified to reduce the mismatch between

training and testing conditions. We can mention PMC [18] and MLLR [26] .

Reliability processing: when the reliability of the noisy features is considered for

recognition. We can mention WVA [7], Soft-Data [38], Multistream Recognition [8], MD

(Missing Data) [11] and SFD [2].

4



1.3 Conventional and pitch-based robust techniques

When comparing these conventional techniques, the following conclusion can be made:

Only MD technique (and its extension SFD) tends to imitate human hearing. MD does

not need (for example, compared to SS) to estimate perfectly the clean or noise signals. It

only needs to know the reliability mask, i. e. where speech dominates noise in the acoustic

representation and vice versa. However, this technique has the default of transferring the

problem to the mask estimator.

1.3.2. Robust pitch-based techniques

A bibliographic study of the pitch-based robust techniques, leads us to make the next

classification:

Exploitation of harmonic structure based techniques: They do not use a pitch

directly, but only some properties which derive from periodicity. We can especially men-

tion HASE (High-lag Autocorrelation Spectrum Estimation) [43] which multiplies the

high coefficients of the noisy OSA (One Side Autocorrelation) by a DDR (Double Dy-

namic Range) window to estimate the clean spectrum. The first 15 coefficients of the

OSA are rejected because they are expected to be very contaminated by white-like noise

(not correlated noise). It is also exploited the fact that in a voiced frame, spectral enve-

lope information (short-term information) is preserved at high lags because of periodic

repetitions. HASE is suitable for voiced sounds and silences, but it produces a loss of

information for unvoiced frames. In order to avoid any possible mismatches, HASE is

applied in both training and test. Some of our proposed techniques employ many of the

HASE ideas. Another technique which exploits harmonic structure is HF [39].

Clean estimation techniques: They employ pitch extraction either to clean the

signal (by means of some kind of comb filtering) or to estimate noise (with a tunnelling

comb filtering) and compensate the noisy signal. As an example of the first case, WHNM

([42]) can be mentioned. An example of the second case is HT (Harmonic Tunnelling)

[15]. This technique first finds the most energetic peaks of the spectrogram related to

the pitch. Pitch extraction is carried out together with this peak search. An algorithm

searches for the limits of the tunnelling regions which are expected to be dominated by the

noise. Then, a noise spectrum estimate can be obtained by interpolating between these

regions. This estimate is used in SS to obtain a clean spectral estimate. This technique

has the drawback of not taking into account unvoiced frames. Another tunnelling comb

techniques are FPM-NE [10] and the Frazier technique [17] which employ filters with

5



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.2: Adapted recognition system of Barker technique [3] to compare with one of
our proposed techniques. Two masks are estimated, Mn based on VAD noise estimation
and Mh based on the harmonicity of the correlogram. The final mask M is a combination
of both masks.

impulse responses of the type of hT (t) = δ(t)− δ(t− T ). Two of our proposed techniques

are based on variants of these kind of comb filters.

Mask estimation techniques: They also employ pitch extraction to obtain a reliabi-

lity mask for the considered time-frequency representation (spectrogram or cochleagram).

We can especially mention the technique due to Barker [5, 3]. This technique estimates

two masks, a noise soft mask Mn based on the local SNR for every time-frequency pixel

estimated by means of a ten-first-frame noise estimate (Sec. 1.2), and a harmonicity soft

mask Mh (based on the harmonicity of each pixel estimated by means of the noisy corre-

logram and the pitch, Sec. 1.2). The final mask is a linear combination of both masks.

Fig. 1.2 depicts an adaptation of the Barker technique which will be compared with one

of our proposed techniques. Other mask techniques have been proposed by Brown [9] and

Ma [28]. This last one is based on SFD (Speech Fragment Decoding [2]) to extract the

pitch and the mask of a target speaker when the noise is another speaker.

Doing a fair comparison of above pitch-based techniques is a difficult task as we com-

mented in the introduction (Sec. 1.1.1). Sec. 1.5 is devoted to do it. In addition to these

difficulties, pitch-based techniques have others lacks:

They do not deal with all kind of noises. For example, HASE fails with harmonic

noises.

They do not take into account unvoiced frames. For example, HT may take unvoiced

frames as noise.

6



1.4 Proposed techniques

They need a fine pitch estimate. For example in the case of comb filtering tech-

niques to estimate clean signal, the spectral harmonics are not exactly located at

pitch positions because of quasi-periodicity. Tunnelling comb filtering techniques to

estimate the noise do not have this problem because there is ((more-space)) around

tunnelling regions.

In the case of proposing a pitch extractor, they involve an inaccurate pitch estimate.

For example, this is the case of HT.

They can be complex and not biomimetic. It can be observed that the more biomi-

metic a technique is the more efficient it is. Ma technique inspired on ASA (Auditory

Scene Analysis) does not have this problem but the FPM-SE [10] does.

1.4. Proposed techniques

1.4.1. Asymmetric windows

Introduction

The asymmetric windows technique is explained in detail in a paper accepted with minor

changes [34]. This technique tries to do robust ASR with low computational cost. It is

inspired by the HASE technique [43] (Sec. 1.3.2), which can be interpreted as an asym-

metric weighting (or windowing) of the autocorrelation coefficients of the OSA (One Side

Autocorrelation). The windowed OSA is employed to obtain a clean spectral estimate and

its AMFCC (Autocorrelation Mel-Frequency-Cepstral-Coeficients). Another related tech-

niques are Cyclic-Spectrum [36], OSALPC [21], SMC [30] and LSMYWE [31] which are

based on employing high-lag autocorrelation coefficients to estimate the spectrum since

these coefficients are usually less contaminated by noise (Sec. 1.3.2). Another related tech-

nique which also employs asymmetric windows is that of [40], although these windows are

applied in the time domain. We will only compare our asymmetric windows with HASE

because HASE surpasses the other related techniques.

Recognition system

Fig. 1.3 shows the proposed ASR system to evaluate our asymmetric windows. Its front

end uses very similar parameters to the ETSI FE [47]: 23 Log-Mel channels, 13-statics

(C0, ..., C12) + 13-velocity + 13-acceleration cepstral coefficients, etc.. It takes a noisy

7



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.3: ASR system based on OSA autocorrelation with the asymmetric windows.

signal y, filters offset and enhances high frequencies, obtains the OSA of every frame and

multiplies it by an asymmetric window, obtains a clean estimate of MSD (Magnitude

Spectral Density) X̂, the Log-Mel spectrum Fbx̂ and the AMFCC (Cx̂). CMN (Cepstral

Mean Normalization) is applied to each AMFCC and the resulting AMFCC vector is

submitted to an HMM (Hidden Markov Model) recognizer. The parameters of recognizer

are those of the Aurora-2 framework [37] (3 Gaussians per state, etc.). The proposed

asymmetric windows are applied to both training and test in order to avoid any mismatch.

Proposed asymmetric windows

The set of proposed asymmetric windows noted as DDRc,w depends on two parameters:

c and w (center and width in number of samples). This set is:

DDRc,w(k) =

{
DDRw(w

2
− (c+ 1) + k) c− w

2
< k ≤ c+ w

2

0 otherwise

(k = {0, ..., L− 1}) (1.3)

where DDRw is a Double Dynamic Range Hamming window [43] and L is the total

window length (in number of samples) (which corresponds to OSA length). Fig. 1.4 shows

an example of a DDR50,250 applied to the OSA of a voiced frame with pitch 50 samples.

An interesting feature of the proposed windows is that they allow a variable contri-

bution of the first autocorrelation coefficients (without discarding them completely as

HASE does). Also it applies more weight to the most important coefficients by centering

the window on them. Our hypothesis is that the most important coefficients for robust

speech recognition are those around the pitch (or its multiples) lags because they are

8



1.4 Proposed techniques

Figura 1.4: Example of a DDR50,250 window applied to the OSA of a voiced frame with
a pitch value of 50 samples.

9



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.5: Averaged spectra of four different windows applied to a vocal with pitch=50
samples contaminated with white noise.

more energetic and less affected by the noise. In addition, they also carry spectrum enve-

lope information. In Fig. 1.4 the asymmetric window is centered over the first pitch (lag

50). It must be taken into account that the HASE Shannon window is equivalent to our

DDR135,240.

Spectral analysis of the windows and application to unvoiced frames

Fig. 1.5 shows the clean and noisy (contaminated with white noise) spectrum of a voiced

frame for four different DDRc,w windows. We can conclude that DDR50,40 and DDR50,250

have very short dynamic range (i.e. the window has not enough spectral range to cover

the 80 dB necessary for speech). In spite of its short dynamic range, DDR50,250 is quite

similar to the best window for Aurora-2 that will be later obtained.

In order to avoid non homogeneous signal analysis, the same window will be applied

to all types of frames (voiced, unvoiced and silence). For voiced sounds and silences, it

is clear that this is always beneficial. For unvoiced it could be thought that, since lower

lag coefficients (which exclusively carry the spectral envelope information) are deleted or

little weighted, the use of a constant window could be harmful.

10



1.4 Proposed techniques

The experimental results will show that the above mentioned problems do not have

effect over the system performance. In order to understand this, it is important to notice

that the same asymmetric window is applied in both training and testing.

Experimental results

In order to confirm the hypothesis that the most important OSA coefficients for robust

speech recognition are the pitch lag (or its multiples), a gender-dependent recognition

experiment has been carried out:

Taking into account that the histogram of the average pitch per sentence (in Aurora-2

Set A) shows a mean pitch of 55 samples and two different modes for male and female

speakers with pitch values at 69 and 40 samples, respectively, training and test utterances

of the whole Aurora-2 (Aurora-2 Set A, B, C and clean training) are separated into three

groups. These groups are: All (without separation depending on pitch), P. Male (with

pitch greater than 55 samples) and P. Female (with pitch lower than 55 samples). A search

(applying the same window in both, training and testing) for the the best window of each

group is carried out by changing c and w. The WAcc (Word Accuracy in %) average (0-20

dB) results are depicted in Fig. 1.6.

It can be observed that the best windows for All, P. Male and P. Female groups are

DDR55,200 with 77.47 %,DDR69,250 with 80.43 % andDDR40,150 with 78.47 % respectively.

From these results the following conclusions can be extracted:

1. For the whole Aurora-2 our proposed DDR55,200 window with 77.47 % gives better

results than the HASE window (DDR135,240) with only 72.43 %.

2. The optimum window centers of each group just coincide with the mean pitch of

each group: 55, 62 and 40 (are indicated with dashes vertical lines in the figure).

This confirms our hypothesis that the most important coefficients are those around

the pitch (or its multiple) values.

Tab. 1.1 shows the results obtained by the different windows tested for Aurora-2 (Set

A, B and C) for different SNR values. Sec. ?? explains how the confidence intervals of the

mean results are obtained. These intervals show that our results are reliable and will be

only shown here and in the next table in order to avoid overloading the rest of the tables.

It can be concluded that DDR55,200 obtains better results than Hamming (very similar

to ETSI FE [47]) and HASE. It can also be concluded that both the short dynamic range

11



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.6: WAcc ( %) for the whole Aurora-2 (0-20 dB) when all, male pitch and female
pitch utterances are employed in training-test stages, againts c (center) and w (width of
window). The three vertical lines correspond to the female, mean and male pitches (40,
55 and 69 samples).

Window Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
(20-0 dB)

Hamming 99.14 97.21 92.57 76.72 44.28 22.99 13.00 66,76± 0,80
(FE)

DDR135,240 99.15 97.47 94.37 84.26 58.35 27.69 14.72 72,43± 0,76
(HASE)
DDR55,200 98.85 96.12 93.21 85.91 70.00 42.09 18.07 77,47± 0,71

(Mean Pitch)

Tabla 1.1: WAcc (Word Accuracies %) results obtained by different windows tested with
Aurora-2 (Set A, B and C) for diferent SNR values.
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1.4 Proposed techniques

Window WM MM HM Mean

Hamming 89.08 82.15 64.51 78,58± 0,64
(FE)

DDR135,240 89.76 83.16 76.39 83,10± 0,58
(HASE)
DDR55,200 89.85 82.87 80.15 84,29± 0,57

(Mean pitch)

Tabla 1.2: WAcc results obtained by the different windows applied to Aurora-3 Spanish
(real noise). WM, MM and HM mean well, medium and high mismatch, respectively.

of the proposed windows and its application to unvoiced frames are not very harmful in

clean conditions as results show.

Tab. 1.2 shows the results obtained by the different windows applied to Aurora-3

Spanish (real noise) [1]. WM, MM and HM mean well, medium and high mismatch,

respectively. It can be concluded that the proposed window surpasses HASE results mainly

at high mismatch which is the worst condition.

1.4.2. Averaging and sifting autocorrelation

Introduction

Averaging and sifting autocorrelation estimators are explained in detail in [33]. These

techniques try to estimate the clean autocorrelation of every frame by employing its pitch

value. The resulting estimates are employed to obtain AMFCC features.

The averaging estimator is very related to techniques which can be reduced to a comb

filter (i. e. sampling noisy spectrum at pitch harmonics). These kind of techniques are

those of Kuroiwa [25], WHNM [42], etc. It is also very related to HASE [43] in the sense

of supposing that the noise usually is concentrated in the first autocorrelations coefficients.

We will compare our proposals with HASE.

Recognition system

Fig. 1.7 shows the proposed ASR system to evaluate different AMFCC techniques. It is

very similar to that employed to evaluate asymmetric windows 1.4.1. A pitch extractor

is needed to estimate the clean autocorrelation and instead of windowing the OSA, the

whole (negative and positive side) the autocorrelation is employed to obtain the MSD.

The window applied to this autocorrelation will be the DDR.

13



1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

Figura 1.7: Recognition system based on the use of pitch-based clean autocorrelation
estimates.

Figura 1.8: Product table for a frame x(n) with 9 samples. Some products are illustrated
and the diagonal arrows indicate the elements which have to be summed in order to obtain
the different autocorrelation coefficients.

The pitch extractor employed here and in the following will be that presented in [33].

This pitch extractor takes the pitch provided by the ETSI xFE pitch extractor [46] and

applies a smoothing processing. This smoothing is needed because the pitch provided by

xFE has many errors at lows SNRs.

Product table and biased autocorrelation

The biased autocorrelation of a segment x(n) is defined as,

r̂x(k) =
1

N

N−1∑
n=k

x(n)x(n− k) (0 ≤ k < N) (1.4)

It can be reformulated by means of a ((product table)) πx(n,m) = x(n)x(m), (n,m =

14



1.4 Proposed techniques

0, . . . , N − 1) (Ec. 1.5).

r̂x(k) =
1

N

N−1∑
n=k

πx(n, n− k) (k = 0, . . . , N − 1) (1.5)

We see that the biased coefficients can be obtained by summing diagonals of the table.

Fig. 1.8 shows an example of it for a frame x(n) with 9 samples. This table formulation

will be useful later to better understand the proposed autocorrelation estimators.

Let’s suppose now that we have a noisy signal x(n) = p(n) + d(n) which is the sum

of a perfect periodic clean signal p(n) (which approximately represents the voiced signal)

and a distortion d(n) (which accounts for non-periodic components and, mainly, additive

acoustic noise). If we are interested in estimating the clean periodic autocorrelation rp(k)

from the noisy signal, it can be easily demonstrated that the biased estimator is not

suitable because its expected value is:

E[r̂x(k)] = wNB (k) (rp(k) + rd(k)) (1.6)

where wNB is a Barlett window of length N . This estimator is not robust because its

error is equal to rd(k). Fig. 1.9 shows how far the noisy biased estimate is from the clean

biased estimate in both, autocorrelation and spectrum domain. This illustrates the need

for finding a better autocorrelation estimator.

Averaging autocorrelation

It must be noticed that if the distortion d(n) was null the table would be perfect periodic

and many products would be repeated. On the left of Fig. 1.10 the repeated products are

marked with X for a 9-sample signal with period T = 3 samples. Taking this into account

an estimate of the clean table can be obtained by averaging the repeated products as

follows:

πp(n,m) ≈ π̄x(n,m) =
1

N2
p

Np−1∑
i=0

Np−1∑
j=0

πx(iT + n, jT +m) (1.7)

where, for the sake of simplicity, it is supposed that there is an integer number of periods

(N = Np∗T ), n is the remainder of n/T , and each averaging product π̄x(n,m) is estimated

using the idea that each clean product πp(n,m) is affected by a mean zero error. Fig.

1.10 shows an example of how to obtain these products. Finally, the proposed averaging
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1. SUMMARY OF THE THESIS: PITCH-BASED TECHNIQUES FOR
ROBUST SPEECH RECOGNITION

(a) Left, biased autocorrelation of the clean signal (rp) and true AR noise autocorrelation (rd theor)
employed to contaminate it. Right, clean biased, noisy biased, averaging and sifting (δ = 16) autocorre-
lations.

(b) Spectrums derived from clean, averaging and sifting autocorrelations.

Figura 1.9: Top, Comparison of the proposed autocorrelations for a vowel with pitch = 50
samples contaminated with an AR noise. Bottom, the corresponding spectra.
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1.4 Proposed techniques

Figura 1.10: Product tables πx(n,m) (12 times repeated) of a x(n) signal with N = 9
and period T = 3 samples. Left, computation of the different products π̄x(n,m) for the
averaging autocorrelation. Right, computation of the different products π̃x(n,m) for the
sifting autoc. with δ = 2.

autocorrelation estimator of the periodic clean signal is:

rp(k) ≈ r̄x(k) =
1

N

N−1∑
n=k

π̄x(n, n− k) (1.8)

It can be demonstrated (spanish Sec. ??) that its expected value is:

E[r̄x(k)] = wNB (k)

(
rp(k) +

N1(k)s̄d(k) +N2(k)s̄d(k − T )

N − k

)
(1.9)

where s̄d(k) depends on rd(k) [33]. This estimator is better than the biased one because the

additive error term is lower than the whole autocorrelation distortion rd(k). In particular,

it can be shown that the SNR can be increased up to a factor equal to the number

of available periods Np. Fig. 1.9 shows that this estimate is closer to the clean biased

autocorrelation than the biased estimate from noisy signal.

One important issue of the averaging estimation is that it can also be shown that it

is equivalent to a sort of comb filtering (spanish Sec. ??). Then, this estimator has the

advantage (with respect to the biased one) of removing the noise between the gaps or

tunnels placed at the middle regions of the pitch spectrum harmonics, although it does

not remove noise placed at harmonics.
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Sifting autocorrelation

Averaging estimation can be improved taking into account the HASE idea that white-

like noise mainly affects to the lower lag autocorrelation coefficients. The corresponding

products of these coefficients (a δ interval around the main diagonal) can be rejected or

sifted to obtain a better estimate of the clean table as follows:

πp(n,m) ≈ π̃x(n,m) =
1

Nδ(n,m)

∑
(i,j)∈Sδ(n,m)

πx(iT + n, jT +m) (1.10)

where δ is the so-called ((sifting interval)) and Nδ(n,m) is the number of pairs i, j =

0, . . . , Np− 1 which belong to the set Sδ(n,m) (which contains the surviving index pairs).

Fig. 1.10 shows how to obtain the different sifting products π̃x(n,m) for a δ = 2.

The proposed sifting autocorrelation estimate can be obtained as:

rp(k) ≈ r̃x(k) =
1

N

N−1∑
n=k

π̃x(n, n− k) (k = 0, . . . , N − 1) (1.11)

It can be shown that its expected value is that of Ec. 1.9 but replacing s̄d(k) by its

sifted version s̃d(k) (see [33]). It can also be shown that if the noise autocorrelation is

fully contained inside the sifting interval, then this estimation gives exactly the biased

autocorrelation of the periodic clean signal r̂p(k). Also it can be seen that sifting is the

same as averaging in the interval δ ≤ k ≤ T − δ and that sifting removes more noise than

averaging in the 0 ≤ k < δ and T − δ ≤ k < T intervals [33]. These intervals are just

representative of the important information for ASR, i. e. the spectral envelope. Also, it

can be easily seen that sifting with δ = 0 becames the averaging estimator. Fig. 1.9 shows

how sifting is closer to clean than averaging and that they coincide in the δ ≤ k ≤ T − δ
interval.

The important thing about the proposed estimator is that it has the advantages of

the averaging (removing noise between the tunnels) plus those of the HASE technique

(removing white-like noises).

Extension of sifting to silence and unvoiced frames

Sifting has been developed to estimate the clean speech autocorrelation on voiced frames.

In order to avoid the use of a VAD (Voice Activity Detector) and a different estimator

in silence and unvoiced frames, it will be supposed that they have a fictitious pitch of 55
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1.4 Proposed techniques

Figura 1.11: WAcc of Set-A versus the sifting interval δ when the biased autocorrelation
is used for all frames (∗), when sifting is only applied to voiced (+) and when sifting
autocorrelation is applied to all frames • (voiced, unvoiced and silence).

.

samples which corresponds to the average human pitch (preliminary experiments showed

that this is not a critical parameter of the system). In silence frames, the application of

sifting is clearly suitable, but for unvoiced frames we could reasonably argue that it is not

helpful but even harmful.

However, and due to similar reasons as those employed for asymmetric windows 1.4.1

the experimental results will show that this approach (the extension of sifting to all types

of frames) is suitable.

Experimental results I: suitable sifting interval

Now, we will search for a suitable δ interval. Fig. 1.11 shows the WAcc (20-0 dB) results

obtained for Aurora-2 Set-A versus the sifting interval for three cases: biased autocorre-

lation applied to all frames, sifting applied only to voiced frames and sifting applied to

all (voiced, unvoiced and silence) frames. The following conclusions can be drawn:

The sifting estimator obtains better results than the biased and the averaging (δ = 0)

estimators.

It is better to apply sifting to all kind of frames than only to voiced frames. This

justifies the extension of sifting to silence and unvoiced frames.

The optimum δ is 4 samples. This value is both, large enough to reject enough con-

taminated products and small enough to avoid rejecting much speech information.
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Technique Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
(20-0 dB)

A. Bias (FE) 99.06 97.65 94.74 84.06 55.30 26.53 13.63 71.65
HASE (δ = 15) 99.15 97.47 94.37 84.26 58.35 27.69 14.72 72.43
A. Aver (δ = 0) 99.36 97.99 95.85 89.98 72.36 36.55 12.94 78.55
A. Sift (δ = 8) 98.63 96.69 94.50 89.39 76.30 44.60 14.75 80.30

A. Sift Ideal (δ = 8) 98.63 97.06 95.48 91.84 82.52 61.00 29.93 85.58
AFE 99.11 97.72 96.05 91.84 82.19 59.91 28.87 85.54

Tabla 1.3: WAcc results obtained by the different techniques tested with Aurora-2 (Set
A, B and C) for different SNR values.

Technique WM MM HM Mean

A. Bias (FE) 84.03 62.15 37.85 61.34
HASE (δ = 15) 85.91 64.69 43.34 64.65
A. Sift (δ = 8) 76.80 50.14 39.11 55.35

A. Sift Ideal (δ = 8) 84.52 71.47 61.44 72.48

Tabla 1.4: WAcc results obtained by different techniques tested with Aurora-3 Danish
(real noise).

In what follows, δ = 8 (optimum value for the whole Aurora-2 [33]) will be taken as our

optimum sifting interval.

Experimental results II: Aurora 2 and 3

Tab. 1.3 shows the results for the different autocorrelation estimators, HASE and the

ETSI AFE front-end [45] over Aurora-2. It can be observed that the application of sifting

to unvoiced frames is not very harmful as clean results show. In general, sifting surpasses

all except AFE results because this is a more sophisticated front-end which brings to-

gether different robust techniques. Sifting with ideal pitch (i. e. pitch extracted from the

corresponding clean signal) could perform as well as AFE as shows in the A. Sift Ideal

row.

Tab. 1.4 shows the results obtained over the real noise database Aurora-3 (Danish). It

can be observed that sifting would require a better pitch extractor to improve the HASE

results. In this case, sifting could surpass HASE in more than 18 % of WAcc (A. Sift Ideal

experiment).
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Set A Set B Set C Mean
Technique Subw Babb Car Exhi Rest Stre Airp Trai Subw Stre (20-0

MIRS MIRS dB)

A. Aver 79.19 80.14 77.36 76.54 81.03 79.08 80.73 78.73 75.63 77.01 78.55
(δ = 0)
A. Sift 83.62 81.96 80.56 80.80 78.45 82.15 80.16 80.63 76.16 78.47 80.30
(δ = 8)
A. Sift 89.07 87.49 86.68 86.88 85.03 88.07 85.92 86.03 85.17 85.96 86.63

(δ = Ideal)

Tabla 1.5: WAcc results obtained by the different techniques tested with Aurora-2 (Set
A, B and C) for different SNR values.

Experimental results III: dynamic sifting

Tab. 1.5 shows the WAcc over Aurora-2 depending on the type of noise. It is observed

that sifting surpasses averaging for all noises except for Restaurant and Airport. There

are several reasons for this shortcoming such as errors in pitch extraction or a unsuita-

ble δ. Another experimental results have shown that with other δ values (not 8), this

shortcoming with Restaurant and Airport can be sorted out.

This points out the need of applying sifting with a dynamic value for δ(that is, a

suitable value for each instant or utterance). A. Sift (δ = Ideal) is an oracle experiment

which selects the best δ for each utterance. It shows the limits of improving the results by

means of a dynamic delta for each utterance. Thus, dynamic sifting is a possible future

reasearch line.

1.4.3. Pitch-based noise estimation

Introduction

Our proposed pitch-based noise estimation technique is explained in detail in [32]. Noi-

se estimation is an important issue in robust speech recognition and there exit many

approaches to do it. If you want to perform this task, taking into account the spectral

masking effect [48], the only way to do it is by interpolating noise from regions where it

is known. VAD noise estimators [38] do this and are suitable for stationary noises. Ot-

her techniques, such as those which can be reduced to a comb filtering of noise, can be

employed in order to obtain more regions of noise and to face non-stationary noises. HT

(Harmonic Tunnelling) [15] is an example of these kind of comb techniques which require
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Figura 1.12: Proposed recognition system to evaluate MD ASR from pitch-based noise
estimation.

.

a pitch extractor. Here we propose a noise estimate which combines VAD estimates and

a modification of HT noise estimates by means of the pitch extraction. In addition to the

modifications applied to HT (such as avoiding overestimation and not including unvoiced

frames as noise) the important contribution of our proposal is that it fully exploits pitch

information to perform robust ASR as we will see in Sec. 1.5.

The proposed noise estimate will be evaluated on SS (Spectral Subtraction) and MD

(Missing Data) [11]. It will be also compared with a VAD noise estimate and with an

adaptation of the Barker’s technique [3] which also employs MD and pitch.

Recognition system

Fig. 1.12 shows the proposed MD system to evaluate the proposed noise estimation in

ASR. It is very similar to that employed for sifting 1.4.2.

The SNR (global Signal to Noise Ratio estimator of the utterance) and VAD block take

as inputs the noisy MSD (Magnitude Spectral Density) Y and the pitch. The Tunnelling

Noise Spectrogram block estimates the noise in voiced frames using a modification of the

HT technique which makes use the of noisy signal and the pitch estimates. Our center

block Noise Estimator takes Y , SNR, VAD and the tunnelling noise estimate to provide a

spectrogram noise estimation N̂ . Y and N̂ are the inputs to the MEL filter bank and the

log compressor (which yields Fby and Fbn̂). These two last outputs are used to estimate

an SNR of every frequency-time pixel and then the corresponding soft mask M . Finally,

M and Fby are employed by the MD Soft Recognizer [4]. The parameters of the recognizer

are those commonly employed over Aurora-2 for ASR with spectral features (9 Gaussians

per state, [3]).
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Now we will describe the most important blocks of the proposed system. Note that the

different parameters were determined through preliminary experiments performed over a

set of training (not testing) sentences of Aurora-2 contaminated with noise.

VAD based on pitch

The proposed VAD is based on the ((main source model)) of speech (Sec. 1.2) because once

the pitch (main source) is located, the remaining speech sounds can be localized too.

Our VAD detects three different classes of frames: voiced, unvoiced and silences. Fra-

mes labeled as voiced correspond to frames where the pitch extractor gives a valid pitch.

Unvoiced frames are searched in an interval of 20 frames before or after a sequence of

voiced frames and identified when the instantaneous SNR of high frequencies is greater

than 3 dB:

ˆSNR
HF

(tk) = 10 ∗ log10(E
HF
X̂

(tk)/E
HF
N̂

(tk))EN̂(tk)) (1.12)

where ES(tk) =

j4KHz∑
j=j1,8KHz

|S(ωj, tk)|2 (1.13)

The reasons for this condition is that unvoiced sounds never occur in isolation and their

energies are mainly between 1800 and 4000 Hz (sample frequency) [41]. The clean spec-

trogram X̂ is estimated through the noise estimate N̂ based on the 10 first-last noisy

frames. Subsequent experiments have also shown that at low SNRs, this unvoiced estima-

tion takes many noise frames as unvoiced. So when the estimate of the global SNR is less

than 10dB, it is assumed that unvoiced signals are mixed with noise and no detection of

unvoiced frames is carried out. This global SNR is estimated by means of X̂ and N̂ .

Silence frames are those which have been classified neither as voiced nor unvoiced.

VAD Noise Estimate

NVAD (VAD noise) is estimated by interpolating the noise from silence (noisy) frames.

An averaging of the noisy MSD Y of the closest 10 silence frames gives the estimate in

each voiced or unvoiced frame.
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Harmonic Tunnelling Noise Estimate

The continuous MSD of a noisy signal y(n) with N samples at frequency ω is:

Y (ω) = |

N−1∑
n=0

y(n)w(n)e−iωn

√
N

| (1.14)

where w(n) is the Hamming window. Then, the discrete NTun (a variation of harmo-

nic tunnelling noise) is estimated by interpolating tunnelling samples Y (ωl) which are

obtained from the pitch frequency (ω0) as follow:

N̂tun(ωj) = Interp(ωl, Y (ωl), ωj) (1.15)

ωl = ω0(l +
1

2
), l = {−1/2, 0, 1, 2, .., ceil(π/ω0)}

ωj =
2πj

NFT
, j = {0, .., NFT/2− 1}

Figure 1.13 shows an example of tunnelling noise estimation. NTun has the problem of

overestimation mainly at high SNRs (more than 10dB) because of the spectral window

(as shown in the figure at low/high frequencies).

VAD+Tun Noise Estimate

The final noise estimate is NVAD but corrected, depending on global SNR estimate, at

voiced frames as follows:

If global SNR < 10dB: NVAD is replaced by NTun.

Otherwise: NTun is used as an upper bound for NVAD.

The reason for using NTun only as an upper bound when SNR ≥ 10dB is that ove-

restimation is more likely in this case. Also, real noises tend to be more stationary at

high SNRs [27]. The final noise spectrogram NVADTun is smoothed and its Fbn̂ spectro-

gram (Filter bank Mel-Log representation) is obtained. Fig. 1.14 depicts a comparative

example.
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Figura 1.13: Example of tunnelling noise estimation on a voiced noisy frame with pitch
ω0 = 0.126 rad..

Mask Estimation

The clean spectrogram Fbx̂ is estimated subtracting Fby and Fbn̂ and then the local

SNR of every pixel (mel filter chj at time tk) can be obtained as:

ˆSNR(chj, tk) = 20 ∗ log10(e
Fbx̂(chj ,tk)/eFbn̂(chj ,tk)) (1.16)

This is passed through a sigmoid function to obtain the soft mask estimate M (reliability

values between [0, 1]). The threshold and the slope of the sigmoid are -3 dB and 0.2

respectively and they have been determined empirically.

Experimental results

Tab. 1.6 shows the WAcc results with Aurora-2. The first four systems use the cepstro-

grams with CMN (Ceps). FE stands for a cepstrum obtained from the spectrogram Fby

and provides a very similar result to the ETSI front-end [47], AFE is the ETSI front-end

[45], and A. Sift is the sifting autocorrelation (Sec. 1.4.2) which is an example of pitch-

based robust technique. N. VAD+Tun, SS is when the proposed noise estimate is used

in an Cepstral SNR-dependent SS (Spectral Subtraction) scheme which parameters have
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Figura 1.14: Subway Mel-log noise and its estimation from Aurora-2 utterance 4460806
at 0dB

System Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB Mean
(20-0 dB)

FE (Ceps) 99.14 97.21 92.57 76.72 44.28 22.99 13.00 66.76
N. VAD+Tun, SS (Ceps) 99.36 96.66 92.09 81.84 64.09 37.06 9.72 74.35

A. Sift (Ceps) 98.63 96.69 94.50 89.39 76.30 44.60 14.75 80.30
AFE (Ceps) 99.11 97.72 96.05 91.84 82.19 59.91 28.87 85.54

N. VAD+Harm (MD, Cocl) 98.67 96.18 92.67 84.17 74.21 50.41 17.65 79.53
N. VAD (MD) 98.76 96.19 93.38 88.42 77.92 49.52 15.56 81.09

N. VAD+Tun (MD) 98.78 95.79 92.04 86.66 78.03 54.43 18.40 81.39

N. VAD+Tun Ideal (MD) 98.78 95.97 92.81 88.57 84.24 74.43 55.83 87.21

Tabla 1.6: WAcc results obtained by different systems tested with Aurora-2 (Set A, B and
C) for different SNR values.
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been optimized to avoid musical noise.

The next four systems estimate a soft mask to recognize (MD). N. VAD, N. VAD+Tun

and N. VAD+Tun Ideal use our proposed noise estimates. Ideal means that pitch is ob-

tained from corresponding clean signal. These three systems employ a 23-channel spec-

trogram as acoustic representation. However, N. VAD+Harm, which is an adaptation of

Barker’s technique explained in Sec. 1.3.2 especially developed to compare with our te-

chnique, employs a 23-channel cochleagram (Cochl). Its VAD is the same as the one we

have previously proposed but adapted to the cochleagram representation. The values of

threshold and slope of the sigmoid functions of Mn and Mh are (-6 dB, 0.8) and (0.8,70)

respectively, and they have been determined empirically.

The following conclusions can be drawn:

N. VAD+Tun performs better in Spectral MD than in Cepstral SNR-dependent SS.

This is because SS is more sensitive to errors of noise level. This is the reason why

MD is preferred instead of the SS approach as HT does.

If we compare N. VAD with N. VAD+Tun, we see that the addition of NTun pro-

vides benefits, mainly at low SNRs. However, we also see that tunnelling is not

beneficial at higher SNRs. This can be understood if we take into account that

Aurora-2 mainly consists of (quite) stationary noises. On the other hand, we think

that our technique can be more helpful for non-stationary or sporadic noises.

If we compare N. VAD+Harm with A. Sift and N. VAD+Harm Cocl, it seems that

the proposed noise estimate makes a better use of the pitch information than the

other two. However, this can not be concluded definitively as several causes can be

influencing on this. Among others, that A. Sift and N. VAD+Harm Cocl can be

more sensitive to pitch errors or that their parameters are not optimally tuned. This

kind of problems shows the need of determining which technique makes a better use

of the pitch information. The answer to this question will be addressed in Sec. 1.5.

N. VAD+Tun Ideal show that with a better pitch estimation, results could be consi-

derably improved (overcoming AFE ). In future work (Sec. 2.3) different possibilities

to improve the pitch estimation are discussed.
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1.5. Equivalences and limits of the pitch-based tech-

niques

1.5.1. Basic mechanisms and equivalences

Voiced basic mechanisms

In previous sections we have studied and proposed different pitch-based techniques for

robust ASR. Now, we will compare them in a fair way by means of using some equivalences.

In principle, they can be supposed as different if we only pay attention to some specific

details (pitch extractor, processing of unvoiced and silence frames, etc.). However, they

can be reduced to one of these four basic mechanisms which depend on the robust method

applied to voiced frames:

1) Exploitation of the harmonic structure: these mechanisms do not require a

pitch extraction but only some properties which can be derived from periodicity. SWP

[29], HASE [43] and Asymmetric Windows (Sec. 1.4.1) try to ((clean)) the signal using

these properties. HF [39] estimates the noise by exploiting the spectral harmonic shape.

2) Comb estimation of clean signal: these mechanisms use the pitch frame to

apply some kind of comb filtering, i. e. some kind of algorithm which can be reduced to a

sort of removing noise between the gaps (or tunnels) which are in the middle between the

pitch spectrum harmonics. The resulting clean signal can be recognized from its cepstral

representation. WHNM [42], PHCC [20] and Sifting (Sec. 1.4.2) use these mechanisms.

3) Tunnelling estimation of noise: these mechanisms are the opposite of the pre-

ceding ones and estimate noise (tunnelling noise) employing tunnelling samples, that is,

the spectral gaps between the harmonics. The resulting noise estimate can be employed

in SS, MD, etc.. HT [15], FPM-NE [10] and Pitch-based Noise Estimation (Sec. 1.4.3) use

these mechanisms.

4) Harmonicity mask estimation: this mechanism estimates the mask of each

frequency-temporal pixel by means of the correlogram and the pitch. Cochleagram tech-

niques related with ASA, such as the adaptation of Barker’s technique (Sec. 1.3.2) and

the Ma’s technique [28] employ this mechanism.

Taking into account these mechanisms we can investigate about which is the best one

and whether they fully exploit the pitch information to improve the recognition in voiced

frames. These questions are answered in Sec. 1.5.2.
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Figura 1.15: Comparison of the mechanisms to estimate a tunnelling mask and a harmo-
nicity mask. Both masks are shown in the Log-Mel Spectrum plot

Comparing tunnelling and harmonicity masks

It can be shown that the mask derived from tunnelling noise is similar to that derived from

harmonicity measures if similar channel numbers and a suitable selection of thresholds

are applied.

Fig. 1.15 can help to understand this similarity. The clean and tunnelling noise esti-

mate, which indicates where the mask should be 1 or 0, are on top of the picture along

with the 10 Mel filter bank, employed in tunnelling estimation. The outputs of the 10

gammatone channels of the correlogram employed to estimate harmonicity mask are in

the middle plot. The two mask estimates (Harmonicity and Tunnelling Mask) are over-

lapped at the bottom of the picture along with the Log-Mel spectra employed to estimate

the tunnelling mask, showing the strong similarity of both estimates. We can conjecture

that both masks will yield similar recognition results (hypothesis H1).
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1.5.2. Optimum voiced mechanisms

Optimum pitch-based noise estimation

Let’s suppose that we have a noisy signal x(n) of length N which is the sum of a pure

periodic clean signal p(n) and a distortion d(n). T (or ω0 in radians) is the period of p(n)

and, for the sake of simplicity, we also suppose that we have an integer number of periods

Np (N = Np ∗ T ). Its complex discrete noisy spectrum is:

X(ωk) = P (ωk) +D(ωk) (k = 0, ..., N − 1) (1.17)

Taking into account the periodicity of p(n), the above equation can be expressed as follows:

X(ωk) =

{
P (ωk) +D(ωk) if ωk = ω0m

D(ωk) otherwise (tunnelling samples)
(1.18)

where m = 0, 1, .., T − 1. From this equation, we can deduce that only a percentage

(Np− 1)/Np of the N noise spectral samples can be recovered if we only know the pitch

period T , no matter how the noisy signal is transformed. The remaining noise frequency

samples are mixed with the speech harmonics and can not be recovered, although they

can be estimated by applying some type of interpolation.

We can consider that the noise spectrum estimates obtained from tunnelling samples

and interpolation are optimal in the sense that minimal assumptions about the noise are

required (only an interpolation model). In practice, it must be also taken into account

that the resulting noise estimation has some problems like non perfect periodicity or

unavoidable time-window which also widens the harmonics. The reason of only taking one

tunnelling sample (between the harmonics) in the proposed Pitch-based Noise Estimation

technique is this widening.

Optimum voiced mechanisms

Let us consider the following three points:

1. Tunnelling noise estimate is theoretically optimum (just argued above).

2. The similarity between tunnelling and harmonicity masks (Sec. 1.5.1).

3. MD (with ideal mask) provides much better results than other techniques which

employ a noise estimate (such as SS) (Sec. 1.3.1).
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Mean (20-0 dB) [0 dB]
Technique Technique ((per se)) Oracle mask Oracle mask

(without oracle) unvoc. and sil. all

FE (Spectr.) 33.30 [7.66] 64.25 [25.04] 95.01 [90.18]
DDR55,200 (Spectr.) 35.84 [5.84] 73.16 [37.98] 90.35 [82.75]

A. Sift (δ = 8) (Spectr.) 36.61 [8.09] 77.92 [47.72] 93.36 [88.94]
N. VAD+Harm (Cocl.) 85.95 [72.21] 89.15 [73.13] 95.11 [89.40]
N. VAD+Tun (Spectr.) 87.21 [74.43] 90.87 [79.46] 95.01 [90.18]

Tabla 1.7: WAcc results for the whole Aurora-2 (Set A, B and C) obtained by four
techniques which represent the four basic voiced mechanisms. 0 dB result is shown in
bracket. Ideal pitch is employed.

From these three considerations, we can say that mask estimation mechanisms based on

tunnelling or harmonicity, along with MD recognition, provide a very solid framework

for pitch-based recognition of voiced frames, and that in ideal conditions these can be

considered as an optimum mechanisms (hypothesis H2).

Experimental results

In order to compare the robustness of the four basic mechanisms for voiced frames, WAcc

results in spectrogram (or cochleagram) domain, with ideal pitch and with oracle mask in

unvoiced and silence frames for different techniques (representative of each mechanism)

are shown in Tab. 1.7.

FE is used as baseline (no robust). DDR55,200 corresponds to the asymmetric window

(Sec. 1.4.1) and represents the mechanisms based on exploiting the harmonic structure.

A. Sift corresponds to the sifting autocorrelation technique (Sec. 1.4.2) and represents

the mechanisms based on comb estimation of the clean signal. N. VAD+Harm is the

adaptation of Barker’s technique (Sec. 1.3.2) and represents the mechanisms based on

harmonicity mask estimation. N. VAD+Tun is the tunnelling mask (Sec. 1.4.3) and re-

presents the mechanism based on tunnelling noise estimation.

The first column shows the results obtained by these techniques (all-ones mask has

been employed for the first three techniques). The second column shows the same experi-

ments but applying oracle masks to unvoiced frames and silences (this shows the success

of the voiced mechanisms), and third column shows oracle mask results. The soft-mask th-

reshold and slope of N. VAD+Harm and N. VAD+Tun have been re-optimized to improve

the results in the second column.
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It can be concluded that the best voiced mechanisms are the two last ones, i. e.

harmonicity and tunnelling mask estimations. Their results are quite similar although

tunnelling is a bit better. This increment can be due to the difference between the Mel

scale of the spectrogram and the ERB scale of the cochleagram. Except for this difference,

it can be said that these mechanisms are similar and that they are best ones. This confirms

many of the previous statements made in this section (hypothesis H1 and H2).

1.5.3. Limits in pitch-based recognition

Performance limits

If we compare the first and second columns of Tab. 1.7 for the proposed technique

N.VAD+Tun and it is taken into account that second column contains an approxima-

tion to the best performance that we can obtain with the pitch-based techniques (because

unvoiced and silence frames have oracle mask and voiced frames have one of the optimum

voiced mechanisms) we can conclude that the proposed pitch-based noise estimation te-

chnique (first column) is almost optimum because its results are not very far from this

upper boundary results (second column).

Let us compare now the second and third columns of the table. Although the results

of the second column are not very far from those of the third one (oracle masks for all

frames), we can see that the pitch-based mask estimation methods will never perform

as well as the oracle masks (this is specially clear at 0 dB), independently of the ac-

curacy of the pitch extractor employed. This points out that in order to obtain further

improvements, more information than that extracted from the pitch trajectories would

be required to approximate the performance of the oracle masks. This extra information

could be obtained from the noise itself or accurate speech models.

Recognition of speech without pitch

This thesis has been devoted to the recognition of speech as it is usually uttered, that is,

with vibration of the vocal folds. However, speech can be sometimes emitted without pitch

(whispered speech, [49]) or with multiple pitch values (vocal harmony, in music). Humans

can recognize these voices even in noise conditions. This can create the illusion that pitch

is not an important cue in robust speech recognition. However, as it is explained in the

introduction section, although we consider the pitch as an important cue, it is not the

only one. We consider the ASR of whispered speech as an important field for future work
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which we are willing to study. To do that, the following ideas could be considered (most

of them extracted from this Thesis):

Design of a VAD detector similar to that developed in Sec. 1.4.3, taking into account

the main source model of speech. In this Thesis, the main source is associated to

pitch. Now, the main source could be localized where instantaneous SNR is higher

(whispered) or multiple pitches rise at the same time (vocal harmony).

Adaptation and improvement of the models for this type of speech, taking into

account that now it has a flatter spectrum, with less energy (whispered), etc. [49, 23].

Application and adaptation of the MD (or SFD [2]) techniques to this type of speech.
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Caṕıtulo 2

Conclusions, Contributions and

Future Work

2.1. Conclusions

The present work is motivated by the need of proposing and carrying out a comparative

study of robust speech recognition techniques based on pitch (not including robust pitch

extraction). The main conclusions are summarized below:

Taking into account that the message of a speech signal is coded by means of three

kind of elements (voiced sounds, unvoiced and silences) and the way they are com-

bined, we can say that the speech signals ((mainly)) consists of voiced sounds which

are surrounded by the unvoiced sounds. This has been referred to as ((main source

model)) which is a simplify definition of speech that it has been employed to develop

a VAD (Sec. 1.4.3). This model is also suitable for whispering speech if a noise is

taken as the main source.

The state of the art of conventional techniques for robust ASR leads to the conclu-

sion that MD (Missing Data) techniques can obtain very high performances (close

to human) without the need of perfectly estimating the noise or the clean signal.

However, this transfers the problem to the mask estimation block.

The comparative study of the pitch-based techniques found in the bibliography

(exploitation of harmonic structure, clean signal estimation and mask estimation

techniques) is a difficult task because each author employs a different pitch extractor,

each technique uses extra techniques and sometimes it is not clear if the author is
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proposing a new pitch-based robust technique or a robust pitch extractor itself. Even

so, we have tried to establish some equivalences between the different techniques and

the recognition limits of the pitch-based techniques.

A set of asymmetric windows called DDRc,w has been proposed which extends the

HASE technique [43] that is employed to perform robust feature extraction by means

of the OSA in white-like noises (contained in the first autocorrelation lags). It has

been shown that the highest robustness is obtained by windows centered around the

pitch values because these are the most energetic autocorrelation lags (have more

SNR) and preserve the formant information. The coefficients which should be less

weighed are the first ones because they are the most affected by the noise.

A clean autocorrelation estimation method called sifting (based, in turn, on another

proposed estimator, which was referred to as averaging estimator) has been propo-

sed. It uses the pitch and depends on the sifting parameter δ which informs about

the amount of autocorrelation products which are rejected because they are sup-

posed to be more contaminated by noise. It has been shown that, taken a suitable

δ value, which includes the first (more energetic) autocorrelation coefficients of a

white-like noise, the estimate can be equal to the clean signal autocorrelation under

certain assumptions.

Taking into account that for δ = 0 sifting is a sort of comb filtering (a spectral

sampling of noisy signal at the pitch harmonics) and that many of the pitch-based

techniques can be reduced to a comb filtering, we can concluded that sifting is

an extension of many of these comb techniques. Sifting has the advantages of the

comb techniques (eliminating the noise placed between pitch harmonics) and HASE

(eliminating white-like noises).

The extension to unvoiced frames of both the DDRc,w windows and sifting could

degrade the performance (mainly at clean conditions) because the information of

unvoiced sounds is mainly contained in the first autocorrelation coefficients, which

tend to be removed. Nevertheless, this problem can be avoided by applying the same

technique in both, training and test stages.

Techniques such as HT [15] or that of Frazier [17], based on estimating the noise

spectrum in voiced frames by means of tunnelling samples (spectral samples which

are between the pitch harmonics), have the problem of including as noise unvoiced
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frames (VAD is not used) and of overestimating it, degrading the performance as

they also employ SS (Spectral Subtraction) which is very sensitive to these overes-

timations. In order to avoid these problems a recognition system, which includes a

VAD+Tunnelling noise estimation and MD instead of SS, has been proposed.

The proposed VAD uses the pitch location in order to locate the rest of the speech

elements taking into account the main source model of speech. The tunnelling es-

timate also uses the pitch so we have finally proposed a noise estimation based

completely on pitch.

If we do not consider some elements of the pitch-based techniques, such as the pitch

extractor, treatment of the unvoiced and silence frames, etc., it can be concluded

that they employ one of these four basic mechanisms in voiced frames: exploitation

of the harmonic structure, comb estimation of the clean signal, tunnelling noise

estimation (or anti-comb-filtering) which can be employed for SS (HT) or for mask

estimation (as in our proposal) and harmonicity mask estimation.

The maximum number of noise spectral samples which can be recovered in a noisy

voiced frame by means of the pitch are (in ideal conditions) the N(Np − 1)/Np

tunnelling samples, where N is the frame length and Np the number of periods of

the voiced signal. From this it can be deduced that, in order to estimate noise, it

is necessary to add more information about the noise and it is just what tunnelling

estimation (HT, FPM-NE or our proposal) does when the noise is interpolated

by using theses tunnel samples. It can be concluded that (ideally) this kind of

techniques achieve optimum noise estimation based on pitch and employing very

little information about the noise (the interpolation model).

It can be shown that mask estimation by means of both tunnelling noise and harmo-

nicity mechanisms yields similar masks. Taking into account that tunnelling noise is

optimum (at least, under certain conditions) and the advantages of MD (as compa-

red to SS), we can conclude that the mask estimation mechanisms based on tunne-

lling or harmonicity, along with MD recognition, provide a very solid framework for

pitch-based recognition of voiced frames and that, in ideal conditions, these can be

considered as an optimum mechanisms. The experimental results, employing oracle

masks, support this assertion.
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Taking into account the optimum voiced mechanisms and the experimental results

with oracle masks (in unvoiced and silence frames), we can conclude that the pro-

posed pitch-based noise estimation technique performs reasonably well (with ideal

pitch) because its results are close to the limits of the pitch-based ASR techniques

(using the minimal noise information). Besides, these results are not very far from

the oracle mask results. In order to reach these oracle results it would be necessary

to add more information (about noise or speech) in the mask estimation.

Some ideas presented in this work, such as employing MD or the main source model

to obtain a VAD, can be exploited to recognize whispered speech (without pitch).

2.2. Contributions

The main contributions of this Ph.D. dissertation can be summarized as follows:

We propose a set of asymmetric windows which are applied to the OSA in order to

carry out robust feature extraction with low computational cost [34].

We propose a clean autocorrelation estimator which employs the pitch and can deal

with harmonic (not related with pitch) and white-like noises. This estimator is the

sifting estimator [33].

We propose a VAD and a pitch-based noise estimator from a simplify speech model

(main source model) which solves many of the problems of similar techniques [32].

We study different pitch-based techniques, classify them, show their equivalences

and point out the limits of the pitch-based recognition, showing that the proposed

pitch-based noise estimation technique is close to these limits.

2.3. Future Work

Many of the experiments developed in the Thesis (such as those with ideal pitch) point

out possible future work. They can be summarized as follows:

Regarding asymmetric windows, robust feature extraction employing windows

centered on the mean pitch speaker could be carried out in order to improve per-

formance as experimental results of Sec. 1.4.1 show.
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Regarding sifting autocorrelation a dynamic δ could be applied in order to im-

prove the results (experiments with oracle δ show this, Sec. 1.4.2). The idea of sifting

could even be extended, in the sense of not deleting only the products around the

main diagonal but also those around other diagonals or other table positions more

affected by noise.

Regarding pitch-based noise estimation we can say that the main point is to

improve the pitch extraction as shown by the ideal pitch results. If this was done,

the technique would almost reach the limits of pitch-based techniques as Tab. 1.7

points out (without the necessity of improving the VAD). One solution could be to

consider several pitch candidates at each frame, and each candidate could result in a

different noise estimation hypothesis. These parallel hypotheses could be evaluated

separately by using missing data marginalization and employing the mask derived

from a hypothesized noise estimate. The pitch which gave the highest likelihood

would be chosen. This is similar to the SFD (speech fragment decoding) idea which

uses top-down speech models to resolve bottom-up signal ambiguity.

Another interesting work which is pointed out by table 1.7 is trying to reach the

oracle mask limits mainly at low SNRs. As we have seen, we can not reach these

limits only by means of the pitch. The way to do that would be adding more infor-

mation about the noise (or speech) to the mask estimator. This information could

be dynamically updated in time from silence regions.

Finally, recognition of speech without or even with multiples pitch values (whispered

or vocal harmony speech) is a very interesting line as it is discussed in Sec. 1.5.3.
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