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Abstract This paper deals with the problem of searching for a suitable win-
dow for robust speech recognition in noisy conditions. A set of asymmetric
windows, so-called DDR, ,,, are proposed which are controlled by two pa-
rameters, center ¢ and width w. These windows act over the OSA (One-Sided
Autocorrelation) in order to perform spectral estimation. The two parameters,
c and w, allow us to control the level of weight given to the first noisy autocor-
relation coefficients and to emphasize the important ones. Finally, it is shown
that the best window of the proposed set is the DD Rgg 200. This window is
centered around the average pitch of human speech and it provides a higher
speech recognition performance over the Aurora-2 and Aurora-3 databases
than those obtained by previously proposed windows.
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1 Introduction

Acoustic noise represents one of the major challenges for automatic speech
recognition systems. Many different approaches have been proposed to deal
with this problem [1]. In this paper we are interested in improving feature
extraction without any prior knowledge about the noise. When performing
feature extraction, one of the first steps is usually to determine the PSD (Power
Spectral Density) of the speech signal.

There are two basic ways to obtain the PSD of a speech signal [5]. One
way is by means of parametric methods, such as the classical LPC spectrum
or those based on all-pole modelling of the causal part of the autocorrelation
sequence [2], [3]. The other way is by means of non parametric methods. In
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this case the PSD can be directly obtained either from the signal or from the
signal autocorrelation. The cepstral coefficients obtained from the PSD of the
signal after filtering by a Mel filter bank are called MFCC (Mel Frequency
Cepstral Coefficients) meanwhile those obtained from the autocorrelation are
called AMFCC (Autocorrelation MFCC) [4].

In both cases, before applying the Fourier Transform, it is necessary to
apply a suitable analysis window. Many different windows have been pro-
posed in order to perform a good estimation of the signal spectrum. Each
of them has its advantages and disadvantages. Although symmetric windows
have been traditionally employed, asymmetric windows have also been pro-
posed [6]. A recent work [4] proposes to estimate the spectrum by means of
the HASE (Higher-lag Autocorrelation Spectrum Estimation) technique. It in-
volves estimating the signal spectrum by means of the One-Sided (causal part)
Autocorrelation (OSA). In this method lower-lag autocorrelation coefficients
are discarded (considering that broadband noise distortion affects mainly those
ones) and only higher-lag (> 2ms) autocorrelation coefficients are used. This is
done by applying an specially designed window function, the Double Dynamic
Range (DDR) Hamming window, to the one sided autocorrelation sequence.
The HASE method outperforms the aforementioned methods in noisy condi-
tions.

The windowing process of the HASE method can be also seen as an asym-
metric weighting of the different autocorrelation coefficients of the OSA. Un-
der this point of view, the HASE technique uses a window which gives a null
weight to the first autocorrelation coeflicients and the rest of the coefficients
are weighted according to a DDR window. Following this idea of weighting
factors which act on the OSA, in this paper we will search for a window (or a
set of weights) that increases AMFCC robustness against noise.

The structure of the paper is as follows. In section 2 a set of windows,
inspired by the HASE method, is proposed. Next, in section 3, it is shown
that, for voiced frames, the most robust windows are those centered around
the pitch. In section 4 the best window of this set is found, comparing its
effectiveness with similar windows. Finally in section 5, the most important
conclusions will be summarized.

2 Window parametrization

Within the framework of AMFCC feature extraction, we want to find a suitable
window which, when applied to the OSA, improves robustness against noise.
We will assume here a classical speech recognition system, in which the models
are trained with clean speech feature vectors and, to avoid mismatch, the
window used for training is the same one as that used for test. A good window
could be one which minimizes the distance between noisy and clean vectors.
In order to carry out the search for this window, we will characterize the set
of possible windows by two parameters.
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Fig. 1 Example of a DD R5p,250 window applied to the OSA of a voiced frame with a pitch
value of 50 samples.

To build our parametric model, we will start with a DDR Hamming window
but controlled by two parameters ¢ and w, resulting in what will be called
DDR, . Parameter w indicates that the proposed window is based on a DDR
of width w and parameter ¢ that the center or maximum of the window is
located on the c-lag autocorrelation coefficient. Specifically the expression for
the proposed DDR,. ,, window of length L would be given as:

DDR, (k) = DDRy,(§ —(c+1)+k) c—F<k<c+¥F
o |0 otherwise
k={0,...L -1} )

where DDR,, is a DDR window of width w that is obtained autocorrelating
a Hamming window of width w/2 [4]. According to this construction, the
HASE window proposed by Shannon in [4] is equivalent to a DD Rj35 249 for a
speech signal sampled at 8 kHz. Fig. 1 shows a DD Rsg 250 of length L = 256
together with the first 256 coefficients of the OSA of a voiced frame.

This sort of parametrization lets us vary (through parameters ¢ and w) the
weights given to the first autocorrelation coefficients (usually more contami-
nated by noise) without the need of discarding them completely (as it is done
in HASE) since these first coefficients could carry useful information. It also
allows the possibility of deciding which are the most important coefficients
and, consequently, placing the center of the window on them. In section 3, it
will be shown that the best place to locate the center is just over the pitch or
its corresponding multiples.
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Fig. 2 Cepstral error, Err(c,w), surface for a voiced sound (pitch=50 samples) contami-
nated with white noise as a function of the center (¢) and width (w) of the analysis window
DDRe .

3 Window for voiced signal

In order to study which DDR, ,, window is the best one for voiced signals, a
frame of clean voiced speech signal has been contaminated with 100 instances
of AWGN noise to achieve an SNR of 0dB. In particular, this frame has been
extracted from a recording of the vocal ’e’ with a 50-sample pitch. Its OSA is
shown in Fig. 1. The error surface obtained when a DDR, ,, window is applied
is plotted in Fig. 2. This error has been computed as the averaged distance
between the clean and noisy AMFCC cepstrum as,

N
1 c,w c,w
Err(e,w) = olicg —cpell (2)
n=1

where C7* is the clean AMFCC, Cy:* the nth noisy instance AMFCC and N
is the number of noise instances (100 in our experiment).

It can be observed that several deep valleys appear, located at ¢ = 50, 100,
150, . .. etc. From this fact we can draw the following conclusion: the minimum
cepstral error is reached when the DDR, ,, window has its center around the
pitch of the clean signal or its multiples. This conclusion has been drawn for
white noise but the results obtained in the next section validate it for other
types of noise.
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Fig. 3 Averaged spectra of four different windows applied to a vocal with pitch=50 samples
contaminated with white noise.

Lets analyze now what happens in the spectral domain. Fig. 3 shows
the clean spectrum and the averaged noisy spectra for four different win-
dows: DDR127,256(Standard), DDR135)240(Shannon), DDR50740(ThiIl) and
DDR507250(Broad).

Although windows centered on the pitch with high w values, such as
DD Rs 250, are short of dynamic range (i.e. the window has not enough spec-
tral range to cover the 80 dB necessary for the speech autocorrelation), this
does not constitute a serious problem since it only produces a poor charac-
terization of the spectral valleys. The reason for this short dynamic range
is due to the truncation at lag 0 (in contrast to the Shannon and Standard
windows) so we can consider those windows as DDR windows with a super-
posed rectangular window. As the rectangular window has a short dynamic
range, this effect translates to the resulting windows (see Fig. 3 for the case of
DDRs0.250). However, spectral valleys, which are between the formants, are
not as important for speech recognition as spectral peaks [7]. The most impor-
tant thing is to have a good characterization of the formants and, in fact, this
is what windows centered on the pitch do. This is so because the information
regarding the spectral envelope (and the formants) is located on the zero lag
area as well as on the pitch and on integer lags multiple of the pitch. In fact,
as it will be shown in section 4.2, the smaller dynamic range of the proposed
windows barely affects recognition performance in clean conditions. An addi-
tional advantage of the proposed windows is that they reduce the mismatch
between training and testing conditions (models are trained in clean condition
with the same window) as can be observed in figure 3, a fact that contributes
to the improvement of the speech recognition system performance.
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Fig. 4 Processing path of our front end, from a speech frame (with 256 samples) till the
final cepstral vector (13 coefficients).

4 Experimental window
4.1 Experimental framework

Experiments are carried out with the connected digit databases Aurora-2 and
Aurora-3 both sampled at 8 kHz. Aurora-2 contains utterances contaminated
at 20, 15, 10, 5, 0 and -5 dB with ten different additive noises: subway, babble,
car and exhibition for Set-A, restaurant, street, airport and train for Set-B,
and convolutional subway and street noises for Set-C. Aurora-3 is a database
with real noise contaminated speech. This database contains in-car speech
recorded by several microphones placed at different places, what provides 3
different conditions: well-matched (WM), medium mismatch (MM) and high
mismatch (HM). Both databases will be used in their classical configuration:
each digit is modeled with an HMM of 16 states and 3 Gaussian per state
except silence that has 3 states and 6 Gaussians per state. More details about
these databases and the back-end configurations employed can be found in [9]
and [10].

The feature extractor used is very similar to that from ETSI [8]. The
main difference is that we extract AMFCCs instead of MFCCs. The feature
extraction process is depicted in Fig. 4. The number that appears at each
stage in Fig. 4 indicates the number of coefficients resulting from every stage.
We comment next the most relevant details. Just as done in [4], the windows
are applied on the biased OSA (256 coefficients). After applying the FFT and
calculating its magnitude, the resulting 256 coeflicients are downsampled to
obtain 128 coefficients that are passed to the Mel filter bank. Here on, the
rest of the feature extraction procedure coincides with that from ETSI, finally
obtaining a cepstral vector with 13 MFCC coefficients (C0, C1,...,C12). The
final feature vector is formed by the 13 static MFCCs plus their corresponding
delta and delta-delta coefficients (a vector of 39 coefficients in total) . Every
vector is also compensated by Cepstral Mean Normalization (CMN).

Finally, it is worth mentioning that we always use the same window for
both, training and testing stages and, in the case of Aurora-2, training is
carried out only with clean speech. In addition, although the proposed win-
dows have been developed considering their application to voiced frames, the
same window will also be applied to unvoiced and silence frames. For unvoiced
frames this could involve a loss of information (their spectral information is
mainly contained at the first lags) but, if training and testing are done with



On the use of asymmetric windows for robust speech recognition

All Pitch Male Pitch Female
81 R . 81 ; ; ;
| | | -—-w=250
80¢ Pl —w=2001
o —w=150
791 P ——w=100]
I I I
[CHEE R
I I I
I I
B I I

¢ (samples)

50 100 150

71

I
I
I
I
I
I
I
I
[}
l
I
I
I
I
I
I
I
I
I
|
50 100 150
¢ (samples)

71

50 100 150
C (samples)

Fig. 5 Averaged recognition accuracy WAcc(%) when considering different ¢ and w values,
for the complete Aurora-2 databases (All), only with male speech (Pitch Male) and only
with female speech (Pitch Female). Mean pitch of each group is indicated with dashed
vertical lines at 55, 62 and 40 samples respectively

the same window, it does not affect recognition performance much, as we will
see in the clean condition experiments in the following section. In the case of
silence frames, there is no information to loose so the use of our asymmetric

windows will be always beneficial.

4.2 Experimental results

Fig. 5 shows the averaged word accuracy over Aurora-2 (WAcc (%) along the
A B and C sets, from 0 to 20 dB). In the left figure all the utterances have been
considered, in the center figure only the male utterances are included (those
with pitch higher than 55 samples), and in the rigth figure only the female ones
(pitch lower than 55 samples). Each result has been obtained using different
center (¢) and width (w) values for the DDR, ,, analysis window.

If we consider all the sentences, the best recognition results are obtained
by windows with center around 60 samples and width of around 200 sam-
ples. It is worth mentioning that 55 samples is the mean pitch for Aurora-
2 (40 samples or 200 Hz for female speech and 69 samples or 116 Hz for
male speech), while the maximum in that figure corresponds to the window
DDRgs 200 (77.28%). Comparing this result with that achived by means of a
HASE window (DD R135,240 - 72.88%), we can observe a significant improve-
ment. In case of considering only the male sentences, the best recognition
results are obtained for a window centered on the mean pitch (69 samples)
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Window Clean | 20dB | 15dB | 10dB | 5dB 0dB | -5dB Average
(20-0 dB)
Hamming 99.07 97.21 92.90 78.37 47.04 | 24.05 13.57 67.91
(FE)

DDR135,240 99.16 97.37 94.32 84.55 | 59.42 | 28.72 | 15.08 72.88
(HASE)

DDRs55,200 98.91 96.32 93.43 85.85 | 68.70 | 38.93 | 17.43 76.65

(Mean pitch)

DDReg2,200 99.05 96.87 94.31 87.08 | 69.93 | 38.21 | 17.09 77.28

(Opt. Aurora-2)

Table 1 Word accuracies obtained by different windows tested with Aurora-2 (Set A, B
and C) for different SNR values.

and width 250, while when we have only the female sentences the best results
are obtained for a window centered on the mean pitch (40 samples) and width
150. All of this reinforces our hypothesis that the highest robustness against
noise is reached when the DDR, ,, window is centered around the pitch value
as here the local SNR is higher. Another important issue has to do with the
width of the DDR window. It should be wide enough to cover the different
pitch values, but not too much, because it could overweight the first autocor-
relation coefficients and then reduce recognition accuracy. This is shown by
the fact that the width of the best window (male DDRgg 250, all DD Rg2 200
and female DDRyg 150) decreases as the center of the window moves to the
left.

Table 1 shows word accuracies obtained by four selected analysis windows
tested over Aurora-2 (Set A, B and C) for different SNR values, namely Ham-
ming, DDR135’240, DDR55720() and DDR62’200. The Hamming window is di-
rectly applied on the signal (not on the OSA) obtaining MFCCs as in the ETSI
feature extractor. DD R135 240 is applied on the OSA, it obtains the same AM-
FCCs as in HASE method. DD Rss 209 is a DDR, ., window centered on the
mean pitch (55 samples) and DD Rg3 200 is the best window for the whole
Aurora-2 database. The last two are the windows proposed by us and, as can
be seen, they are centered on or close to the mean pitch.

Results show that our two windows represent an improvement over the
Hamming and HASE windows. Our best window for Aurora-2 (DD Rg2 200)
improves in almost a 4.5 % in comparision with the HASE result. The results
for clean condition are also good in spite of the fact that our windows have a
small dynamic range and there is certain information loss in unvoiced frames.
This confirms our hypothesis mentioned at the end of Sec. 4.1.

Results with Aurora-3 and the same windows are depicted in table 2. It can
be observed that the two proposed windows again improve the results of HASE,
mainly for the worst condition (high mismatch). For this case, DD Rpgs5 200 and
DD Rgs 200 improves a 3.76 % and 2.5 % the HASE result, respectively.

Taking all of this into account, we could finally consider the proposed
DDRg3 200 window as the optimum window since it gives good results for
both, Aurora-2 and Aurora-3.
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[ Window H WM [ MM [ HM “ Average ]
Hamming 89.08 | 82.15 | 64.51 78.58
(FE)

DDR135,240 89.76 | 83.16 | 76.39 83.10
(HASE)

DDRs5,200 89.85 | 82.87 | 80.15 84.29

(Mean pitch)

DDRe2,200 90.89 | 84.22 | 78.89 84.67

(Opt. Aurora-2)

Table 2 Word accuracies obtained by the different windows applied to Aurora-3 Spanish
(real noise) under well-matched (WM), medium (MM) and high mismatch (HM) conditions.

5 Conclusions

In this paper the problem of searching for a suitable window for robust speech
recognition has been addressed. Inspired by the HASE technique we have
proposed a set of windows called DDR, ,, controlled by two parameters (center
¢ and width w) that perform an asymmetrical windowing or weighting of the
autocorrelation coefficients of the OSA. These two parameters allow us to
control the level of weight given to the first noisy autocorrelation coefficients.

It has been shown that the highest robustness, for a voiced signal, is ob-
tained by windows centered around the pitch values as, in this case, formant
information is better preserved. This has been confirmed by recognition ex-
periments based on the speaker gender. For both groups (male/female), the
best results were obtained when the analysis windows were centered on gender
average pitch.

Finally, two windows have been proposed (DD Rjs5.200 and DD Rgg 200) and
evaluated over Aurora-2 and Aurora-3 databases. Both windows have obtained
better overall results than those obtained by the Hamming window (as used
in the ETSI Front End [8]) and HASE over Aurora-2 and Aurora-3 test sets.
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