
2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

978-1-5386-5488-0/18/$31.00 ©2018 IEEE 2344

End-to-end prediction of protein-protein interaction
based on embedding and recurrent neural networks

Francisco Gonzalez-Lopez, Juan A. Morales-Cordovilla, Amelia Villegas-Morcillo, Angel M. Gomez, Victoria Sanchez
Dept. of Signal Theory, Telematics and Communications and CITIC-UGR, University of Granada, Spain

E-mail: {fgonzalezlopez,jamc,ameliavm,amgg,victoria}@ugr.es

Abstract—Protein-Protein interactions (PPIs) are key to many
important life processes, such as cancer replication or DNA
transcription. While in vivo or in vitro methods for PPI screening
exist, they are expensive and computational approaches have
been proposed to address PPI prediction. Previous computational
methods rely on hand crafted features to capture the underlying
information of the protein data. In this work we present a deep
neural network architecture leveraging embedding techniques
and recurrent neural networks to extract features and predict
interaction between protein pairs. The results achieved are
similar to those obtained by other state-of-the-art computational
approaches to the problem but without any feature engineering
involved, directly using the raw amino acid sequences.

Index Terms—protein-protein interaction, deep neural net-
work, recurrent neural network, embedding

I. INTRODUCTION

Protein-protein interactions (PPI) are the driving forces

behind many molecular processes which define the cellular

activity at various levels. These interactions are physical con-

tacts between proteins driven by the electromagnetic properties

of their components. Interactions define important functions

such as DNA transcription and replication and cell signaling.

Protein presence or absence caused by genetic mutations has

been linked to certain diseases, such as Alzheimer’s [1] or

cancer [2]. Further understanding how proteins interact in

such diseases may prove paramount to find more effective

and less invasive methods for treating them, be it in the form

of prevention, risk identification based on genetic profiles, or

better drug design.

The problem associated with PPI is that in vivo or in vitro
procedures to determine interaction, such as those described

in [3], are relatively expensive and are affected by uncertainty.

In other problems computational methods usually serve as a

first screening and PPI can benefit as well from an inexpensive

computational screening of candidates to interaction, in order

to reduce costs and increase success rates of experimental

methods.

Several computational PPI prediction approaches have been

proposed such as [4], [5] or [6]. These methods rely on

hand crafted representations of the proteins involved in the

interactions, using different kinds of data (sequence data,

physico-chemical properties of the amino acids, etc.). Such

This work has been supported by the Spanish MINECO/FEDER Project
TEC2016-80141-P. We also acknowledge the support of NVIDIA Corporation
with the donation of a Titan Xp GPU.

features are the result of a complex and time consuming

feature engineering process, that requires domain knowledge,

as they depend on underlying properties of the data. A similar

problem is present in the computer vision field; the features

representing an image must capture the underlying complexity

of the data relevant for the task. Crafting such features can be

very time consuming, and nearly impossible in some cases.

Thus, more modern approaches to computer vision problems

do not rely on hand crafted features. Instead, they revolve

around learning features from the data that perform well on a

certain task using deep neural networks (DNNs), as currently

the amount of data and computational power are enough to

successfully apply these methods.

In a similar vein, rather than relying on hand crafted features

to represent a protein pair for PPI prediction, we propose a

deep learning approach to the problem, where the features

are learned through an optimization process, leveraging the

increasing amount of available PPI data. In [5] the approach

taken is to compute an extensive set of features, and then apply

deep learning techniques to the classification task, but they

still rely on an initially established set of features. We take

the idea one step further, learning low level features directly

from the raw protein sequence data. In order to do so, we

tackle the problem by combining Natural Language Processing

(NLP) techniques, such as embedding [7], and recurrent neural

networks (RNNs) [8] that have been shown to individually

perform well in other tasks, like protein function prediction.

In this paper, we present the results obtained by our method

(called DeepSequencePPI) in four PPI datasets obtained from

the Database of Interacting Proteins (DIP) [9], two of them

containing S. cerevisiae PPI, one containing H. pylori PPI

[10], and the last one containing H. sapiens PPI obtained from

the Human Protein References Database (HPRD) [11]). We

will show that relying solely on the raw sequence data, no

feature engineering is needed to achieve state-of-the-art results

on these datasets.

II. MATERIALS AND METHODS

A. Datasets

The main protein interaction dataset used in the experiments

is described in [5]. It contains both positive and negative

interactions between protein pairs from the yeast species ”Sac-
charomyces cerevisiae”. The positive interactions are obtained

from the Database of Interacting Proteins (DIP) [9], discarding

2345

those proteins whose chains are shorter than 50 amino acids

and those that are highly similar in sequence (compared using

CD-HIT [12] with sequence identity greater than 40%). The

negative interactions are selected by pairing proteins from

different subcellular locations (obtained from SwissProt [13])

that do not appear in the positive data set [5]. It contains 17257

and 48594 interactions (positive and negative, respectively).

This dataset will be referred to as ”S. cerevisiae full” dataset.

In addition, other 3 datasets [5] are used to validate the

method:

1) S. cerevisiae core subset, containing 5594 positive pairs

and 5594 negative pairs from ”Saccharomyces cere-
visiae”. This dataset will be referred to as ”S. cerevisiae
core subset” to differentiate it from the ”S. cerevisiae
full” dataset.

2) H. pylori dataset [10], containing 1458 positive pairs and

1458 negative pairs from ”Helicobacter pylori”.

3) H. sapiens dataset [14], containing 3899 positive pairs

and 4262 negative pairs from ”Homo sapiens”.

B. Method

The proposed method has two distinct parts. First, data

preparation, where each protein is converted into a suitable

data format for the prediction model, using a technique known

as tokenization. The result is a numeric vector for each

protein amino acid sequence. It is also worth noting that

this is not a feature matrix, only a fixed-length equivalent

representation of the protein sequence data. Second, neural

network training and testing, where each sequence is passed

through a neural network, modifying its parameters (i.e. the

weights of the network) by back propagating the errors in

the training set, optimizing both classification and feature

extraction together. Finally, the test data is predicted using the

resulting classification model, and its performance is assessed.

1) Data preparation: Protein-protein interaction datasets

describe each sample using three attributes, protein A code,

protein B code, and interactivity, encoded as 0 or 1 (1 for

interaction, 0 otherwise). Once the amino acid sequences

are obtaind from the Uniprot [15] database then the data

is prepared to be fed to the neural network. Intuitively, we

are going to interpret this problem as a Natural Language

Processing (NLP) problem, where the amino acid sequence

is viewed as a text or phrase, and amino acids are akin to

words. Moreover, instead of interpreting each amino acid in

the sequence as a separate unit, we are going to model the

protein as a ”3-gram” sequence, where 3 contiguous amino

acids are joined and form a single unit or ”word”. The strategy

adopted does not include overlapping adjacent n-grams. Also,

if a sequence cannot be split exactly by 3, the first amino

acids in the chain are discarded. This helps to characterize

each amino acid not only by itself, but also by its context.

Thus, our basic unit is an amino acid ”X” preceded by amino

acid ”Y”, and followed by amino acid ”Z”, forming a triplet,

”YXZ”. This modeling strategy was adopted because it has

been shown to perform well with similar approaches to other

problems, such as [7]. The 3-gram extraction process is shown

in Fig. 1

Fig. 1. The 3-grams extracted from an amino acid sequence.

Since the neural network requires a numerical input, we

apply a tokenization process (Fig. 2), where every triplet

in the sequence is encoded as an integer (token), obtaining

a sequence of tokens. The special token ”0” is reserved for

padding. Thus, the number of different tokens will be 8001.

Fig. 2. Token extraction process where an integer is assigned to each unique
3-gram. 0 is reserved.

Finally, in order to obtain a fixed length representation, we

pad the token sequence vector with the value ”0” to obtain

a vector with a fixed length of 1000 elements. If a token

sequence vector is longer than that length, it is truncated

discarding the leftmost elements (i. e., the beginning of the

amino acid chain) in the sequence. On the other hand, if a

token sequence vector is shorter than the fixed length, we add

”0” tokens to the left of the vector until the required length is

reached.

We now have a fixed length numerical vector representation

of each protein, suitable for feeding the neural network. The

whole process is summarized in Fig. 3.

2) Deep neural network model and training: Deep neural

networks (DNN) are a type of neural networks with a high

number of layers. These models rely on non-linear operations

2346

Fig. 3. Summarized pre-processing example of an amino acid sequence, from
the raw sequence to its fixed length numerical representation.

to learn complex relations between the inputs. The proposed

model takes two proteins as its inputs, represented as described

in the former section, and decides whether the protein pair

interacts or not. In order to do so, the parameters of the

network are optimized by passing the training pairs through

the network, and comparing the predicted label against the true

label.

The design of the architecture of the network is a crucial

step in the DNN approach. If the network is too simple to

capture the relations among the data, or there are not enough

data to tune the parameters sufficiently (the weights of the

network don’t converge to a solution), the performance of

the model suffers. Likewise, if the network is too complex,

the network may start learning the training data itself. This is

known as overfitting; it is somewhat similar to ”memorizing”

information, rather than ”understanding” it. Another related

issue is that there is no way to know what network complexity

or what type of architecture fits a problem. There is some

intuition from similar problems, but there are no guarantees

that a given approach will perform better or worse than any

other, unless both of them are tested.

The proposed neural network architecture, shown in Fig. 4,

consists of 2 basic parts: feature extraction, and classification.

Since the data is composed by a protein pair and a label

(interaction), the network receives two different inputs (each

protein of the pair). The format of each input was described

in the former section. The proteins are processed separately in

two branches of the network that share the same architecture,

whose task is to learn the features that will describe the

protein. Each branch is composed by an embedding layer, a

recurrent layer (with GRU units) and finally a fully connected
layer to rearrange and recombine the information extracted

by the two previous layers. Note that the embedding layer

is shared among the two branches, since any context depen-

dencies between the sequences will be the same regardless of

the branch they enter. Then, the features that each extractor

branch has computed are merged into a single vector by

simply concatenating them. Finally, a fully connected layer is

used to combine the features of both proteins. The last layer

of the network is a 2-neuron fully connected layer, and its

activation function is a 2-class softmax, allowing us to assign

the output of each neuron as the score for each class. This

is then interpreted as the probability of a sample (a protein

pair) belonging to a certain class (interaction or no interaction),

assigning the final label to the most likely class (the one with

the highest score).

Each layer has a specific architecture and role in the

network. The layers used in the architecture are as follows:

• Embedding layer: The embedding layer is tasked with

learning a compact representation of the input data (se-

quence of tokens), attending to the context (i.e. the tokens

that appear in the same sequence) of each input token.

The result is a compact vector representation of the

input, that depends on the contexts of each token in it.

The proposed length of the compact context vector is

512. This process adds another dimension to the output,

generating for each position in the sequence a vector

representing the context given the token and position.

In our case, this would be a 1000x512 matrix. A basic

scheme is shown in Fig. 5.

Fig. 5. Basic embedding scheme. Note that we use the compact representation
layer, and discard the softmax layer, as it is only for training the weights.
This is an example using a set of 10 tokens to illustrate the idea behind the
embedding.

• Recurrent layer: The recurrent layer receives a matrix

(1000x512) as an input, processes each position in the

input using information from previous positions, and

outputs a 64 feature vector. The layer uses information

from previous elements in the sequence. Intuitively, it

processes the input sequentially and carries a sort of

”memory” by feeding each output as an additional input

to the next unit. This kind of process is similar to

how reading works; instead of processing each word

separately, we retain certain information that helps us give

context and understand what we read next, as illustrated

in Fig. 6. The particular RNN unit proposed is the

GRU (gated recurrent unit). The recurrent layer uses 2

activation functions; first, the recurrent activation, applied

to the output of each recurrent unit (to the ”memory”),

2347

Fig. 4. Architecture of the neural network used to extract features and then classify the protein pairs. First, the input is passed through an embedding layer,
that condenses the contextual relations between amino acid 3-grams in a vector for each position of the chain (that is, if the fixed input length is 1000, the
output of the embedding using 512 features will be a 1000x512 matrix). Then the recurrent layer attempts to capture temporal relationships and patterns
among these features, outputting a 64 feature vector. That vector is passed on to a fully connected layer to combine these features before merging the branches.
Then, the two 64-feature vectors are merged by concatenating them into a single 128-feature vector (branch A vector always goes first). After the merge, the
data is passed through 2 more fully connected layers that subsequentially reduce the dimensionality of the data by combining it, until finally a 2 neuron layer
acts as the output of the network, giving a score to each class.

and second, the activation that is applied to the final

output of the layer. We use the hard sigmoid function

for the recurrent activation and the hyperbolic tangent

function for the final activation. The final output is the

output of the last position in the sequence, which is

computed using information from the rest of the sequence

(along with the last element itself).

Fig. 6. Simplified scheme of the connections between units in a recurrent
layer. Bear in mind that each element in the input sequence is usually a feature
vector, rather than a single value. In our architecture, each element is a 512
feature vector from the previous embedding layer.

• Fully connected layer: Fully connected layers are used

in 2 fashions. First, they learn non-linear relationships

of their inputs, where every single unit in the layer is

connected to all units in the previous layer. Intuitively,

fully connected layers learn a higher level representation

of the input, thus, they are used to combine the features

produced by the previous layers. Although the most

popular activation is the rectified linear unit (ReLU), we

use the exponential linear unit (ELU) [16], because it is

harder to saturate and has been successfully applied [17].

The second task they fulfill is serving as an output 2-class

softmax, where the output of each unit represents the

score for a corresponding class. Since there are 2 classes,

we will have two output units, one being ”negative

interaction” and the other being ”positive interaction”.

• Dropout: The dropout technique [18] consists in ”drop-

ping” (set to 0) a randomly selected portion of the

layer’s inputs. In practice, this has been shown to reduce

overfitting. Dropout is applied after each layer in the

network, except for the last fully connected layer (as it

is meant to output the resulting scores).

• Batch normalization layer: The batch normalization layer

standarizes the input (i.e. substracts the mean and scales

by the standard deviation, thus leaving the mean at 0

and the standard deviation at 1). This technique requires

keeping ”mean” and ”standard deviation” parameters

that are adjusted during training. This also has a slight

regularization effect, further reducing the possibility of

overfitting.

During training, two strategies are used to further guide the

process, both involving a validation dataset. The validation set

is a small portion (10%) of the training set. The purpose of this

set is serving as a guide to check how the model is performing

during training, and guide it, but it is never used to directly

train the weights of the network. The applied strategies are the

2348

following:

• Early stopping [19]. This strategy simply stops the train-

ing when the loss (categorical cross entropy) does not

improve (in the validation set) for 5 consecutive training

epochs. This is just an aid to avoid wasting resources on

a model that does not improve. Instead of keeping the last

weights of the network, we roll back to a point where the

model performed the best on the validation set, in order

to reduce overfitting.

• Reduce learning rate when stagnating. This strategy con-

sists in reducing the learning rate in order to explore a

part of the solution space more in depth, and achieve a

better local minimum.

The procedure for the neural network training, where the

weights or parameters of the network are optimized to perform

the classification tasks, is done by minimizing the value

of a loss function that we define. We use the categorical

cross entropy, paired with the RMSProp gradient descent

optimization algorithm.

After the training phase, the performance of the model is

measured on a test set. In all cases, the performance metrics

used are fairly standard: accuracy, precision, recall, specifitiy,

Mathews Correlation Coefficient (MCC), F-1 score, and ROC

AUC.

The software tools used for this task are the Python libraries

Keras [20] and Tensorflow [21]. Keras serves as a simpler

front end to Tensorflow, abstracting most of the network

building details and allowing quick prototyping. The Python
biological data processing toolkit Biopython [22] has been

used to parse the sequence data. The implementation used

for the experiments will be made available on GitHub. For

reference, a single repetition of experiment 1 takes about 8

minutes to complete using a Nvidia GeForce GTX 1080ti.

III. RESULTS

In this section we present the results of two sets of exper-

iments. Apart from the method ”DeepPPI” by Du et al. [5],

all numerical results are taken directly from their respective

papers. For ”DeepPPI” all results have been generated using

the code they provide online. These sets of experiments are

conforming with the procedure that most other works use to

evaluate their methods on the respective dataset, and thus allow

us to compare the results of our proposed method to the rest.

The comparison with ”DeepPPI” is particularly interesting,

as the approaches are fairly similar, the key difference being

that we learn a feature extraction process, rather than selecting

features out of an extensive set.

3) First experiment (S. cerevisiae dataset): The first exper-

iment is a comparison of the results obtained by [5] for the ”S.
cerevisiae full” dataset, training and testing using a randomly

selected portion of the dataset. This selection consists of

creating a new dataset where both classes (interacting and

non interacting pairs) are balanced. In order to achieve this,

all positive interaction pairs are selected, and out of all the

negative samples, we randomly select negative ones until the

subset has the same amount of positive and negative pairs. This

will result in a dataset containing all 17257 positive pairs and

17257 negative pairs chosen at random, totaling 34514 pairs.
Since the experiment requires the generation of a dataset

using a random subset of the full data, the standard procedure

involves repeating the experiment to aleviate the effects the

selection might have on the results. Instead of repeating the

experiment 5 times as in [5], in our experimental framework

30 repetitions are considered to further reduce the effects

of random selection. Although the datasets are randomly

generated, they are obtained using the same random number

generator seed to always train both techniques with the same

random sets of samples and have a fairer comparison.
Once a subset has been selected, we reserve 25% of the data

for the test set that will be used to evaluate the quality of the

prediction method, and train the model using the remaining

75%. Out of the training data, a 10% is used as a validation

set to guide the learning process using the early stopping and

learning rate reduction strategies.
By comparing the results obtained by our method and

DeepPPI [5], we can see that their most striking feature

is their similarity, differing less than a percentual point. In

order to assess if both methods yield performances that are

statistically different, we conducted a McNemar’s test [23],

where we compared the performances of both classiffiers for

all test samples (a total of 258870 test samples across the 30

iterations). The result of the test is that both classifiers are not

statistically different using a confidence interval of 95%, with

a p-value of 0.984. The averaged results of all 30 experiments

are presented in Table I.
4) Second set of experiments:: To further validate the

performance of the method, three more datasets have been

used separately. In each of the three experiments, a 5-fold cross

validation has been used to assess performance. The resulting

numbers in all cases are the mean values for each metric. All

folds contain the same label balance (i.e. the relative amount

of samples of each class) as their respective full datasets.

• ”S. cerevisiae core subset”. 5594 positive samples, 5594

negative samples. Results are presented in Table II. As we

can see in the table, the results obtained are very similar

to the other state-of-the-art methods, meaning that while

the available data for training is significantly smaller, the

results are still competitive.

• ”H. pylori dataset”. 1458 positive samples, 1458 negative

samples. Results are presented in Table III. In this case

the results fall behind other works, such as You et al. [6].

This is possibly due to the lack of data to learn a good

feature extraction process.

• ”H. sapiens dataset”. 3899 positive samples, 4262 nega-

tive samples. Results are presented in Table IV. No data

balancing or class weighting is applied despite containing

more negative than positive pairs. Again, when given

enough data the model is able to yield similar results

to other methods.

To sum up the results of the three experiments, the perfor-

mance of our DeepSequencePPI method is again similar to

other state-of-the-art methods for all datasets, falling behind

2349

TABLE I
EXPERIMENT 1: ”S. cerevisiae full”. MEAN VALUES OF THE METRICS FOR THE TEST PORTIONS OF ALL 30 DATASETS GENERATED.

Method Accuracy Precision Recall Specificity MCC AUC F1

Our method 92.59± 0.31% 93.65± 0.53% 91.4± 0.46% 91.59± 0.49% 0.852± 0.0063 0.974± 0.0016 92.51± 0.31%
Du [5] 92.41± 0.26% 94.19± 0.52% 90.4± 0.48% 90.75± 0.48% 0.849± 0.0052 0.973± 0.0015 92.25± 0.25%

only where the proposed method is expected to: where there

are not enough samples to learn a robust feature extraction

process. This is the main dissadvantage of these kind of

approaches, they require more data to perform the task in

exchange for automating the feature extraction.

IV. CONCLUSIONS

In this paper we proposed an end-to-end deep neural

network architecture based on RNNs and combined with

embedding to predict protein-protein interactions directly from

their amino acid sequences. Our approach levarages the high

volumes of data available nowadays to bypass any requirement

of feature engineering (associated with prediction problems),

changing it to a neural network architecture selection problem.

The results obtained are shown to be statistically similar

to those achieved in previous works, suggesting that the

underlying information extracted from the sequences is very

similar to the information other methods use (hand-crafted

features), given a sufficient amount of data to allow the neural

network to properly model such information.

REFERENCES

[1] J. Murrell, Farlow, Ghetti, and Benson, “A mutation in the amyloid pre-
cursor protein associated with hereditary alzheimer’s disease,” Science,
Oct 1991.

[2] K. Honda, T. Yamada, R. Endo, Y. Ino, M. Gotoh, H. Tsuda, Y. Yamada,
H. Chiba, and S. Hirohashi, “Actinin-4, a novel actin-bundling protein
associated with cell motility and cancer invasion,” The Journal of Cell
Biology, vol. 140, no. 6, pp. 1383-1393, 1998.

[3] S. Xing, N. Wallmeroth, K. W. Berendzen, and C. Grefen, “Techniques
for the analysis of protein-protein interactions in vivo,” Plant Physiol,
vol. 171, pp. 727–758, Jun 2016.

[4] Y. Ding, J. Tang, and F. Guo, “Identification of protein–protein interac-
tions via a novel matrix-based sequence representation model with amino
acid contact information,” International Journal of Molecular Sciences,
vol. 17, no. 10, p. 1623, 2016.

[5] X. Du, S. Sun, C. Hu, Y. Yao, Y. Yan, and Y. Zhang, “DeepPPI: Boosting
prediction of protein–protein interactions with deep neural networks,”
Journal of Chemical Information and Modeling, vol. 57, no. 6, pp. 1499–
1510, 2017.

[6] Z.-H. You, Y.-K. Lei, L. Zhu, J. Xia, and B. Wang, “Prediction of
protein-protein interactions from amino acid sequences with ensemble
extreme learning machines and principal component analysis,” BMC
Bioinformatics, vol. 14, no. Suppl 8, 2013.

[7] E. Asgari and M. R. K. Mofrad, “Continuous distributed representation
of biological sequences for deep proteomics and genomics,” Plos One,
vol. 10, Oct 2015.

[8] X. Liu, “Deep Recurrent Neural Network for Protein Function Prediction
from Sequence,” ArXiv e-prints, Jan. 2017.

[9] I. Xenarios, D. W. Rice, L. Salwinski, M. K. Baron, E. M. Marcotte,
and D. Eisenberg, “Dip: the database of interacting proteins,” Nucleic
Acids Res, vol. 28, pp. 289–291, Jan 2000. gkd005[PII].

[10] S. Martin, D. Roe, and J.-L. Faulon, “Predicting protein-protein interac-
tions using signature products,” Bioinformatics, vol. 21, no. 2, pp. 218–
226, 2004.

[11] “Human protein reference database.” http://www.hprd.org/.

[12] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “CD-HIT: accelerated for
clustering the next-generation sequencing data,” Bioinformatics, vol. 28,
pp. 3150–3152, Dec 2012.

[13] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence
database: its relevance to human molecular medical research,” J. Mol.
Med., vol. 75, pp. 312–316, May 1997.

[14] Y.-A. Huang, Z.-H. You, X. Gao, L. Wong, and L. Wang, “Using
weighted sparse representation model combined with discrete cosine
transformation to predict protein-protein interactions from protein se-
quence,” BioMed Research International, vol. 2015, pp. 1–10, 2015.

[15] T. U. Consortium, “Uniprot: the universal protein knowledgebase,”
Nucleic Acids Research, vol. 45, no. D1, pp. D158–D169, 2017.

[16] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs),” ArXiv
e-prints, Nov. 2015.

[17] S. Sinai, E. Kelsic, G. M. Church, and M. A. Nowak, “Variational auto-
encoding of protein sequences,” ArXiv e-prints, Dec. 2017.

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from over-
fitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958, Jan. 2014.

[19] R. Caruana, S. Lawrence, and L. Giles, “Overfitting in neural nets: Back-
propagation, conjugate gradient, and early stopping,” in Proceedings of
the 13th International Conference on Neural Information Processing
Systems, NIPS’00, (Cambridge, MA, USA), pp. 381–387, MIT Press,
2000.

[20] F. Chollet et al., “Keras.” https://keras.io, 2015.
[21] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale
machine learning,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 265–283, 2016.

[22] P. J. A. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski, and M. J. L.
de Hoon, “Biopython: freely available python tools for computational
molecular biology and bioinformatics,” Bioinformatics, vol. 25, no. 11,
pp. 1422–1423, 2009.

[23] Q. McNemar, “Note on the sampling error of the difference between
correlated proportions or percentages,” Psychometrika, vol. 12, pp. 153–
157, Jun 1947.

[24] Y.-A. Huang, Z.-H. You, X. Gao, L. Wong, and L. Wang, “Using
weighted sparse representation model combined with discrete cosine
transformation to predict protein-protein interactions from protein se-
quence,” BioMed Research International, vol. 2015, pp. 1–10, 2015.

[25] Z.-H. You, L. Zhu, C.-H. Zheng, H.-J. Yu, S.-P. Deng, and Z. Ji,
“Prediction of protein-protein interactions from amino acid sequences
using a novel multi-scale continuous and discontinuous feature set,”
BMC Bioinformatics, vol. 15, no. Suppl 15, 2014.

[26] L. Wong, Z.-H. You, Z. Ming, J. Li, X. Chen, and Y.-A. Huang,
“Detection of interactions between proteins through rotation forest and
local phase quantization descriptors,” International Journal of Molecular
Sciences, vol. 17, no. 1, p. 21, 2015.

[27] Y. Guo, L. Yu, Z. Wen, and M. Li, “Using support vector machine
combined with auto covariance to predict protein-protein interactions
from protein sequences,” Nucleic Acids Res, vol. 36, pp. 3025–3030,
May 2008. gkn159[PII].

[28] Y. Z. Zhou, Y. Gao, and Y. Y. Zheng, “Prediction of protein-protein
interactions using local description of amino acid sequence,” pp. 254–
262, 2011.

[29] L. Yang, J. F. Xia, and J. Gui, “Prediction of protein-protein interactions
from protein sequence using local descriptors,” Protein Pept. Lett.,
vol. 17, pp. 1085–1090, Sep 2010.

[30] L. Nanni, “Hyperplanes for predicting protein-protein interactions,”
Neurocomputing, vol. 69, no. 1, pp. 257 – 263, 2005. Neural Networks
in Signal Processing.

2350

TABLE II
EXPERIMENT 2: ”S. cerevisiae core subset”. MEAN VALUES OF THE METRICS ACROSS ALL 5 FOLDS.

Method Accuracy Precision Recall Specificity MCC AUC F1

Our method 94.65± 0.43% 96.76± 0.68% 92.42± 1.34% 92.77± 1.15% 0.894± 0.008 0.984± 0.002 94.53± 0.48%
Du [5] 94.67± 0.33% 96.73± 0.67% 92.47± 0.46% 92.80± 0.40% 0.894± 0.007 0.984± 0.002 94.55± 0.32%

Huang [24] 96.28± 0.52% 99.92± 0.18% 92.64± 1.00% n/a 0.928± 0.010 0.963± 0.007 n/a
You [6] 87.00± 0.29% 87.59± 0.32% 86.15± 0.43% n/a 0.774± 0.004 n/a 86.8%

You [25] 91.36± 0.36% 96.55± 0.61% 90.67± 0.69% n/a 0.842± 0.006 n/a 91.3%
Wong [26] 93.92± 0.36% 96.45± 0.45% 91.10± 0.31% n/a 0.886± 0.006 0.94± 0.002 n/a
Guo [27] 89.33± 2.67% 88.87± 6.16% 89.93± 3.68% n/a n/a n/a 89.4%
Zhou [28] 88.56± 0.33% 89.50± 0.60% 87.37± 0.22% n/a 0.772± 0.007 0.951± 0.004 n/a
Yang [29] 86.15± 1.17% 90.24± 1.34% 81.03± 1.74% n/a n/a n/a 85.39%

TABLE III
EXPERIMENT 3: ”H. pylori dataset”. MEAN VALUES OF THE METRICS ACROSS ALL 5 FOLDS.

Method Accuracy Precision Recall Specificity MCC AUC F1

Our method 85.18± 1.27% 82.79± 1.42% 88.89± 2.34% 88.06± 2.17% 0.706± 0.026 0.921± 0.011 85.71± 1.29%
Du [5] 85.88± 2.11% 83.57± 2.76% 89.85± 2.28% 88.77± 2.28% 0.720± 0.041 0.929± 0.009 86.56± 1.92%
You [6] 87.50% 86.15% 88.95% n/a 0.781 n/a 87.53%

You [25] 84.91% 86.12% 83.24% n/a 0.744 n/a 84.66%
Wong [26] 89.47± 1.05% 89.63± 1.77% 89.18± 1.42% n/a 0.810± 0.009 0.900± 0.015 n/a
Huang [24] 86.74% 87.01% 86.43% n/a 0.770 n/a 86.72%
Zhou [28] 84.20% 83.30% 85.10% n/a n/a n/a 84.19%
Nanni [30] 84.00% 84.00% 86.00% n/a n/a n/a n/a
Martin [10] 83.40% 85.70% 79.90% n/a n/a n/a 82.70%
Nanni [31] 86.60% 85.00% 86.70% n/a n/a n/a 85.84%

TABLE IV
EXPERIMENT 4: ”H. sapiens dataset”. MEAN VALUES OF THE METRICS ACROSS ALL 5 FOLDS.

Method Accuracy Precision Recall Specificity MCC AUC F1

Our method 97.98± 0.36% 98.9± 0.43% 96.85± 0.36% 97.17± 0.36% 0.960± 0.007 0.996± 0.002 97.86± 0.38%
Du [5] 98.08± 0.3% 99.11± 0.19% 96.85± 0.67% 97.18± 0.57% 0.962± 0.006 0.996± 0.001 97.96± 0.32%

Huang [24] 96.30± 0.1% 99.59± 0.29% 92.63± 0.44% n/a 0.928± 0.002 0.965± 0.005 n/a
Nanni [30] 63.00% 63.00% 64.00% n/a n/a n/a n/a
Nanni [31] 70.00% 67.00% 70.80% n/a n/a n/a n/a

[31] L. Nanni and A. Lumini, “An ensemble of K-local hyperplanes for pre-
dicting protein-protein interactions,” Bioinformatics, vol. 22, pp. 1207–
1210, May 2006.

