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Abstract In J. Herzog and E. Kunz. On the deviation and the type of a Cohen-
Macaulay ring. manuscripta math. 9 (1973) 383-388 it was shown that for any
pair (d, t) ∈ N × N+ with (d, t) ̸= (1, 1) there exists a local Cohen-Macaulay
ring R having deviation d(R) = d and type t(R) = t. By E. Kunz. Almost
complete intersection are not Gorenstein rings. Journal Alg. 28 (1974) 111-115
the case d(R) = 1, t(R) = 1 cannot occur. In this paper certain Cohen-Macaulay
rings are studied for which there are close relations between deviation, type and
embedding dimension. Similar relations for other classes of local rings have been
proved in the recent paper by L. Sharifan. A class of Artinian local rings of
homogeneous type. Bull. Iranian Math. Soc. 40 (2014) 157-181. Our relations
will be applied to numerical semigroups (or equivalently monomial curves) and
lead also to some further cases, generalizing E. Kunz. On the type of certain
numerical semigroups and a question of Wilf. Semigroup Forum 93 (2016) 205-
210 with ring-theoretic proofs, in which a question of H. Wilf. A circle-of-lights
algorithm for the money-changing problem. Amer. Math. Monthly 85 (1978)
562-565 has a positive answer.

1. Introduction

Let R be a complete Noetherian local ring. Write R = P/I where P is a
regular local ring. If µ(I) denotes the minimal number of generators of I, then
the number

d(R) := µ(I)− (dim(P )− dim(R))

is independent of the chosen presentation of R and is called the deviation of
R. If {z1, . . . , zb} is a regular sequence in the maximal ideal mR of R, then
d(R) = d(R/(z1, . . . , zb)) ([HK1], 1.16 and 3.10b)).

If R is a Cohen-Macaulay ring and {z1, . . . , zb} a maximal regular sequence in
mR, hence b = dim(R), then let Soc(R/(z1, . . . , zb)) be the socle ofR/(z1, . . . , zb),
i. e. the R/mR-vector space of the elements in R/(z1, . . . , zb) annihilated by
the maximal ideal mR. Then the number

t(R) := dimR/mR
Soc(R/(z1, . . . , zb))

is independent of the maximal regular sequence and is called the type of R.
Informations about the deviation and the type can be found, for example in

[HK2].
In the following special rings R will be studied in which close relations be-

tween d(R), t(R) and the embedding dimension edim(R) of R exist.

1



2. Relations between deviation and type

Let R be a complete local Cohen-Macaulay ring of dimension b and embed-
ding dimension a+b+1, a ̸= 0. Choose a minimal system {x1, . . . , xa, y, z1, . . . , zb}
of generators of mR such that {z1, . . . , zb} is a regular sequence.

2.1 Theorem. a) If xixj ∈ (y, z1, . . . , zb) (i, j = 1, . . . , a), then

d(R) ≥
(
edim(R)− dim(R)

2

)
− (edim(R)− dim(R))

and
t(R) ≤ edim(R)− dim(R).

b) If even xixj ∈ (z1, . . . , zb) (i, j = 1, . . . , a), then there exists δ1 ∈ {0, . . . , a}
such that

d(R) =

(
edim(R)− dim(R)

2

)
− δ1

and δ2 ∈ {0, 1} such that

t(R) = edim(R)− dim(R)− δ2.

Moreover δ2 = 0 if and only if δ1 = 0.

c) If xixj ∈ (z1, . . . , zb) (i, j = 1, . . . , a) and if there exists an element σ ∈ mR \
(x1, . . . , xa, z1, . . . , zb) with σ · (y, x1, . . . , xa) ⊂ (z1, . . . , zb), then δ1 = δ2 = 0.

Proof. By the remarks of the introduction it suffices to consider the 0-dimensional
case. Then there is a complete regular local ring (P, n) with a regular system of
parameters {X1, . . . , Xa, Y } and a presentation R = P/I where xi = Xi+I (i =
1, . . . , a), y = Y + I. Moreover I ⊂ n2 and I ̸⊂ n3 since a ̸= 0.

We shall show the following lemma on Artinian local rings. Similar relations
as in part b) of the lemma have been shown by L. Sharifan [Sh] for a different
class of Artinian local rings generalizing previous results of Elias and Valla [EV],
Rossi and Valla [RV] and Sally [S].

Let (P, n) be a regular local ring of dimension a+1 and I an n-primary ideal
of initial degree s ≥ 2, that is I ⊂ ns, I ̸⊂ ns+1. The number s is an invariant of
R = P/I. In the situation of the theorem we have s = 2.
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2.2 Lemma. Let {X1, . . . , Xa, Y } be a regular system of parameters of P .
a) If (X1, . . . , Xa)

s ⊂ I + (Y ), then(
a+ s− 1

s

)
≤ µ(I) and t(R) ≤

(
a+ s− 1

s− 1

)
.

b) If even (X1, . . . , Xa)
s ⊂ I, then

1 +

(
a+ s− 1

s

)
≤ µ(I) ≤

(
a+ s

s

)
and

(
a+ s− 2

s− 1

)
≤ t(R) ≤

(
a+ s− 1

s− 1

)
.

Moreover µ(I) =
(
a+s
s

)
if and only if t(R) =

(
a+s−1
s−1

)
.

c) If (X1, . . . , Xa)
s ⊂ I and Soc(R) ̸⊂ (X1, . . . , Xa)

s−1 + I/I, then

t(R) >

(
a+ s− 2

s− 1

)
.

The case s = 2 of the lemma now implies Theorem 2.1 for dim(R) = 0
which is sufficient to prove it in general. In fact, for Theorem 2.1a),b) and c)
the corresponding conditions of the lemma are satisfied. The conclusions follow
since here a+1 = edim(R), s = 2 and µ(I) = d(R)+ edim(R). In 2.1c) we have
the assumption that there is a σ ∈ Soc(R) \ (x1, . . . , xa). By 2.2c) we obtain

t(R) > edim(R) − 1. Then t(R) = edim(R) and d(R) =
(
edim(R)

2

)
follow from

2.2b). �

Proof of the lemma

a) P := P/(Y ) is a regular local ring of dimension a with maximal ideal n :=
(X1, . . . , Xa)P . Since ns ⊂ I + (Y ) ⊂ ns + (Y ) the image of I in P is ns, hence

µ(I) ≥ µ(ns) =

(
a+ s− 1

s

)
.

Further R/Y R = P/ns and length(R/Y R) =
(
a+s−1
s−1

)
. Since Soc(R) ⊂ (0 : Y )R

the exact sequence

0 → (0 : Y )R → R
Y−→ R → R/Y R → 0

implies that

(1) t(R) ≤ length((0 : Y )R) = length(R/Y R) =

(
a+ s− 1

s− 1

)
.

b) For P := (X1, . . . , Xa)P we have Ps ⊂ I, hence as in a) ns ⊂ I + (Y ). Since
the ideal P is generated by a regular sequence the ring S := P/Ps is Cohen-
Macaulay ([M], Exercise 17.4) and Y is a non-zero-divisor of S. Let mS be the
maximal ideal of S and J ⊂ mS the kernel of the epimorphism S → R. Then
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(0) ̸= J ⊂ ms
S = Yms−1

S , hence there is a unique ideal J ′ ⊂ ms−1
S such that

J = Y J ′. It follows that Soc(R) ⊂ (0 : Y )R = J ′/J , and (1) implies

(2) t(R) ≤ length(J ′/J) =

(
a+ s− 1

s− 1

)
.

Equality holds if and only if Soc(R) = J ′/J , i.e. mSJ
′ = J .

Further, since J and J ′ are isomorphic S-modules, we have by (2)

(3) 1 ≤ µ(J) = length(J ′/mSJ
′) ≤ length(J ′/Y J ′) =

(
a+ s− 1

s− 1

)
.

As above µ(J) =
(
a+s−1
s−1

)
if and only if mSJ

′ = J .

Adding preimages in P of a minimal system of generators of J to the set
{Xα1

1 · · ·Xαa
a |

∑
αi = s} we get a minimal system of generators of I, conse-

quently µ(I) = µ(J) +
(
a+s−1

s

)
and by (3)

1 +

(
a+ s− 1

s

)
≤ µ(I) ≤

(
a+ s− 1

s− 1

)
+

(
a+ s− 1

s

)
=

(
a+ s

s

)
.

In particular we have µ(I) =
(
a+s
s

)
if and only if µ(J) =

(
a+s−1
s−1

)
, i.e. mSJ

′ = J ,

and it follows that µ(I) =
(
a+s
s

)
if and only if t(R) =

(
a+s−1
s−1

)
.

It remains to be shown that t(R) ≥
(
a+s−2
s−1

)
. For this we consider the discrete

valuation ring V := P/P = S/p (p := P/Ps) with the prime element Y . As P
is generated by a regular sequence grP(P ) is a polynomial ring in a variables
over V , in particular

(4) ps−1 = Ps−1/Ps is a free V −module of rank

(
a+ s− 2

s− 1

)
.

Since R is Artinian there is a λ ∈ N such that Y λ ∈ J ⊂ J ′, hence Y λps−1 ⊂
J ′ ∩ ps−1 ⊂ ps−1, where ps−1 and Y ps−1 are isomorphic V -modules. Hence
J ′ ∩ ps−1 is free of rank

(
a+s−2
s−1

)
as well.

Further mS = p+Y S, pps−1 = 0 and S/ps−1 ∼= P/Ps−1 is a Cohen-Macaulay
ring ([M], loc. cit.) with non-zero-divisor Y . This implies

mS(J
′ ∩ ps−1) = Y (J ′ ∩ ps−1) = (Y J ′) ∩ ps−1 = J ∩ ps−1 ⊂ J

hence

(5) J ′ ∩ ps−1/Y (J ′ ∩ ps−1) = J ′ ∩ ps−1/J ∩ ps−1 ∼= J ′ ∩ ps−1 + J/J ⊂ Soc(R)

and finally

(6) t(R) ≥ length(J ′∩ps−1)/Y (J ′∩ps−1) = rankV (J
′∩ps−1) =

(
a+ s− 2

s− 1

)
.
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c) If in addition t(R) =
(
a+s−2
s−1

)
, then by (5) and (6)

Soc(R) = J ′ ∩ ps−1 + J/J ⊂ (X1, . . . , Xa)
s−1 + I/I,

which proves assertion c) of the lemma. �

2.3 Corollary. Under the assumptions of theorem 2.1 let xixj ∈ (z1, . . . , zb) (i, j =
1, . . . , a) and xiy ∈ (z1, . . . , zb) (i = 1, . . . , a). Then

d(R) =

(
edim(R)− dim(R)

2

)
and t(R) = edim(R)− dim(R).

Proof. Apply 2.1c) with σ := yµ where µ is the largest number with yµ ̸∈
(x1, . . . , xa, z1, . . . , zb). �

3. Application to numerical semigroups

Let H be a numerical semigroup and {h1, . . . , he} a system of generators of
H. The completed semigroup algebra of H over a field K is defined as

K[[H]] = K[[th1 , . . . , the ]] ⊂ K[[t]]

with a variable t. The deviation and the type of H can be defined to be those of
K[[H]]. The deviation of H can also be expressed by the relations between the
generators of H (see [H]), and the type as the number of the pseudo-Frobenius
numbers of H. Theorem 2.1 can be applied to K[[H]] for certain numerical
semigroups H and implies results about the deviation, the type and the embed-
ding dimension of these H, generalizing those of [K2] about the type and giving
ring-theoretic proofs.

Assume that H ̸= N is a numerical semigroup with minimal system of
generators E. Let p ̸= q elements from E (not necessarily coprime) and let
E = {p, q, h1, . . . , he−2} (e := edim(H)).

3.1 Corollary. a) If hi + hj ∈ (p+H) ∪ (q +H) (i, j = 1, . . . , e− 2), then

d(H) ≥
(
edim(H)− 1

2

)
− (edim(H)− 1)

and
t(H) ≤ edim(H)− 1.

b) If even hi+hj ∈ p+H (i, j = 1, . . . , e−2), then there exists δ1 ∈ {0, . . . , e−2}
such that

d(H) =

(
edim(H)− 1

2

)
− δ1

and δ2 ∈ {0, 1} such that

t(H) = edim(H)− 1− δ2.

Moreover δ2 = 0 if and only if δ1 = 0.
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c) If hi + hj ∈ p + H (i, j = 1, . . . , e − 2) and if there exists h ∈ H \ {0}
with h ̸∈ p + H,h ̸∈ hi + H (i = 1, . . . , e − 2) such that h + q ∈ p + H and
h+ hi ∈ p+H (i = 1, . . . , e− 2), then δ1 = δ2 = 0.

d) If hi + hj ∈ p+H (i, j = 1, . . . , e− 2) and hi + q ∈ p+H (i = 1, . . . , e− 2),
then δ1 = δ2 = 0.

Assertions b), c) and d) remain true, if p and q are exchanged.

Proof. With z := tp, y := tq, xi := thi (i = 1, . . . , e− 2) we have

K[[H]] = K[[x1, . . . , xe−2, y, z]]

and this is a one-dimensional local Cohen-Macaulay algebra.
a) From hi+hj ∈ (p+H)∪(q+H) it follows that xixj ∈ (y, z) (i, j = 1, . . . , e−2),
and we are in the situation of part a) of Theorem 2.1. The assertions about the
invariants of the semigroups follow.

The assumptions of b),c) correspond to those of Theorem 2.1, if we set s = th

in c), and those of d) to the assumptions of Corollary 2.3. The statements for
semigroups follow directly. �

Wilf [W] has asked whether the relation

edim(H) · (c(H)− g(H)) ≥ c(H)

holds for all numerical semigroups H where c(H) denotes the conductor and
g(H) the genus of H. In [FGH], Theorem 20 the relation

(t(H) + 1)(c(H)− g(H)) ≥ c(H)

was proved. Since t(H) ≤ edim(H) − 1 in all cases of the corollary it follows
that Wilf’s question has a positive answer in the situations described there.

4. Special cases

Corollary 3.1 will now be applied to certain more explicitly described semi-
groups. Let E be the minimal system of generators of a numerical semigroup
H.

4.1 Example. If at most two not necessarily coprime elements p, q of E are
smaller than the Frobenius number of H, then

d(H) =

(
t(H)

2

)
and t(H) = edim(H)− 1.

This follows from part d) of corollary 3.1 where p and q have to be exchanged,
if necessary. The second formula generalizes [K2], Thm. 2.2 where it was
assumed that p and q are coprime.

4.2 Example. For p ∈ H \ {0} let Ap(H, p) := {h ∈ H \ {0}|h ̸∈ p+H}.

a) Assume that H has maximal embedding dimension p (the multiplicity of H).
Then E = {p} ∪ Ap(p,H) and the conditions of Corollary 3.1d) are satisfied,
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hence

d(H) =

(
p− 1

2

)
and t(H) = p− 1.

In particular this holds for Arf semigroups.

b) If
E = {p, q} ∪ (Ap(H, p) ∩Ap(H, q)) = {p, q, h1, . . . , he−2},

then the assertions of the Corollary 3.1a) follow. In fact, since hi + hj does
not belong to E, it is non of the elements h with h ̸∈ p +H,h ̸∈ q +H, hence
hi + hj ∈ (p+H) ∪ (q +H) as required in part a) of the corollary.

In the remainder of this section we assume that p and q are coprime, 3 ≤
p < q, and we refer to the geometrical illustration of numerical semigroups
containing p and q discussed in [KW]. In this situation the relation of Ap(H, p)
and Ap(H, q) to the lattice path of H is explained in the introduction of [KW].
Let γ : Z2 → Z be the map with γ(a, b) = pq− (a+1)p− (b+1)q. The elements
of Ap(H, p) ∩ Ap(H, q) correspond by γ to the ”corners” of the lattice path in
the sense of [K2], Remark 1.2. Therefore this remark is generalized by Corollary
3.1a) with a ring-theoretic proof to integers p, q which need not be coprime.

The next example improves [K2], Theorem 2.1.

4.3 Example. Let k be an integer with k ≥ q and assume that H is obtained
from < p, q > by closing all gaps ≥ 2k − p and some gaps which are ≥ k. Then

edim(H)− 2 ≤ t(H) ≤ edim(H)− 1.

It is not hard to show that in this situation Corollary 3.1b) can be applied.

We now consider certain numerical semigroups defined by lines. For r, s ∈ R
with 0 < s < p− p

q − 1, 0 < r < q − q
p − 1 and

1 ≤ s

r
≤ p− s− 1

let H(r, s) be the semigroup defined by the line g(r, s) : x
r + y

s = 1 in the sense
of [KW], Section 3, see in particular Proposition 3.2. H(r, s) is generated by p, q
and γ(Pi) with Pi := (i, λi) where λi := ⌊s− s

r i⌋ (i = 0, . . . , ⌊r⌋), the corners of
H(r, s). Write hi := γ(Pi) (i = 0, . . . , ⌊r⌋).

Then

(1) λ0 > λ1 > · · · > λ⌊r⌋ ≥ 0, h0 < h1 < · · · < h⌊r⌋, hi ≡ −(i+ 1)p modq

and
(2)
H(r, s) \ {0} is the disjoint union of {h0, . . . , h⌊r⌋} and p+H(r, s)∪ q+H(r, s).

Let L(r, s) be the set of all (x, y) ∈ N2 below or on the line g(r, s). For any
(i, y) ∈ L(r, s) the number γ(i, y) has the form γ(i, y) = hi + λq with some
λ ∈ N.
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4.4 Lemma. If hk does not belong to the minimal system E of generators of
H(r, s), then there exist i, j ∈ {0, . . . , ⌊r⌋} such that hk = hi+hj . For any such
presentation of hk we have i+ j + 1 = k.

Proof. By assumption there exist h, h′ ∈ H(r, s) such that hk = h+h′, 0 < h ≤
h′. Then h, h′ ̸∈ p+H(r, s)∪ q+H(r, s), since otherwise hk ∈ p+H(r, s)∪ q+
H(r, s) contradicting (2). From (2) it follows that h = hi, h

′ = hj with certain
i, j ∈ {0, . . . , ⌊r⌋}, i ≤ j.

From hk = hi + hj , hi ≤ hj we conclude that hi ≤ hj < hk, hence i ≤ j <
k < q, in particular k − q < i + j + 1 < k + q. Further hk = hi + hj and (2)
implies that i+ j + 1 ≡ k mod q, hence i+ j + 1 = k. �

The following example generalizes [K2], Theorem 3.2 where only lines with
slope -1 were considered.

4.5 Example. If 1 ≤ s
r ≤ p− s− 2, then

edim(H(r, s)) = ⌊r⌋+ 3,

d(H(r, s)) =

(
⌊r⌋+ 2

2

)
and

t(H(r, s)) = ⌊r⌋+ 2.

We first show that E = {p, q, h0, . . . , h⌊r⌋}. Since ⌊s⌋ = λ0 ≤ p−3 we obtain

h0 = pq − p− (⌊s⌋+ 1)q ≥ 2q − p > q > p

and thus by (1) p, q and h0 certainly belong to E.
Next we show that

(3) hi + hj ∈ q +H(r, s) (i, j ∈ {0, . . . , ⌊r⌋}).

Then by (2) and the lemma it follows that E = {p, q, h0, . . . , h⌊r⌋}. We distin-
guish different cases.
a) If i + j + 1 ≥ q or λi + λj + 1 ≥ p, then hi + hj = γ(x, y) = hx + λq with
(x, y) ∈ L(r, s) and λ ∈ N ([KW],2.3). If i + j + 1 > r, then by the lemma
hi + hj ̸= hx, hence λ ≥ 1 and therefore hi + hj ∈ q +H(r, s). If i+ j + 1 ≤ r,
hence λi + λj + 1 ≥ p, then hi + hj = γ(i+ j + 1, λi + λj + 1− p).

The assumption s
r ≤ p− s− 2 implies rs+ s ≤ (p− 2)r, consequently

xs+ (y + 1)r = (i+ j + 1)s+ (λi + λj − (p− 2))r

≤ (i+ j + 1)s+ 2rs− (p− 2)r − s(i+ j) ≤ s+ 2rs− (rs+ s) = rs.

This shows that (x, y + 1) ∈ L(r, s) and hi + hj = γ(x, y) = q + γ(x, y + 1) ∈
q +H(r, s).
b) If i+ j + 1 < q and λi + λj + 1 < p, then

hi + hj = p(q − (i+ j + 2)) + q((p− 2)− (λi + λj)) ∈< p, q > .
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In case p − 2 > λi + λj we have hi + hj ∈ q + H(r, s). Otherwise hi + hj =
pq − (i+ j + 2)p and by assumption

2s− s

r
(r − 1) = s+

s

r
≤ p− 2 = λi + λj ≤ 2s− s

r
(i+ j),

hence i + j + 1 ≤ r. Then (i + j + 1, 0) ∈ L(r, s) and hi + hj − q = pq − ((i +
j + 1) + 1)p− q = γ(i+ j + 1, 0) ∈ H(r, s), i. e. hi + hj ∈ q +H(r, s).

We have proved in particular that edim(H(r, s)) = ⌊r⌋ + 3. For the state-
ments about the deviation and the type we show that the assumptions of Corol-
lary 3.1d) are satisfied. We have already seen in (3) that hi + hj ∈ q +H(r, s)
for i, j ∈ {0, . . . , ⌊r⌋}. Further h0 + p = (p − ⌊s⌋ − 1)q ∈ q + H(r, s) since
p− ⌊s⌋ − 1 ≥ 1. For i = 1, . . . , ⌊r⌋ we have hi + p = hi−1 + (λi−1 − λi)q, hence
also hi + p ∈ q +H(r, s).

Assertion c) of Corollary 3.1 can be applied to the following class of numerical
semigroups. Let p, q ∈ N with 3 ≤ p < q be coprime and let R(p, q) be the set
of all numerical semigroups H with < p, q >⊂ H ⊂< p, q, r >, where

r :=


p
2 p even
q
2 q even
p+q
2 p and q odd

In the notation of Rosales and Garćıa-Sánchez ([RG], Chap.5) < p, q, r > is the
semigroup <p,q>

2 .
We want to determine d(H) and t(H) for the semigroups in R(p, q). Accord-

ing to their geometric representation in [KW], Section 2 the H ∈ R(p, q) are
in one-to-one correspondence to the lattice paths in the rectangle R ⊂ R2 with
the corners (0, 0), (0, p′−1), (q′−1, p′−1), (q′−1, 0), where p′ := ⌊p

2⌋, q
′ := ⌊ q

2⌋.
The only H ∈ R(p, q) with edim(H) = 2 are < p, q >, corresponding to the
empty lattice path, further < p

2 , q >, if p is even, and < p, q
2 >, if q is even. For

the other H ∈ R(p, q) the elements p and q belong to the minimal system of
generators E of H. It is of the form

E = {p, q, h1, . . . , he−2}, e := edim(H) ≥ 3,

where hi = γ(ai, bi) = pq − (ai + 1)p− (bi + 1)q, if (ai, bi) (i = 1, . . . , e− 2) are
the corners of the lattice path defining H. ([KW], 2.10).

4.6 Example. For the non-symmetric H ∈ R(p, q) with edim(H) = 3 and all
H ∈ R(p, q) with edim(H) ≥ 4 we have

d(H) =

(
t(H)

2

)
and t(H) = edim(H)− 1.

For embedding dimension 3 this is well known. Assume therefore that edim(H) ≥
4. We shall show that H satisfies the conditions in c) of Corollary 3.1, maybe
with exchanged roles of p and q.
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Since < p, q >⊂ H ⊂< p, q, r > any hi is of the form

hi = r + λip+ µiq (λi, µi) ∈ N2,

and since

2r =


p p even

q q even

p+ q p and q odd

it follows that hi+hj ∈ p+H, if q is odd, hi+hj ∈ q+H, if p is odd. Therefore
the first condition of part c) of corollary 3.1 is satisfied, maybe with exchanged
roles of p and q.

Assume that the lattice path defining H starts at (0, b − 1) and ends at
(a − 1, 0). We show that for odd q the element h := p + γ(0, b) = (p − b − 1)q
and for odd p the element h := q+ γ(a, 0) = (q− a− 1)p satisfies the remaining
conditions of Corollary 3.1c).

For odd q we have to show
(4) h ∈ H \ {0}, h ̸∈ p+H and h ̸∈ γ(ai, bi) +H (i = 1, . . . , e− 2)

and
(5) h+ q ∈ p+H and h+ γ(ai, bi) ∈ p+H (i = 1, . . . , e− 2).

As for (4): We have h = (p − b − 1)q ∈ H \ {0} since p − 1 > p′ ≥ b, further
h − p = γ(0, b) ̸∈ H. Also h − γ(ai, bi) = γ(q − 2 − ai, b − bi − 1) ̸∈ H, as
q − 2 − ai ≥ q − 2 − ( q−1

2 − 1) = q−1
2 = q′ > q′ − 1 and b − 1 − bi ≥ 0, hence

(q − 2− ai, b− bi − 1) ∈ N2 is a point outside of the rectangle R.

As for (5): We have h+q = p+γ(0, b−1) ∈ p+H, since (0, b−1) is on the lattice
path of H. If b+bi < p−1, then h+γ(ai, bi) = (q−1−ai)p+(p−2−(b+bi))q ∈
p+ < p, q >.

If b + bi ≥ p − 1, then p′ − 1 ≥ bi ≥ p − 1 − b ≥ p − 1 − p′. This can only
happen, if p is even and bi =

p
2 −1 = b−1. Then (ai, bi) = (a1, b−1) is the first

corner of H. Since edim(H) ≥ 4 there is also a second one, hence a1+1 ≤ a−1.
It follows that h+γ(a1, b1) = p+γ(0, b)+γ(a1, p

′−1) = p+γ(a1+1, 0) ∈ p+H.
For odd p we can argue in the same manner exchanging p and q.

In the appendix for the H ∈ R(p, q) as in Example 4.6 a minimal system of
generators of the relation ideal of K[[H]] in terms of p, q and the coordinates of
the corners of H will be given.

Appendix: The relation ideal of the H ∈ R(p, q)

For H ∈ R(p, q) with edim(H) ≥ 3 let (ai, bi) (i = 1, . . . , s := edim(H)− 2)
be the corners of H and I be the relation ideal of K[[H]] in K[[X,Y,X1, . . . , Xs]]
for X 7→ tp, Y 7→ tq, Xi 7→ tγ(ai,bi). We know that {p, q, γ(ai, bi) (i = 1, . . . , s)}
is the minimal system of generators of H.
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Theorem. For the non-symmetric H ∈ R(p, q) with edim(H) = 3 and all
H ∈ R(p, q) with edim(H) ≥ 4 the ideal I has the following minimal system of
generators

G := {XiXj −Xq−ai−aj−2Y p−bi−bj−2}i,j=1,...,s,i≤j

∪{Y bi−bi+1Xi −Xai+1−aiXi+1}i=1,...,s−1

∪{Y p−b1−1 −Xa1+1X1, Y
bs+1Xs −Xq−as−1}.

Proof. Note that q − ai − aj − 2 ∈ N and p − bi − bj − 2 ∈ N since ai, aj <
q′, bi, bj < p′. Further q − ai − aj − 2 = 0 if and only if q is even, i = j = s and
as = q

2 − 1 (resp. p − bi − bj − 2 = 0 if and only if p is even, i = j = 1 and
b1 = p

2 −1). In both cases H is symmetric with edim(H) = 3 ([KW], 2.8) which
was excluded. We assume that X occurs in all polynomials of G, else we have
to exchange the roles of X and Y in the following.

Using the lattice path of H and the function γ we find the relations

γ(ai, bi)+ γ(aj , bj) = (q−ai−aj − 2)p+(p− bi− bj − 2)q (i, j = 1, . . . , s, i ≤ j)

(bi − bi+1)q + γ(ai, bi) = (ai+1 − ai)p+ γ(ai+1, bi+1) (i = 1, . . . , s− 1)

(p− b1 − 1)q = (a1 + 1)p+ γ(a1, b1) and (bs + 1)q + γ(as, bs) = (q − as − 1)p

which correspond to the polynomials of G. Thus these polynomials belong to
I. Let J be the ideal they generate.

To show thatG is a minimal system of generators we go over toK[[H]]/(tp) =
K[[Y,X1, . . . , Xs]]/Ī where Ī is the image of I by the map X 7→ 0.

Let J̄ ⊂ K[[Y,X1, . . . , Xs]] be the ideal generated by the images

XiXj (i, j = 1, . . . , s, i ≤ j)

Y bi−bi+1Xi (i = 1, . . . , s− 1)

Y p−b1−1and Y bs+1Xs.

of the polynomials from G. These monomials clearly form a minimal system
of generators of J̄ unless s = 1, p is even and b1 = p

2 − 1 . But this case was
excluded. It follows that G is a minimal system of generators of J .

It remains to be shown that I = J . We have

K[[Y,X1, . . . , Xs]]/J̄ ∼=

K[Y ]/(Y p−b1−1)⊕
s−1⊕
i=1

K[Y ]Xi/(Y
bi−bi+1Xi)⊕K[Y ]Xs/(Y

bs+1Xs),

hence

11



dimK(K[[Y,X1, . . . , Xs]]J̄) = p− b1 − 1 +

s−1∑
i=1

(bi − bi+1) + bs + 1 = p

= dimK(K[[H]]/(tp)) = dimK(K[[Y,X1, . . . , Xs]]Ī).

It follows that Ī = J̄ , i.e. I + (X) = J + (X), and by Nakayama I = J . �

Since |G| =
(
s+1
2

)
+ s + 1 =

(
edim(R)−1

2

)
+ edim(R) − 1 we have d(H) =(

edim(R)−1
2

)
for which in 4.6 a different proof was given.
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