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Let S = (ny,...,np) be a p-generated numerical semigroup.

kerp = {(x,y) e NP X NP | o(x) = ¢(y)}

@ The factorization set of s € S is the set of the solutions to
X1 4+ + XpNp = S, Z(S) = {x e N® | p(x) = s} = ¢ (s).

@ The length of x € Z(s) is x| = X1 + -+ + Xp.

@ Given another factorization y = (y1,..., ¥p), the distance
between x and y is
d(x,y) = max{lx — ged(x, y)l.ly — ged(x. y)I},
where ged(x, y) = (min{x, y1},..., min{xp, yp}).

@ A presentation of S is a congruence ¢ on NP contained in
ker ¢.
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We define

Betti(S) = {n € S | G, is not connected}.
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A minimal presentation is a presentation that is minimal with
respect to set inclusion (in this setting it is also minimal with
respect to cardinality).

A numerical semigroup is uniquely presented if for every two of its
minimal presentations o- and 7 and every (a, b) € o, either
(a,b) etor(b,a)er.

Foreach ne S let Cy,..., C; be the connected components of G,
(R-classes)
@ pick aj € Cj;
@ setop = {(a1, @), (@1,a3),..., (a1, a1)}.
o= U On
neS

is a (minimal) presentation of S.

Actually,
o= U Tp.
beBetti(S)
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A numerical semigroup S is a complete intersection, (Cl), if the
cardinality of any of its minimal presentations is equal to e(S) — 1.

A numerical semigroup is irreducible if it cannot be expressed as
the intersection of two numerical semigroups properly containing it.
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Frobenius number, F(S), is odd.

Proposition
S is a complete intersection = S symmetric.

If e(S) < 3, S is a complete intersection & S symmetric (Herzog).



The catenary degree

The catenary degree of s € S, ¢(s), is the minimum nonnegative
integer N such that for any two factorizations x and y of s, there
exists a sequence of factorizations xi, ..., x; of s such that

o X1 :X:Xt:y!
e forallie{1,...,t—1},d(x;,xi1) < N.

The catenary degree of S, ¢(S), is the supremum (maximum) of
the catenary degrees of the elements of S.
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The tame degree

The tame degree of S, t(S), is defined as the minimum N such that
for any s € S and any factorization x of s, if s — n; € S for some
ie{1,...,p}, then there exists another factorization y of s such
that d(x, y) < N and the ith coordinate of y is nonzero (n; “occurs”
in this factorization).
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The factorizations of 66 € (6,9, 11) are
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Besides, 9 divides 66
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Example: 66 € S = (6,9,11),1(66) =7

The factorizations of 66 € (6,9, 11) are

Z(66) = {(0,0,6), (1.3,3),(2.6.0), (4.1,3), (5.4,0),(8,2,0), (11,0,0)}

(8,2,0)
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Goal: Say if the inequality is strict or not for numerical

semigroups S with e(S) = 4 that are symmetric but not
complete intersection.
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The numerical semigroup S is 4-generated symmetric, not
complete intersection, if and only if there are integers aj, 1 < i < 4,
aj, I,j €{21,31,32,42,13,43, 14,24}, s.t..
@ 0 <aj<ajforalli,j,
@ w1 = wp1 + @31, @2 = @32 + @42, @3 = @13 + @43,
@4 = @14 + 24, @nd
@ Ny = o 3 14 + @32 W13 A24, N2 = 3 (4 (Y21 + (31 Q43 24,
N3 = /1 (Y4 32 + @14 42 31, N4 = 1 A2 43 + Q42 21 A{3.

Then

by = a1 ny = aizng + g
bo = asno = oy Ny + oy Ny
Betti(S) ={ bz=azng =a31 N +aszno
by = @4 ng = 4o N2 + @43 N3
bs = o1 Ny + @43 N3 = @30 No + 14 Ny
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Observations on the catenary degree of S

@ The catenary degree is reached in one of the Betti elements,
c(S) = max{c(b) | b € Betti(S)};

@ 4-generated symmetric and non complete intersection
numerical semigroups are uniquely presented (Katsabekis &
Ojeda) and therefore each Betti element has exactly two
factorizations having gcd = (0,0, 0,0) (Garcia-Sanchez &
Ojeda);

@ for each one of the Betti elements the catenary degree is the
distance between its two factorizations, i.e., since their gcd is
zero, c(b) = max{|z| | z € Z(b)} .

Then,

¢(S) = max{ay, a1z + @14, 2, + az4, a3, + azo,

@4, Q42 + @43, @21 + @43, @32 + @14}
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Conjecture: For 4-generated symmetric non complete intersection
numerical semigroups ¢(S) < t(S).

Known: t(S) = max{t(n) | n € Prim(S) N NC(S)}, where

Prim(S) ={n € S| Ax, y € Z(n) that are minimal positive solutions to
X1M + XoN2 + X3N3 + XaNg — Y1y — YaNo — Y33 — yang = 0
and x # y}

NC(S) = {n € S| G, is not complete}
Betti(S) € Prim(S) N NC(S). But since each Betti element b; has
just two factorizations with ged = (0,0, 0,0), t(b;) = c(b;)

find an element nin (Prim(S) N NC(S)) \ Betti(S) s.t.
t(n) > ¢(S).
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The case ¢(S) = a;, i € {1,2,3,4}

Take k =minfhe N | hnj—nje S,j=i+1, ( mod 4)}.
(k>a,-)

Take kn;.

Z(kn;) > z such that |z| = k.

3z’ € Z(kn;) in which n; occurs and n; does not occur.
Note: kn; € Prim(S) N NC(S).

t(knj) > d(z,2") > k > aj = ¢(S)

'l
t(S) > t(kn;) > ¢(S)



Thank you



