Studying the catenary and the tame degrees in 4-generated symmetric non complete intersection numerical semigroups

Caterina Viola

International meeting on numerical semigroups with applications
Levico Terme - July 2016

Numerical Semigroups

Every numerical semigroup is finitely generated and admits a unique minimal system of generators.

Numerical Semigroups

Every numerical semigroup is finitely generated and admits a unique minimal system of generators.
The cardinality of this minimal system of generators is called embedding dimension of S and will be denoted by e(S).

Numerical Semigroups

Every numerical semigroup is finitely generated and admits a unique minimal system of generators.
The cardinality of this minimal system of generators is called embedding dimension of S and will be denoted by e(S).

Example

$$
\begin{aligned}
& S=\langle 5,8,11,14,17\rangle \\
& \mathrm{e}(S)=5
\end{aligned}
$$

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right)=x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

$$
\operatorname{ker} \varphi=\left\{(x, y) \in \mathbb{N}^{p} \times \mathbb{N}^{p} \mid \varphi(x)=\varphi(y)\right\}
$$

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right)=x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

$$
\operatorname{ker} \varphi=\left\{(x, y) \in \mathbb{N}^{p} \times \mathbb{N}^{p} \mid \varphi(x)=\varphi(y)\right\}
$$

- The factorization set of $s \in S$ is the set of the solutions to

$$
x_{1} n_{1}+\cdots+x_{p} n_{p}=s, Z(s)=\left\{x \in \mathbb{N}^{e} \mid \varphi(x)=s\right\}=\varphi^{-1}(s)
$$

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right)=x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

$$
\operatorname{ker} \varphi=\left\{(x, y) \in \mathbb{N}^{p} \times \mathbb{N}^{p} \mid \varphi(x)=\varphi(y)\right\}
$$

- The factorization set of $s \in S$ is the set of the solutions to

$$
x_{1} n_{1}+\cdots+x_{p} n_{p}=s, Z(s)=\left\{x \in \mathbb{N}^{e} \mid \varphi(x)=s\right\}=\varphi^{-1}(s)
$$

- The length of $x \in Z(s)$ is $|x|=x_{1}+\cdots+x_{p}$.

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right)=x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

$\operatorname{ker} \varphi=\left\{(x, y) \in \mathbb{N}^{p} \times \mathbb{N}^{p} \mid \varphi(x)=\varphi(y)\right\}$

- The factorization set of $s \in S$ is the set of the solutions to

$$
x_{1} n_{1}+\cdots+x_{p} n_{p}=s, Z(s)=\left\{x \in \mathbb{N}^{e} \mid \varphi(x)=s\right\}=\varphi^{-1}(s)
$$

- The length of $x \in Z(s)$ is $|x|=x_{1}+\cdots+x_{p}$.
- Given another factorization $y=\left(y_{1}, \ldots, y_{p}\right)$, the distance between x and y is

$$
\mathrm{d}(x, y)=\max \{|x-\operatorname{gcd}(x, y)|,|y-\operatorname{gcd}(x, y)|\}
$$

$$
\text { where } \operatorname{gcd}(x, y)=\left(\min \left\{x_{1}, y_{1}\right\}, \ldots, \min \left\{x_{p}, y_{p}\right\}\right)
$$

Setup

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup.

$$
\varphi: \mathbb{N}^{p} \rightarrow S, \varphi\left(x_{1}, \ldots, x_{p}\right)=x_{1} n_{1}+\cdots+x_{p} n_{p}
$$

$\operatorname{ker} \varphi=\left\{(x, y) \in \mathbb{N}^{p} \times \mathbb{N}^{p} \mid \varphi(x)=\varphi(y)\right\}$

- The factorization set of $s \in S$ is the set of the solutions to

$$
x_{1} n_{1}+\cdots+x_{p} n_{p}=s, Z(s)=\left\{x \in \mathbb{N}^{e} \mid \varphi(x)=s\right\}=\varphi^{-1}(s)
$$

- The length of $x \in Z(s)$ is $|x|=x_{1}+\cdots+x_{p}$.
- Given another factorization $y=\left(y_{1}, \ldots, y_{p}\right)$, the distance between x and y is $\mathrm{d}(x, y)=\max \{|x-\operatorname{gcd}(x, y)|,|y-\operatorname{gcd}(x, y)|\}$, where $\operatorname{gcd}(x, y)=\left(\min \left\{x_{1}, y_{1}\right\}, \ldots, \min \left\{x_{p}, y_{p}\right\}\right)$.
- A presentation of S is a congruence σ on \mathbb{N}^{p} contained in $\operatorname{ker} \varphi$.

The graph G_{n}

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup, $n \in S$ we define the graph $G_{n}=\left(V_{n}, E_{n}\right)$ such that, for any $1 \leq i, j \leq p$, $i \neq j$:

- $n_{i} \in V_{n} \Leftrightarrow n-n_{i} \in S$;
- $\left(n_{i}, n_{j}\right) \in E_{n} \Leftrightarrow n-\left(n_{i}+n_{j}\right) \in S$.

The graph G_{n}

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup, $n \in S$ we define the graph $G_{n}=\left(V_{n}, E_{n}\right)$ such that, for any $1 \leq i, j \leq p$, $i \neq j$:

- $n_{i} \in V_{n} \Leftrightarrow n-n_{i} \in S$;
- $\left(n_{i}, n_{j}\right) \in E_{n} \Leftrightarrow n-\left(n_{i}+n_{j}\right) \in S$.

Example: $S=\langle 3,5,7\rangle$

G_{6}

The graph G_{n}

Let $S=\left\langle n_{1}, \ldots, n_{p}\right\rangle$ be a p-generated numerical semigroup, $n \in S$ we define the graph $G_{n}=\left(V_{n}, E_{n}\right)$ such that, for any $1 \leq i, j \leq p$, $i \neq j$:

- $n_{i} \in V_{n} \Leftrightarrow n-n_{i} \in S$;
- $\left(n_{i}, n_{j}\right) \in E_{n} \Leftrightarrow n-\left(n_{i}+n_{j}\right) \in S$.

Example: $S=\langle 3,5,7\rangle$

We define
$\operatorname{Betti}(S)=\left\{n \in S \mid G_{n}\right.$ is not connected $\}$.

Minimal presentations

A minimal presentation is a presentation that is minimal with respect to set inclusion (in this setting it is also minimal with respect to cardinality).

Minimal presentations

A minimal presentation is a presentation that is minimal with respect to set inclusion (in this setting it is also minimal with respect to cardinality).

A numerical semigroup is uniquely presented if for every two of its minimal presentations σ and τ and every $(a, b) \in \sigma$, either $(a, b) \in \tau$ or $(b, a) \in \tau$.

Minimal presentations

A minimal presentation is a presentation that is minimal with respect to set inclusion (in this setting it is also minimal with respect to cardinality).

A numerical semigroup is uniquely presented if for every two of its minimal presentations σ and τ and every $(a, b) \in \sigma$, either $(a, b) \in \tau$ or $(b, a) \in \tau$.

For each $n \in S$ let C_{1}, \ldots, C_{t} be the connected components of G_{n} (\mathcal{R}-classes)

- pick $\alpha_{i} \in C_{i}$;
- set $\sigma_{n}=\left\{\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{3}\right), \ldots,\left(\alpha_{1}, \alpha_{t}\right)\right\}$.

$$
\sigma=\bigcup_{n \in S} \sigma_{n}
$$

is a (minimal) presentation of S.

Minimal presentations

A minimal presentation is a presentation that is minimal with respect to set inclusion (in this setting it is also minimal with respect to cardinality).

A numerical semigroup is uniquely presented if for every two of its minimal presentations σ and τ and every $(a, b) \in \sigma$, either $(a, b) \in \tau$ or $(b, a) \in \tau$.

For each $n \in S$ let C_{1}, \ldots, C_{t} be the connected components of G_{n} (\mathcal{R}-classes)

- pick $\alpha_{i} \in C_{i}$;
- set $\sigma_{n}=\left\{\left(\alpha_{1}, \alpha_{2}\right),\left(\alpha_{1}, \alpha_{3}\right), \ldots,\left(\alpha_{1}, \alpha_{t}\right)\right\}$.

$$
\sigma=\bigcup_{n \in S} \sigma_{n}
$$

is a (minimal) presentation of S.
Actually,

$$
\sigma=\bigcup_{b \in \operatorname{Betti}(S)} \sigma_{b} .
$$

ρ minimal presentation for S, then $|\rho| \geq e(S)-1$.
A numerical semigroup S is a complete intersection, (Cl), if the cardinality of any of its minimal presentations is equal to $e(S)-1$.
ρ minimal presentation for S, then $|\rho| \geq e(S)-1$.
A numerical semigroup S is a complete intersection, (Cl), if the cardinality of any of its minimal presentations is equal to $e(S)-1$.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it.
ρ minimal presentation for S, then $|\rho| \geq e(S)-1$.
A numerical semigroup S is a complete intersection, (Cl), if the cardinality of any of its minimal presentations is equal to $e(S)-1$.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and the Frobenius number, $F(S)$, is odd.
ρ minimal presentation for S, then $|\rho| \geq e(S)-1$.
A numerical semigroup S is a complete intersection, (CI), if the cardinality of any of its minimal presentations is equal to $e(S)-1$.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and the Frobenius number, $F(S)$, is odd.

Proposition
S is a complete intersection $\Rightarrow S$ symmetric.
ρ minimal presentation for S, then $|\rho| \geq e(S)-1$.
A numerical semigroup S is a complete intersection, (CI), if the cardinality of any of its minimal presentations is equal to $e(S)-1$.

A numerical semigroup is irreducible if it cannot be expressed as the intersection of two numerical semigroups properly containing it.

A numerical semigroup S is symmetric if it is irreducible and the Frobenius number, $F(S)$, is odd.

Proposition

S is a complete intersection $\Rightarrow S$ symmetric.
If $e(S) \leq 3, S$ is a complete intersection $\Leftrightarrow S$ symmetric (Herzog).

The catenary degree

The catenary degree of $s \in S, c(s)$, is the minimum nonnegative integer N such that for any two factorizations x and y of s, there exists a sequence of factorizations x_{1}, \ldots, x_{t} of s such that

- $x_{1}=x, x_{t}=y$,
- for all $i \in\{1, \ldots, t-1\}, \mathrm{d}\left(x_{i}, x_{i+1}\right) \leq N$.

The catenary degree of $S, \mathrm{c}(S)$, is the supremum (maximum) of the catenary degrees of the elements of S.

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

Example: $66 \in S=\langle 6,9,11\rangle, c(66)=4$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

The distance between $(11,0,0)$ and $(0,0,6)$ is 11 .

The tame degree

The tame degree of $S, \mathrm{t}(S)$, is defined as the minimum N such that for any $s \in S$ and any factorization x of s, if $s-n_{i} \in S$ for some $i \in\{1, \ldots, p\}$, then there exists another factorization y of s such that $\mathrm{d}(x, y) \leq N$ and the ith coordinate of y is nonzero (n_{i} "occurs" in this factorization).

Example: $66 \in S=\langle 6,9,11\rangle, \mathrm{t}(66)=7$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

Besides, 9 divides 66
$(11,0,0)$

Example: $66 \in S=\langle 6,9,11\rangle, \mathrm{t}(66)=7$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

and 11 also divides 66
$(8,2,0)$
3|
$(11,0,0)$

Example: $66 \in S=\langle 6,9,11\rangle, \mathrm{t}(66)=7$

The factorizations of $66 \in\langle 6,9,11\rangle$ are

$$
Z(66)=\{(0,0,6),(1,3,3),(2,6,0),(4,1,3),(5,4,0),(8,2,0),(11,0,0)\}
$$

$(8,2,0)$
$3 \mid$
$(11,0,0)$
$7 \mid$
$(4,1,3)$

The catenary degree of S is less than or equal to the tame degree of S.

$$
c(S) \leq t(S)
$$

The catenary degree of S is less than or equal to the tame degree of S.

$$
c(S) \leq t(S)
$$

Goal: Say if the inequality is strict or not for numerical semigroups S with $e(S)=4$ that are symmetric but not complete intersection.

Bresinsky's theorem

The numerical semigroup S is 4 -generated symmetric, not complete intersection, if and only if there are integers $\alpha_{i}, 1 \leq i \leq 4$, $\alpha_{i j}, i, j \in\{21,31,32,42,13,43,14,24\}$, s.t.:

Bresinsky's theorem

The numerical semigroup S is 4-generated symmetric, not complete intersection, if and only if there are integers $\alpha_{i}, 1 \leq i \leq 4$, $\alpha_{i j}, i, j \in\{21,31,32,42,13,43,14,24\}$, s.t.:

- $0<\alpha_{i j}<\alpha_{i}$, for all i, j,

Bresinsky's theorem

The numerical semigroup S is 4 -generated symmetric, not complete intersection, if and only if there are integers $\alpha_{i}, 1 \leq i \leq 4$, $\alpha_{i j}, i, j \in\{21,31,32,42,13,43,14,24\}$, s.t.:

- $0<\alpha_{i j}<\alpha_{i}$, for all i, j,
- $\alpha_{1}=\alpha_{21}+\alpha_{31}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{43}$,
$\alpha_{4}=\alpha_{14}+\alpha_{24}$, and

Bresinsky's theorem

The numerical semigroup S is 4-generated symmetric, not complete intersection, if and only if there are integers $\alpha_{i}, 1 \leq i \leq 4$, $\alpha_{i j}, i, j \in\{21,31,32,42,13,43,14,24\}$, s.t.:

- $0<\alpha_{i j}<\alpha_{i}$, for all i, j,
- $\alpha_{1}=\alpha_{21}+\alpha_{31}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{43}$, $\alpha_{4}=\alpha_{14}+\alpha_{24}$, and
- $n_{1}=\alpha_{2} \alpha_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}, n_{2}=\alpha_{3} \alpha_{4} \alpha_{21}+\alpha_{31} \alpha_{43} \alpha_{24}$,

$$
n_{3}=\alpha_{1} \alpha_{4} \alpha_{32}+\alpha_{14} \alpha_{42} \alpha_{31}, n_{4}=\alpha_{1} \alpha_{2} \alpha_{43}+\alpha_{42} \alpha_{21} \alpha_{13} .
$$

Bresinsky's theorem

The numerical semigroup S is 4 -generated symmetric, not complete intersection, if and only if there are integers $\alpha_{i}, 1 \leq i \leq 4$, $\alpha_{i j}, i, j \in\{21,31,32,42,13,43,14,24\}$, s.t.:

- $0<\alpha_{i j}<\alpha_{i}$, for all i, j,
- $\alpha_{1}=\alpha_{21}+\alpha_{31}, \alpha_{2}=\alpha_{32}+\alpha_{42}, \alpha_{3}=\alpha_{13}+\alpha_{43}$, $\alpha_{4}=\alpha_{14}+\alpha_{24}$, and
- $\boldsymbol{n}_{1}=\alpha_{2} \alpha_{3} \alpha_{14}+\alpha_{32} \alpha_{13} \alpha_{24}, \boldsymbol{n}_{2}=\alpha_{3} \alpha_{4} \alpha_{21}+\alpha_{31} \alpha_{43} \alpha_{24}$,

$$
n_{3}=\alpha_{1} \alpha_{4} \alpha_{32}+\alpha_{14} \alpha_{42} \alpha_{31}, n_{4}=\alpha_{1} \alpha_{2} \alpha_{43}+\alpha_{42} \alpha_{21} \alpha_{13}
$$

Then

$$
\operatorname{Betti}(S)=\left\{\begin{array}{l}
b_{1}=\alpha_{1} n_{1}=\alpha_{13} n_{3}+\alpha_{14} n_{4} \\
b_{2}=\alpha_{2} n_{2}=\alpha_{21} n_{1}+\alpha_{24} n_{4} \\
b_{3}=\alpha_{3} n_{3}=\alpha_{31} n_{1}+\alpha_{32} n_{2} \\
b_{4}=\alpha_{4} n_{4}=\alpha_{42} n_{2}+\alpha_{43} n_{3} \\
b_{5}=\alpha_{21} n_{1}+\alpha_{43} n_{3}=\alpha_{32} n_{2}+\alpha_{14} n_{4}
\end{array}\right.
$$

Observations on the catenary degree of S

- The catenary degree is reached in one of the Betti elements, $c(S)=\max \{c(b) \mid b \in \operatorname{Betti}(S)\} ;$

Observations on the catenary degree of S

- The catenary degree is reached in one of the Betti elements, $c(S)=\max \{c(b) \mid b \in \operatorname{Betti}(S)\}$;
- 4-generated symmetric and non complete intersection numerical semigroups are uniquely presented (Katsabekis \& Ojeda) and therefore each Betti element has exactly two factorizations having $\operatorname{gcd}=(0,0,0,0)$ (García-Sánchez \& Ojeda);

Observations on the catenary degree of S

- The catenary degree is reached in one of the Betti elements, $c(S)=\max \{c(b) \mid b \in \operatorname{Betti}(S)\}$;
- 4-generated symmetric and non complete intersection numerical semigroups are uniquely presented (Katsabekis \& Ojeda) and therefore each Betti element has exactly two factorizations having gcd $=(0,0,0,0)$ (García-Sánchez \& Ojeda);
- for each one of the Betti elements the catenary degree is the distance between its two factorizations, i.e., since their gcd is zero, $c(b)=\max \{|z| \mid z \in Z(b)\}$.

Observations on the catenary degree of S

- The catenary degree is reached in one of the Betti elements, $c(S)=\max \{c(b) \mid b \in \operatorname{Betti}(S)\}$;
- 4-generated symmetric and non complete intersection numerical semigroups are uniquely presented (Katsabekis \& Ojeda) and therefore each Betti element has exactly two factorizations having $\operatorname{gcd}=(0,0,0,0)$ (García-Sánchez \& Ojeda);
- for each one of the Betti elements the catenary degree is the distance between its two factorizations, i.e., since their gcd is zero, $c(b)=\max \{|z| \mid z \in Z(b)\}$.

Then,

$$
\begin{gathered}
\boldsymbol{c}(\boldsymbol{S})=\max \left\{\alpha_{1}, \alpha_{13}+\alpha_{14}, \alpha_{2}, \alpha_{21}+\alpha_{24}, \alpha_{3}, \alpha_{31}+\alpha_{32}\right. \\
\left.\alpha_{4}, \alpha_{42}+\alpha_{43}, \alpha_{21}+\alpha_{43}, \alpha_{32}+\alpha_{14}\right\} .
\end{gathered}
$$

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Known: $t(S)=\max \{t(n) \mid n \in \operatorname{Prim}(S) \cap N C(S)\}$,

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Known: $t(S)=\max \{t(n) \mid n \in \operatorname{Prim}(S) \cap \operatorname{NC}(S)\}$, where
$\operatorname{Prim}(S)=\{n \in S \mid \exists x, y \in Z(n)$ that are minimal positive solutions to

$$
\begin{aligned}
& x_{1} n_{1}+x_{2} n_{2}+x_{3} n_{3}+x_{4} n_{4}-y_{1} n_{1}-y_{2} n_{2}-y_{3} n_{3}-y_{4} n_{4}=0 \\
& \text { and } x \neq y\}
\end{aligned}
$$

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Known: $t(S)=\max \{t(n) \mid n \in \operatorname{Prim}(S) \cap \operatorname{NC}(S)\}$, where
$\operatorname{Prim}(S)=\{n \in S \mid \exists x, y \in Z(n)$ that are minimal positive solutions to

$$
\begin{aligned}
& x_{1} n_{1}+x_{2} n_{2}+x_{3} n_{3}+x_{4} n_{4}-y_{1} n_{1}-y_{2} n_{2}-y_{3} n_{3}-y_{4} n_{4}=0 \\
& \text { and } x \neq y\}
\end{aligned}
$$

$N C(S)=\left\{n \in S \mid G_{n}\right.$ is not complete $\}$

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Known: $t(S)=\max \{t(n) \mid n \in \operatorname{Prim}(S) \cap \operatorname{NC}(S)\}$, where
$\operatorname{Prim}(S)=\{n \in S \mid \exists x, y \in Z(n)$ that are minimal positive solutions to

$$
\begin{aligned}
& x_{1} n_{1}+x_{2} n_{2}+x_{3} n_{3}+x_{4} n_{4}-y_{1} n_{1}-y_{2} n_{2}-y_{3} n_{3}-y_{4} n_{4}=0 \\
& \text { and } x \neq y\}
\end{aligned}
$$

$\mathrm{NC}(S)=\left\{n \in S \mid G_{n}\right.$ is not complete $\}$
$\operatorname{Betti}(S) \subseteq \operatorname{Prim}(S) \cap N C(S)$.

Conjecture: For 4-generated symmetric non complete intersection numerical semigroups $c(S)<t(S)$.

How to prove it?

Known: $t(S)=\max \{t(n) \mid n \in \operatorname{Prim}(S) \cap \operatorname{NC}(S)\}$, where
$\operatorname{Prim}(S)=\{n \in S \mid \exists x, y \in Z(n)$ that are minimal positive solutions to

$$
\begin{aligned}
& x_{1} n_{1}+x_{2} n_{2}+x_{3} n_{3}+x_{4} n_{4}-y_{1} n_{1}-y_{2} n_{2}-y_{3} n_{3}-y_{4} n_{4}=0 \\
& \text { and } x \neq y\}
\end{aligned}
$$

$\mathrm{NC}(S)=\left\{n \in S \mid G_{n}\right.$ is not complete $\}$
$\operatorname{Betti}(S) \subseteq \operatorname{Prim}(S) \cap N C(S)$. But since each Betti element b_{i} has just two factorizations with $\mathrm{gcd}=(0,0,0,0), t\left(b_{i}\right)=c\left(b_{i}\right)$

Idea: find an element n in $(\operatorname{Prim}(S) \cap N C(S)) \backslash \operatorname{Betti}(S)$ s.t. $t(n)>c(S)$.

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
($k>\alpha_{i}$)

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
($k>\alpha_{i}$)
Take $k n_{i}$.

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
$\left(k>\alpha_{i}\right)$
Take $k n_{i}$.
$Z\left(k n_{i}\right) \ni z$ such that $|z|=k$.

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
($k>\alpha_{i}$)
Take $k n_{i}$.
$Z\left(k n_{i}\right) \ni z$ such that $|z|=k$.
$\exists z^{\prime} \in Z\left(k n_{i}\right)$ in which n_{j} occurs and n_{i} does not occur.

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
($k>\alpha_{i}$)
Take $k n_{i}$.
$Z\left(k n_{i}\right) \ni z$ such that $|z|=k$.
$\exists z^{\prime} \in Z\left(k n_{i}\right)$ in which n_{j} occurs and n_{i} does not occur.
Note: $k n_{i} \in \operatorname{Prim}(S) \cap N C(S)$.

$$
t\left(k n_{i}\right) \geq d\left(z, z^{\prime}\right) \geq k>\alpha_{i}=c(S)
$$

The case $c(S)=\alpha_{i}, i \in\{1,2,3,4\}$

Take $k=\min \left\{h \in \mathbb{N} \mid h n_{i}-n_{j} \in S, j \equiv i+1, \quad(\bmod 4)\right\}$.
($k>\alpha_{i}$)
Take $k n_{i}$.
$Z\left(k n_{i}\right) \ni z$ such that $|z|=k$.
$\exists z^{\prime} \in Z\left(k n_{i}\right)$ in which n_{j} occurs and n_{i} does not occur.
Note: $k n_{i} \in \operatorname{Prim}(S) \cap N C(S)$.

$$
t\left(k n_{i}\right) \geq d\left(z, z^{\prime}\right) \geq k>\alpha_{i}=c(S)
$$

$\urcorner \Downarrow$

$$
t(S) \geq t\left(k n_{i}\right)>c(S)
$$

Thank you

