Distribution of Frobenius Numbers

Alexey Ustinov

Pacific National University, Institute of Applied Mathematics (Khabarovsk), Russian Academy of Sciences

July 5, 2016

Frobenius numbers

The Diophantine Frobenius problem

Let a_{1}, \ldots, a_{n} be positive integers with $a_{i} \geq 2$ and $\left(a_{1}, \ldots, a_{n}\right)=1$. The following naive questions is known as "Diophantine Frobenius problem" (or "Coin exchange problem"):
Determine the largest number which is not of the form

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}
$$

where the coefficients x_{i} are non-negative integers. This number is denoted by $g\left(a_{1}, \ldots, a_{n}\right)$ and is called the Frobenius number.

Frobenius numbers

The Diophantine Frobenius problem

Example
 Let $a=3, b=5$. Then $g(a, b)=$?

Frobenius numbers

The Diophantine Frobenius problem

Example

Let $a=3, b=5$. Then $g(a, b)=7$:

$$
7 \neq 3 x+5 y \quad(x, y \geq 0)
$$

but for every $m>7$ there are some $x, y \geq 0$ such that $m=3 x+5 y$.

Frobenius numbers

The Diophantine Frobenius problem

Example

Let $a=3, b=5$. Then $g(a, b)=7$:

$$
7 \neq 3 x+5 y \quad(x, y \geq 0)
$$

but for every $m>7$ there are some $x, y \geq 0$ such that $m=3 x+5 y$.
It is known that

$$
g(a, b)=a b-a-a
$$

The challenge is to find $g\left(a_{1}, \ldots, a_{n}\right)$ when $n \geq 3$.

Frobenius numbers

The Diophantine Frobenius problem

Example

Let $a=3, b=5$. Then $g(a, b)=7$:

$$
7 \neq 3 x+5 y \quad(x, y \geq 0)
$$

but for every $m>7$ there are some $x, y \geq 0$ such that $m=3 x+5 y$.
It is known that

$$
g(a, b)=a b-a-a
$$

The challenge is to find $g\left(a_{1}, \ldots, a_{n}\right)$ when $n \geq 3$.

Example

$$
g(3,5,7)=4:
$$

$$
4 \neq 3 x+5 y+7 z \quad(x, y, z \geq 0)
$$

Frobenius numbers

 positive Frobenius numberWe shall consider

$$
f(a, b, c)=g(a, b, c)+a+b+c
$$

the positive Frobenius number of a, b, c, defined to be the largest integer not representable as a positive linear combination of a, b, c

$$
a x+b y+c z, \quad x, y, z \geq 1
$$

Positive Frobenius numbers are better because of Johnson's formula: for $d|a, d| b$

$$
f(a, b, c)=d \cdot f\left(\frac{a}{d}, \frac{b}{d}, c\right)
$$

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)
length $(\uparrow)=3, \quad$ length $(\uparrow)=5$

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

$t(x, y)=b x+c y($ time $)$

5	8	11		
0	3	6	9	

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

Double loop network

$b=3$ (red step), $c=5$ (blue step), $a=7$ (number of vertices)

$$
\operatorname{diam}=g(a, b, c)+a \quad(=11)
$$

Double loop network

$b=9$ (red step), $c=5$ (blue step), $a=17$ (number of vertices)

Double loop network

$b=9$ (red step), $c=5$ (blue step), $a=17$ (number of vertices)

Double loop network

$b=9$ (red step), $c=5$ (blue step), $a=17$ (number of vertices)

Double loop network

$b=9$ (red step), $c=5$ (blue step), $a=17$ (number of vertices)

Double loop network

$b=9$ (red step), $c=5$ (blue step), $a=17$ (number of vertices)

Rödseth's formula

From obvious property

$$
0=\frac{s_{m+1}}{q_{m+1}}<\frac{s_{m-1}}{q_{m-1}}<\ldots<\frac{s_{1}}{q_{1}}<\frac{s_{0}}{q_{0}}=\infty
$$

follows that for some n

$$
\frac{s_{n}}{q_{n}} \leq \frac{c}{b}<\frac{s_{n-1}}{q_{n-1}} .
$$

Rödseth's formula

From obvious property

$$
0=\frac{s_{m+1}}{q_{m+1}}<\frac{s_{m-1}}{q_{m-1}}<\ldots<\frac{s_{1}}{q_{1}}<\frac{s_{0}}{q_{0}}=\infty
$$

follows that for some n

$$
\frac{s_{n}}{q_{n}} \leq \frac{c}{b}<\frac{s_{n-1}}{q_{n-1}} .
$$

Theorem (Ö. Rödseth, 1978)

$$
f(a, b, c)=b s_{n-1}+c q_{n}-\min \left\{b s_{n}, c q_{n-1}\right\}
$$

Rödseth's formula

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find $f(a, b, c)$ for $(a, b)=(a, c)=(b, c)=1$.
Let / is such that

$$
b l \equiv c \quad(\bmod a), \quad 1 \leq I \leq a .
$$

Reduced regular continued fraction

$$
\frac{a}{l}=\left\langle a_{1}, \ldots, a_{m}\right\rangle=a_{1}-\frac{1}{a_{2}-\ddots-\frac{1}{a_{m}}},
$$

where $a_{1}, \ldots, a_{m} \geq 2$, defines sequences $\left\{s_{j}\right\},\left\{q_{j}\right\}$ by

$$
\frac{q_{j+1}}{q_{j}}=\left\langle a_{j}, \ldots, a_{1}\right\rangle, \quad \frac{s_{j}}{s_{j+1}}=\left\langle a_{j+1}, \ldots, a_{m}\right\rangle \quad(0 \leq j \leq m) .
$$

Rödseth's formula

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find $f(a, b, c)$ for $(a, b)=(a, c)=(b, c)=1$.
Let $/$ is such that

$$
b l \equiv c(\bmod a), \quad 1 \leq 1 \leq a .
$$

Reduced regular continued fraction

$$
\frac{a}{l}=\left\langle a_{1}, \ldots, a_{m}\right\rangle=a_{1}-\frac{1}{a_{2}-\ddots-\frac{1}{a_{m}}},
$$

where $a_{1}, \ldots, a_{m} \geq 2$, defines sequences $\left\{s_{j}\right\},\left\{q_{j}\right\}$ by

$$
\frac{q_{j+1}}{q_{j}}=\left\langle a_{j}, \ldots, a_{1}\right\rangle, \quad \frac{s_{j}}{s_{j+1}}=\left\langle a_{j+1}, \ldots, a_{m}\right\rangle \quad(0 \leq j \leq m) .
$$

Rödseth's formula

Rödseth's formula can be written in terms of reduced regular continued fraction. We want to find $f(a, b, c)$ for $(a, b)=(a, c)=(b, c)=1$.
Let $/$ is such that

$$
b l \equiv c(\bmod a), \quad 1 \leq 1 \leq a .
$$

Reduced regular continued fraction

$$
\frac{a}{l}=\left\langle a_{1}, \ldots, a_{m}\right\rangle=a_{1}-\frac{1}{a_{2}-\ddots-\frac{1}{a_{m}}},
$$

where $a_{1}, \ldots, a_{m} \geq 2$, defines sequences $\left\{s_{j}\right\},\left\{q_{j}\right\}$ by

$$
\frac{q_{j+1}}{q_{j}}=\left\langle a_{j}, \ldots, a_{1}\right\rangle, \quad \frac{s_{j}}{s_{j+1}}=\left\langle a_{j+1}, \ldots, a_{m}\right\rangle \quad(0 \leq j \leq m) .
$$

General idea

Reduced regular continued fraction

We have one-to-one correspondence between the set of quadruples $\left(q_{n}, s_{n}, q_{n-1}, s_{n-1}\right)$ (taken for all lattices $\left.\Lambda_{l}\right)$ and the solutions of the equation

$$
x_{1} y_{1}-x_{2} y_{2}=a
$$

with $0 \leq x_{2}<x_{1}, 0 \leq y_{2}<y_{1},\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)=1$:

$$
\left(q_{n}, s_{n}, q_{n-1}, s_{n-1}\right) \longleftrightarrow\left(x_{1}, x_{2}, y_{2}, y_{1}\right)
$$

General idea

Kloosterman sums

From the equation

$$
x_{1} y_{1}-x_{2} y_{2}=a
$$

it follows that

$$
x_{1} y_{1} \equiv a \quad\left(\bmod x_{2}\right)
$$

and Kloosterman sums

$$
K_{q}(I, m, n)=\sum_{\substack{x, y=1 \\ x y \equiv I(\bmod q)}}^{q} e^{2 \pi i \frac{m x+n y}{q}}
$$

come into play. Solutions of the congruence $x y \equiv l(\bmod q)$ are uniformly distributed due to the bounds for Kloosterman sums.

General idea

Kloosterman sums

This fact allows to calculate sums of the form

$$
\sum_{x y \equiv I} F(x, y)
$$

and

$$
\sum_{x_{1} y_{1}-x_{2} y_{2}=a} F\left(x_{1}, y_{1}, x_{2}, y_{2}\right) .
$$

In particular it allows to study distribution of Frobenius numbers $f(a, b, c)$.

Conjectures

Rödseth (1990) proved a lower bound for Frobenius numbers:

$$
f\left(a_{1}, \ldots, a_{n}\right) \geq \sqrt[n-1]{(n-1)!a_{1} \ldots a_{n}}
$$

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers $\frac{f(a, b, c)}{\sqrt{a b c}}$ over cube $[1, N]^{3}$ tends to some constant as $N \rightarrow \infty$.

Conjectures

Rödseth (1990) proved a lower bound for Frobenius numbers:

$$
f\left(a_{1}, \ldots, a_{n}\right) \geq \sqrt[n-1]{(n-1)!a_{1} \ldots a_{n}}
$$

Conjecture (Davison, 1994)

Average value of normalized Frobenius numbers $\frac{f(a, b, c)}{\sqrt{a b c}}$ over cube $[1, N]^{3}$ tends to some constant as $N \rightarrow \infty$.

Conjecture (Arnold, 1999, 2005)

There is weak asymptotic for Frobenius numbers: for arbitrary n average value of $f\left(x_{1}, \ldots, x_{n}\right)$ over small cube with a center in $\left(a_{1}, \ldots, a_{n}\right)$ approximately equal to $c_{n} \sqrt[n-1]{a_{1} \ldots a_{n}}$ for some constant $c_{n}>0$.

Limiting density function

Theorem (Bourgain and Sinaĭ, 2007)

Normalized Frobenius numbers $\frac{f(a, b, c)}{\sqrt{a b c}}$ (under some natural assumption) have limiting density function.

Weak asymptotic

Let $x_{1}, x_{2}>0$ and
$M_{a}\left(x_{1}, x_{2}\right)=\left\{(b, c): 1 \leq b \leq x_{1} a, 1 \leq c \leq x_{2} a,(a, b, c)=1\right\}$.

Weak asymptotic

Let $x_{1}, x_{2}>0$ and
$M_{a}\left(x_{1}, x_{2}\right)=\left\{(b, c): 1 \leq b \leq x_{1} a, 1 \leq c \leq x_{2} a,(a, b, c)=1\right\}$.

Theorem (A.U., 2009)

Frobenius numbers $f(a, b, c)$ have weak asymptotic $\frac{8}{\pi} \sqrt{a b c}$:
$\frac{1}{a^{3 / 2}\left|M_{a}\left(x_{1}, x_{2}\right)\right|} \sum_{(b, c) \in M_{a}\left(x_{1}, x_{2}\right)}\left(f(a, b, c)-\frac{8}{\pi} \sqrt{a b c}\right)=O_{\varepsilon, x_{1}, x_{2}}\left(a^{-1 / 6+\varepsilon}\right)$.
Davison's conjecture holds in a stronger form:

$$
\frac{1}{\left|M_{a}\left(x_{1}, x_{2}\right)\right|} \sum_{(b, c) \in M_{a}\left(x_{1}, x_{2}\right)} \frac{f(a, b, c)}{\sqrt{a b c}}=\frac{8}{\pi}+O_{\varepsilon, x_{1}, x_{2}}\left(a^{-1 / 6+\varepsilon}\right) .
$$

Density function

Theorem (A.U., 2010)

Normalized Frobenius numbers of three arguments have limiting density function:

$$
\frac{1}{\left|M_{a}\left(x_{1}, x_{2}\right)\right|} \sum_{\substack{(b, c) \in M_{a}\left(x_{1}, x_{2}\right) \\ f(a, b, c) \leq \tau \sqrt{a b c}}} 1=\int_{0}^{\tau} p(t) d t+O_{\varepsilon, x_{1}, x_{2}, \tau}\left(a^{-1 / 6+\varepsilon}\right)
$$

where

$$
p(t)= \begin{cases}0, & \text { if } t \in[0, \sqrt{3}] \\ \frac{12}{\pi}\left(\frac{t}{\sqrt{3}}-\sqrt{4-t^{2}}\right), & \text { if } t \in[\sqrt{3}, 2] \\ \frac{12}{\pi^{2}}\left(t \sqrt{3} \arccos \frac{t+3 \sqrt{t^{2}-4}}{4 \sqrt{t^{2}-3}}+\frac{3}{2} \sqrt{t^{2}-4} \log \frac{t^{2}-4}{t^{2}-3}\right), & \text { if } t \in[2,+\infty)\end{cases}
$$

Density function

Density function

Triples (α, β, r), where

$$
\alpha=\frac{q_{n}}{\sqrt{a / \xi}}, \quad \beta=\frac{s_{n-1}}{\sqrt{a \xi}}, \quad r=\frac{s_{n}}{\sqrt{a \xi}} \quad(\xi=c / b)
$$

(normalized edges of L-shaped diagram) have joint limiting density function

$$
p(\alpha, \beta, r)= \begin{cases}\frac{2}{\zeta(2) r}, & r \leq \min \{\alpha, \beta\}, 1 \leq \alpha \beta \leq 1+r^{2} \\ 0 & \text { else }\end{cases}
$$

It allows to study shortest cycles, average distances and another characteristics of L-shaped diagrams (double loop networks).

Weak asymptotic for genus

Let

$$
n(a, b, c)=\#(\mathbb{N} \backslash\langle a, b, c\rangle)
$$

be a genus of numerical semigroup $\langle a, b, c\rangle$ and let $N(a, b, c)$ let be modified genus:

$$
N(a, b, c)=n(a, b, c)+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}-\frac{1}{2} .
$$

It is more convenient because for $d|a, d| b$ we have

$$
N(a, b, c)=d \cdot N\left(\frac{a}{d}, \frac{b}{d}, c\right)
$$

Theorem (Vorob'ev, 2016)

$$
N(a, b, c) \approx \frac{64}{5 \pi^{2}} \sqrt{a b c}
$$

General idea

Kloosterman sums

For usual Kloosterman sums

$$
K_{q}(1, m, n)=\sum_{\substack{x, y=1 \\ x y \equiv 1(\bmod q)}}^{q} e^{2 \pi i \frac{m x+n y}{q}}
$$

Estermann bound is known

$$
\left|K_{q}(1, m, n)\right| \leq \sigma_{0}(q) \cdot(m, n, q)^{1 / 2} \cdot q^{1 / 2}
$$

This bound can be generalized for the case of sums $K_{q}(I, m, n)$.

General idea

Kloosterman sums
For usual Kloosterman sums

$$
K_{q}(1, m, n)=\sum_{\substack{x, y=1 \\ x y=1(\bmod q)}}^{q} e^{2 \pi i \frac{m x+n y}{q}}
$$

Estermann bound is known

$$
\left|K_{q}(1, m, n)\right| \leq \sigma_{0}(q) \cdot(m, n, q)^{1 / 2} \cdot q^{1 / 2}
$$

This bound can be generalized for the case of sums $K_{q}(I, m, n)$.

Theorem (A.U., 2008)

$$
\left|K_{q}(I, m, n)\right| \leq \sigma_{0}(q) \cdot \sigma_{0}((I, m, n, q)) \cdot(I m, I n, m n, q)^{1 / 2} \cdot q^{1 / 2}
$$

This estimate allows to count solutions of the congruence $x y \equiv l$ $(\bmod a)$ in different regions.

General idea

Kloosterman sums

Corollary

Let $q \geq 1,0 \leq P_{1}, P_{2} \leq q$. Then for any real Q_{1}, Q_{2}

$$
\sum_{\substack{Q_{1}<x \leq Q_{1}+P_{1} \\ Q_{2}<y \leq Q_{2}+P_{2}}} \delta_{q}(x y-1)=\frac{\varphi(q)}{q^{2}} \cdot P_{1} P_{2}+O\left(\sigma_{0}(q) \log ^{2}(q+1) q^{1 / 2}\right)
$$

and

$$
\sum_{\substack{Q_{1}<x \leq Q_{1}+P_{1} \\ Q_{2}<y \leq Q_{2}+P_{2}}} \delta_{q}(x y-I)=\frac{K_{q}(0,0, I)}{q^{2}} \cdot P_{1} P_{2}+O\left(q^{1 / 2+\varepsilon}+(q, I) q^{\varepsilon}\right)
$$

General idea

Kloosterman sums

A combination with van der Corput's method of exponential sums allows to count solutions under a graph of smooth function.

General idea

Kloosterman sums

A combination with van der Corput's method of exponential sums allows to count solutions under a graph of smooth function.
Let $q \geq 1, f$ be positive function and $T[f]$ be the number of solutions of the congruence $x y \equiv I(\bmod q)$ in the region $P_{1}<x \leq P_{2}$, $0<y \leq f(x):$

$$
T[f]=\sum_{P_{1}<x \leq P_{2}} \sum_{0<y \leq f(x)} \delta_{q}(x y-l)
$$

General idea

Kloosterman sums

A combination with van der Corput's method of exponential sums allows to count solutions under a graph of smooth function.
Let $q \geq 1, f$ be positive function and $T[f]$ be the number of solutions of the congruence $x y \equiv I(\bmod q)$ in the region $P_{1}<x \leq P_{2}$, $0<y \leq f(x)$:

$$
T[f]=\sum_{P_{1}<x \leq P_{2}} \sum_{0<y \leq f(x)} \delta_{q}(x y-l) .
$$

Let

$$
S[f]=\sum_{P_{1}<x \leq P_{2}} \frac{\mu_{q, l}(x)}{q} f(x)
$$

where $\mu_{q, I}(x)$ is the number of solutions of the congruence $x y \equiv l$ $(\bmod q)$ over y such that $1 \leq y \leq q$.

General idea

Kloosterman sums

Theorem (A.U., 2008)

Let P_{1}, P_{2} be reals, $P=P_{2}-P_{1} \geq 2$ and for some $A>0, w \geq 1$ function $f(x)$ satisfies conditions

$$
\frac{1}{A} \leq\left|f^{\prime \prime}(x)\right| \leq \frac{w}{A}
$$

Then

$$
T[f]=S[f]-\frac{P}{2} \cdot \delta_{q}(I)+R[f]
$$

where

$$
R[f]<_{w}\left(P A^{-1 / 3}+A^{1 / 2}(I, q)^{1 / 2}+q^{1 / 2}\right) P^{\varepsilon}
$$

Recent results

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in circulant graphs (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson (2011). They proved existence of these distributions for arbitrary n and made some interesting numerical computations.
- For $n=3$ Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).
- Aliev, Henk, Hinrichs (2011) and Strömbergsson(2012) studied the properties of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments.

Recent results

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in circulant graphs (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson(2011). They proved existence of these distributions for arbitrary n and made some interesting numerical computations.
- For $n=3$ Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).
- Aliev, Henk, Hinrichs (2011) and Strömbergsson(2012) studied the properties of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments.

Recent results

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in circulant graphs (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson(2011). They proved existence of these distributions for arbitrary n and made some interesting numerical computations.
- For $n=3$ Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).
- Aliev, Henk, Hinrichs (2011) and Strömbergsson(2012) studied the properties of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments.

Recent results

- The existence of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments was proved by J. Marklof (2010).
- Distribution of diameters and distribution of shortest cycles in circulant graphs (often also called multi-loop networks) were studied by J. Marklof and A. Strömbergsson(2011). They proved existence of these distributions for arbitrary n and made some interesting numerical computations.
- For $n=3$ Davison's conjecture in a stronger form was proved by D. Frolenkov (2011).
- Aliev, Henk, Hinrichs (2011) and Strömbergsson(2012) studied the properties of limiting distribution for normalized Frobenius numbers of arbitrary number of arguments.

Reduced bases in two-dimensional lattices

Let $1 \leq I \leq a,(I, a)=1$ and e_{1} be the shortest vector of the lattice $\Lambda_{l}=\{(x, y): \mid x \equiv y(\bmod a)\}$.

Reduced bases in two-dimensional lattices

Let $1 \leq I \leq a,(I, a)=1$ and e_{1} be the shortest vector of the lattice $\Lambda_{I}=\{(x, y): I x \equiv y(\bmod a)\}$. Basis $\left(e_{1}, e_{2}\right)$ is reduced iff $e_{2} \in \Omega\left(e_{1}\right)$ where $\Omega\left(e_{1}\right)$ is the plane region defined by inequalities

$$
\left\|e_{2}\right\| \geq\left\|e_{1}\right\| \quad \text { and } \quad\left\|e_{2} \pm e_{1}\right\| \geq\left\|e_{2}\right\|
$$

Reduced bases in two-dimensional lattices

Let $1 \leq I \leq a,(I, a)=1$ and e_{1} be the shortest vector of the lattice $\Lambda_{I}=\{(x, y): I x \equiv y(\bmod a)\}$. Basis $\left(e_{1}, e_{2}\right)$ is reduced iff $e_{2} \in \Omega\left(e_{1}\right)$ where $\Omega\left(e_{1}\right)$ is the plane region defined by inequalities

$$
\left\|e_{2}\right\| \geq\left\|e_{1}\right\| \quad \text { and } \quad\left\|e_{2} \pm e_{1}\right\| \geq\left\|e_{2}\right\|
$$

Moreover vector e_{2} must lie on the line $I\left(e_{1}\right)$ defined by equation $\operatorname{det}\left(e_{1}, e_{2}\right)=a$.

Reduced bases in two-dimensional lattices

Let $1 \leq I \leq a,(I, a)=1$ and e_{1} be the shortest vector of the lattice $\Lambda_{I}=\{(x, y): I x \equiv y(\bmod a)\}$. Basis $\left(e_{1}, e_{2}\right)$ is reduced iff $e_{2} \in \Omega\left(e_{1}\right)$ where $\Omega\left(e_{1}\right)$ is the plane region defined by inequalities

$$
\left\|e_{2}\right\| \geq\left\|e_{1}\right\| \quad \text { and } \quad\left\|e_{2} \pm e_{1}\right\| \geq\left\|e_{2}\right\|
$$

Moreover vector e_{2} must lie on the line $I\left(e_{1}\right)$ defined by equation $\operatorname{det}\left(e_{1}, e_{2}\right)=a$. By averaging over / we can get that vectors e_{2} distributed uniformly on $\Omega\left(e_{1}\right) \cap I\left(e_{1}\right)$ with weight $\left\|e_{2}\right\|^{-1}$. Suppose $\boldsymbol{e}_{1}=\sqrt{\boldsymbol{a}}(\alpha, \beta), \boldsymbol{e}_{2}=\sqrt{\boldsymbol{a}}(\gamma, \delta)$.

Reduced bases in two-dimensional lattices

By integrating over e_{1} we can get density function for $t=\left\|e_{2}\right\| / \sqrt{a}$:

Reduced bases in two-dimensional lattices

By integrating over e_{1} we can get density function for $t=\left\|e_{2}\right\| / \sqrt{\mathrm{a}}$:

$$
p(t)= \begin{cases}0, & \text { if } t \in[0,1 / \sqrt{2}] ; \\ \left.\left.\frac{4}{\zeta(2)}\left(2 t-\frac{1}{t}+\left(\frac{1}{t}-t\right)\right) \log \left(\frac{1}{t^{2}}-1\right)\right)\right), & \text { if } t \in[1 / \sqrt{2}, 1] ; \\ \left.\left.\frac{4}{\zeta(2)}\left(\frac{1}{t}+\left(t-\frac{1}{t}\right)\right) \log \left(1-\frac{1}{t^{2}}\right)\right)\right), & \text { if } t \in[1, \infty] .\end{cases}
$$

Reduced bases in two-dimensional lattices

By integrating over e_{1} we can get density function for $t=\left\|e_{2}\right\| / \sqrt{ }$:

$$
p(t)= \begin{cases}0, & \text { if } t \in[0,1 / \sqrt{2}] ; \\ \left.\left.\frac{4}{\zeta(2)}\left(2 t-\frac{1}{t}+\left(\frac{1}{t}-t\right)\right) \log \left(\frac{1}{t^{2}}-1\right)\right)\right), & \text { if } t \in[1 / \sqrt{2}, 1] ; \\ \left.\left.\frac{4}{\zeta(2)}\left(\frac{1}{t}+\left(t-\frac{1}{t}\right)\right) \log \left(1-\frac{1}{t^{2}}\right)\right)\right), & \text { if } t \in[1, \infty] .\end{cases}
$$

Aliev I., Henk M., Hinrichs A., "Expected Frobenius numbers" - Journal of Combinatorial Theory, Series A 118 (2), 525-531.

Bourgain J., Sinai Ya. G. "Limit behaviour of large Frobenius numbers." - Uspekhi Mat. Nauk, 62:4(376) (2007), 7790.
Marklof J. "The asymptotic distribution of Frobenius numbers." - Invent. Math., 2010, 181, 179-207.
Marklof J., Strömbergsson A. "Diameters of random circulant graphs." - Combinatorica, 33: 4 (2013), 429-466.
Strömbergsson A. On the limit distribution of Frobenius numbers. Acta Arith., Polish Academy of Sciences (Polska Akademia Nauk - PAN), Institute of Mathematics (Instytut Matematyczny), Warsaw, 2012, 152, 81-107

Ustinov A. V. "Solution of the Arnolrime d problem on weak asymptotics for Frobenius numbers with three arguments." Mat. Sb., 2009, 200, 131-160.

Ustinov A. V. "On the distribution of Frobenius numbers with three arguments." - Izvestiya: Mathematics, 2010, 74, 1023-1049.
Vorob'ev I. S. "On the Frobenius problem in case of three arguments." - Mat. Sb., 207:6 (2016), 5378.

Questione?

