On numerical semigroups closed with respect to the action of affine maps

Simone Ugolini
University of Trento

International meeting on numerical semigroups with applications

Levico Terme
July 7, 2016
(1) Thabit and Mersenne numerical semigroups
(2) On affine maps and numerical semigroups

- Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps
- The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

(1) Thabit and Mersenne numerical semigroups

(2) On affine maps and numerical semigroups

- Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps
- The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Thabit numerical semigroups

Definition [Rosales, Branco and Torrão, 2015] Δ numerical semiornun S is a Thahit numerical semigroup if there exists $n \in \mathbb{N}$ such that

Thabit numerical semigroups

Definition [Rosales, Branco and Torrão, 2015]

A numerical semigroup S is a Thabit numerical semigroup if there exists $n \in \mathbb{N}$ such that

$$
S=\left\langle\left\{3 \cdot 2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
$$

Thabit numerical semigroups

Definition [Rosales, Branco and Torrão, 2015]

A numerical semigroup S is a Thabit numerical semigroup if there exists $n \in \mathbb{N}$ such that

$$
S=\left\langle\left\{3 \cdot 2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
$$

Remark

S is a numerical semigroup since its generators are coprime.

Thabit numerical semigroups

Thabit numerical semigroups

Example

Let $n=2$.

Notice that

Thabit numerical semigroups

Example

Let $n=2$.
Then S is generated by

$$
\begin{array}{r}
3 \cdot 4-1=11 \\
3 \cdot 8-1=23 \\
3 \cdot 16-1=47
\end{array}
$$

Thabit numerical semigroups

Example

Let $n=2$.
Then S is generated by

$$
\begin{aligned}
3 \cdot 4-1 & =11 \\
3 \cdot 8-1 & =23 \\
3 \cdot 16-1 & =47
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& 23=2 \cdot 11+1 \\
& 47=2 \cdot 23+1
\end{aligned}
$$

Thabit numerical semigroups

Thabit numerical semigroups

Proposition [RBT]

Let n be a non-negative integer and

$$
T(n)=\left\langle\left\{3 \cdot 2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
$$

Then $2 t+1$ for all $t \in T(n) \backslash\{0\}$.

Mersenne numerical semigroups

> Definition [RBT]
> A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that

Mersenne numerical semigroups

Definition [RBT]

A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that

$$
S=\left\langle\left\{2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle .
$$

Mersenne numerical semigroups

Definition [RBT]

A numerical semigroup S is a Mersenne numerical semigroup if there exists a positive integer n such that

$$
S=\left\langle\left\{2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle .
$$

Proposition [RBT]

Let n be a positive integer and

$$
M(n)=\left\langle\left\{2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
$$

Then $2 s+1$ for all $s \in M(n) \backslash\{0\}$.
(1) Thabit and Mersenne numerical semigroups
(2) On affine maps and numerical semigroups

- Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps
- The smallest $\vartheta_{a, b}$-semigroup containing a positive integer
(1) Thabit and Mersenne numerical semigroups
(2) On affine maps and numerical semigroups
- Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps
- The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps

Definition

Definition
A su'semigroup G of $(N,+)$ containing 0 is a ω a b-semigroup if

Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps

Definition

For $a \in \mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$ and $b \in \mathbb{N}$ we define the map

$$
\begin{aligned}
\vartheta_{a, b}: & \mathbb{N} \\
x & \rightarrow \mathbb{N} \\
x & \mapsto a x+b
\end{aligned}
$$

[^0]
Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps

Definition

For $a \in \mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$ and $b \in \mathbb{N}$ we define the map

$$
\begin{aligned}
\vartheta_{a, b}: \mathbb{N} & \rightarrow \mathbb{N} \\
x & \mapsto a x+b
\end{aligned}
$$

Definition

A subsemigroup G of $(\mathbb{N},+)$ containing 0 is a $\vartheta_{a, b}$-semigroup if $\vartheta_{a, b}(y) \in G$ for any $y \in G \backslash\{0\}$.

- Thabit numerical semigroups are $\vartheta_{2,1}$-semigroups.
- Mersenne numerical semiorouns are aln a-semiorouns.

Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps

Definition

For $a \in \mathbb{N}^{*}:=\mathbb{N} \backslash\{0\}$ and $b \in \mathbb{N}$ we define the map

$$
\begin{aligned}
\vartheta_{a, b}: \mathbb{N} & \rightarrow \mathbb{N} \\
x & \mapsto a x+b
\end{aligned}
$$

Definition

A subsemigroup G of $(\mathbb{N},+)$ containing 0 is a $\vartheta_{a, b}$-semigroup if $\vartheta_{a, b}(y) \in G$ for any $y \in G \backslash\{0\}$.

Examples

- Thabit numerical semigroups are $\vartheta_{2,1}$-semigroups.
- Mersenne numerical semigroups are $\vartheta_{2,1}$-semigroups.

$\vartheta_{a, b}$-semigroups

Remark $\Delta \Omega$.bemigroup is not necessarily a numerical semigroup (two examples follow).

$\vartheta_{a, b}$-semigroups

Remark

A $\vartheta_{a, b}$-semigroup is not necessarily a numerical semigroup (two examples follow).

$\vartheta_{a, b}$-semigroups

Remark

A $\vartheta_{a, b}$-semigroup is not necessarily a numerical semigroup (two examples follow).

Example 1
 $2 \mathbb{N}=\{2 n: n \in \mathbb{N}\}$ is a $\vartheta_{a, b}$-semigroup for any $a \in \mathbb{N}^{*}$ and $b \in 2 \mathbb{N}$.

$\vartheta_{a, b}$-semigroups

Remark

A $\vartheta_{a, b}$-semigroup is not necessarily a numerical semigroup (two examples follow).

Example 1

$2 \mathbb{N}=\{2 n: n \in \mathbb{N}\}$ is a $\vartheta_{a, b}$-semigroup for any $a \in \mathbb{N}^{*}$ and $b \in 2 \mathbb{N}$.

Example 2

$M(b, n):=\left\langle\left\{b^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle$, where $b \in \mathbb{N} \backslash\{0,1,2\}$ and n is a positive integer, is a $\vartheta_{b, b-1}$-semigroup.
(For the details see Rosales, Branco and Torrão, 2016).
(1) Thabit and Mersenne numerical semigroups
(2) On affine maps and numerical semigroups

- Submonoids of $(\mathbb{N},+)$ closed w.r.t. affine maps
- The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Definition

Let $\{a, b\} \subseteq \mathbb{N}^{*}$ and $c \in \mathbb{N} \backslash\{0,1\}$ such that $\operatorname{gcd}(b, c)=1$. We denote by $G_{a, b}(c)$ the smallest $\vartheta_{a, b}$-semigroup containing c.

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Definition

Let $\{a, b\} \subseteq \mathbb{N}^{*}$ and $c \in \mathbb{N} \backslash\{0,1\}$ such that $\operatorname{gcd}(b, c)=1$. We denote by $G_{a, b}(c)$ the smallest $\vartheta_{a, b}$-semigroup containing c.

Remark

If a, b and c are as above, then $G_{a, b}(c)$ is a numerical semigroup.

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Examples

Let $n \in \mathbb{N}^{*}$ and

$$
\begin{aligned}
T(n) & :=\left\langle\left\{3 \cdot 2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle \\
M(n) & :=\left\langle\left\{2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
\end{aligned}
$$

$M(n)=G_{2,1}\left(2^{n}-1\right)$.

The smallest $\vartheta_{a, b}$-semigroup containing a positive integer

Examples

Let $n \in \mathbb{N}^{*}$ and

$$
\begin{aligned}
T(n) & :=\left\langle\left\{3 \cdot 2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle \\
M(n) & :=\left\langle\left\{2^{n+i}-1: i \in \mathbb{N}\right\}\right\rangle
\end{aligned}
$$

Then

$$
\begin{aligned}
T(n) & =G_{2,1}\left(3 \cdot 2^{n}-1\right) \\
M(n) & =G_{2,1}\left(2^{n}-1\right)
\end{aligned}
$$

Apéry set for $G_{a, b}(c)$

Apéry set for $G_{a, b}(c)$

Definition

Let $\{a, b, c\} \subseteq \mathbb{N}^{*}$, where $\operatorname{gcd}(b, c)=1$, and

$$
G:=G_{a, b}(c) .
$$

Then $\operatorname{Ap}(G, c):=\{s \in G: s-c \notin G\}$.

Apéry set for $G_{a, b}(c)$

Definition

Let $\{a, b, c\} \subseteq \mathbb{N}^{*}$, where $\operatorname{gcd}(b, c)=1$, and

$$
G:=G_{a, b}(c) .
$$

Then $\operatorname{Ap}(G, c):=\{s \in G: s-c \notin G\}$.

Remark

We have that $|\operatorname{Ap}(G, c)|=c$.

Apéry set for $G_{a, b}(c)$

Definition

Let $\{a, b, c\} \subseteq \mathbb{N}^{*}$, where $\operatorname{gcd}(b, c)=1$, and

$$
G:=G_{a, b}(c) .
$$

Then $\operatorname{Ap}(G, c):=\{s \in G: s-c \notin G\}$.

Remark

We have that $|\operatorname{Ap}(G, c)|=c$. We can write

$$
\operatorname{Ap}(G, c)=\left\{x_{l}: 0 \leq I \leq c-1\right\}
$$

where $x_{0}=0<x_{1}<\cdots<x_{1}$.

Construction of the element x_{I}

- We write $I=\sum_{i} j_{i} \cdot s_{i}(a)$, where

$$
s_{i}(a):= \begin{cases}0 & \text { if } i=0 \\ \sum_{k=0}^{i-1} a^{k} & \text { if } i>0\end{cases}
$$

and any $j_{i} \in\{0,1, \ldots, a\}$.
where $t_{i}(a, b, c):=a^{i} c+b \cdot s_{i}(a)$.

Construction of the element x_{I}

- We write $I=\sum_{i} j_{i} \cdot s_{i}(a)$, where

$$
s_{i}(a):= \begin{cases}0 & \text { if } i=0 \\ \sum_{k=0}^{i-1} a^{k} & \text { if } i>0\end{cases}
$$

and any $j_{i} \in\{0,1, \ldots, a\}$.

- We define

$$
x_{I}:= \begin{cases}0 & \text { if } I=0 \\ \sum_{i=1} j_{i} \cdot t_{i}(a, b, c) & \text { if } I>0\end{cases}
$$

where $t_{i}(a, b, c):=a^{i} c+b \cdot s_{i}(a)$.

Example: $G_{3,1}(3)$

We have that

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

$$
\text { and } \operatorname{Ap}\left(G_{3,1}(3), 3\right)=\left\{x_{0}=0, x_{1}, x_{2}\right\}
$$

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

$$
\text { and } \operatorname{Ap}\left(G_{3,1}(3), 3\right)=\left\{x_{0}=0, x_{1}, x_{2}\right\}
$$

$$
1=1 \cdot s_{1}(3)
$$

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

$$
\text { and } \operatorname{Ap}\left(G_{3,1}(3), 3\right)=\left\{x_{0}=0, x_{1}, x_{2}\right\}
$$

$$
1=1 \cdot s_{1}(3) \Rightarrow x_{1}=1 \cdot t_{1}(3,1,3)=10
$$

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

$$
\text { and } \operatorname{Ap}\left(G_{3,1}(3), 3\right)=\left\{x_{0}=0, x_{1}, x_{2}\right\}
$$

$$
\begin{aligned}
& 1=1 \cdot s_{1}(3) \Rightarrow x_{1}=1 \cdot t_{1}(3,1,3)=10, \\
& 2=2 \cdot s_{1}(3) \Rightarrow x_{2}=2 \cdot t_{1}(3,1,3)=20
\end{aligned}
$$

Example: $G_{3,1}(3)$

We have that

$$
a=3, \quad b=1, \quad c=3
$$

$$
\text { and } \operatorname{Ap}\left(G_{3,1}(3), 3\right)=\left\{x_{0}=0, x_{1}, x_{2}\right\}
$$

$$
\begin{aligned}
& 1=1 \cdot s_{1}(3) \Rightarrow x_{1}=1 \cdot t_{1}(3,1,3)=10 \\
& 2=2 \cdot s_{1}(3) \Rightarrow x_{2}=2 \cdot t_{1}(3,1,3)=20 .
\end{aligned}
$$

Example: $G_{3,1}(3)$

We construct the set of integers smaller than or equal to 20 belonging to $G_{3,1}(3)$:

Example: $G_{3,1}(3)$

We construct the set of integers smaller than or equal to 20 belonging to $G_{3,1}(3)$:

0	$\mathbf{3}$					

Example: $G_{3,1}(3)$

We construct the set of integers smaller than or equal to 20 belonging to $G_{3,1}(3)$:

0	$\mathbf{3}$	6	9	12	15	18

Example: $G_{3,1}(3)$

We construct the set of integers smaller than or equal to 20 belonging to $G_{3,1}(3)$:

0	$\mathbf{3}$	6	9	12	15	18
			10			

Example: $G_{3,1}(3)$

We construct the set of integers smaller than or equal to 20 belonging to $G_{3,1}(3)$:

0	$\mathbf{3}$	6	9	12	15	18
			10	13	16	19

Example: $G_{3,1}(3)$

The integers smaller than or equal to 20 belonging to $G_{3,1}(3)$ are

0	$\mathbf{3}$	6	9	12	15	18
			10	13	16	19
						20

Example: $G_{3,1}(3)$

The integers smaller than or equal to 20 belonging to $G_{3,1}(3)$ are

0	$\mathbf{3}$	6	9	12	15	18
			10	13	16	19
						20

Example: $G_{3,1}(3)$

The integers smaller than or equal to 20 belonging to $G_{3,1}(3)$ are

0	$\mathbf{3}$	6	9	12	15	18
			10	13	16	19
						20

Then $\left[20,+\infty\left[\cap \mathbb{N} \subseteq G_{3,1}(3)\right.\right.$.

Example: $G_{2,3}(4)$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4,
$$

Example: $G_{2,3}(4)$

We have that

$$
\begin{aligned}
& \qquad \begin{array}{l}
a=2, \quad b=3, \quad c=4, \\
\text { and } \operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\} .
\end{array}
\end{aligned}
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4
$$

$$
\text { and } \operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}
$$

$$
1=1 \cdot s_{1}(2)
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4
$$

$$
\text { and } \operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}
$$

$$
1=1 \cdot s_{1}(2) \Rightarrow x_{1}=1 \cdot t_{1}(2,3,4)=11
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4
$$

and $\operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}$.

$$
\begin{aligned}
& 1=1 \cdot s_{1}(2) \Rightarrow x_{1}=1 \cdot t_{1}(2,3,4)=11, \\
& 2=2 \cdot s_{1}(2) \Rightarrow x_{2}=2 \cdot t_{1}(2,3,4)=22,
\end{aligned}
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4,
$$

and $\operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}$.

$$
\begin{aligned}
& 1=1 \cdot s_{1}(2) \Rightarrow x_{1}=1 \cdot t_{1}(2,3,4)=11, \\
& 2=2 \cdot s_{1}(2) \Rightarrow x_{2}=2 \cdot t_{1}(2,3,4)=22,
\end{aligned}
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4
$$

and $\operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}$.

$$
\begin{aligned}
& 1=1 \cdot s_{1}(2) \Rightarrow x_{1}=1 \cdot t_{1}(2,3,4)=11, \\
& 2=2 \cdot s_{1}(2) \Rightarrow x_{2}=2 \cdot t_{1}(2,3,4)=22, \\
& 3=1 \cdot s_{2}(2) \Rightarrow x_{3}=1 \cdot t_{2}(2,3,4)=25 .
\end{aligned}
$$

Example: $G_{2,3}(4)$

We have that

$$
a=2, \quad b=3, \quad c=4
$$

and $\operatorname{Ap}\left(G_{2,3}(4), 4\right)=\left\{x_{0}=0, x_{1}, x_{2}, x_{3}\right\}$.

$$
\begin{aligned}
& 1=1 \cdot s_{1}(2) \Rightarrow x_{1}=1 \cdot t_{1}(2,3,4)=11, \\
& 2=2 \cdot s_{1}(2) \Rightarrow x_{2}=2 \cdot t_{1}(2,3,4)=22, \\
& 3=1 \cdot s_{2}(2) \Rightarrow x_{3}=1 \cdot t_{2}(2,3,4)=25 .
\end{aligned}
$$

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

0	$\mathbf{4}$					

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

0	4	8	12	16	20	24

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

0	$\mathbf{4}$	8	12	16	20	24
		11				

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

0	4	8	12	16	20	24
		11	15	19	23	27

Example: $G_{2,3}(4)$

We construct the set of integers smaller than or equal to 27 belonging to $G_{2,3}(4)$:

0	4	8	12	16	20	24
					22	26
		11	15	19	23	27

Example: $G_{2,3}(4)$

The integers smaller than or equal to 27 belonging to $G_{2,3}(4)$ are

0	4	8	12	16	20	24
						25
					22	26
		11	15	19	23	27

Example: $G_{2,3}(4)$

The integers smaller than or equal to 27 belonging to $G_{2,3}(4)$ are

0	4	8	12	16	20	24
						25
					22	26
		11	15	19	23	27

Example: $G_{2,3}(4)$

The integers smaller than or equal to 27 belonging to $G_{2,3}(4)$ are

0	4	8	12	16	20	24
						25
					22	26
		11	15	19	23	27

Then $\left[25,+\infty\left[\cap \mathbb{N} \subseteq G_{2,3}(4)\right.\right.$.

Properties of $G_{a, b}(c)$

The following hold for $G_{a, b}(c)$:

Properties of $G_{a, b}(c)$

The following hold for $G_{a, b}(c)$:

- $F\left(G_{a, b}(c)\right)=x_{c-1}-c$;

$$
\text { is a minimal set of generators for } G_{a, b}(c) \text {. }
$$

Properties of $G_{a, b}(c)$

The following hold for $G_{a, b}(c)$:

- $F\left(G_{a, b}(c)\right)=x_{c-1}-c$;
- $g\left(G_{a, b}(c)\right)=\frac{1}{c} \cdot \sum_{l=1}^{c-1} x_{I}-\frac{c-1}{2}$;
is a minimal set of generators for $G_{a, b}(c)$.

Properties of $G_{a, b}(c)$

The following hold for $G_{a, b}(c)$:

- $F\left(G_{a, b}(c)\right)=x_{c-1}-c$;
- $g\left(G_{a, b}(c)\right)=\frac{1}{c} \cdot \sum_{l=1}^{c-1} x_{l}-\frac{c-1}{2}$;
- if $\tilde{k}:=\min \left\{k \in \mathbb{N}: s_{k}(a)>c-1\right\}$, then

$$
\left\{t_{k}(a, b, c): k \in \mathbb{N} \text { and } 0 \leq k \leq \tilde{k}\right\}
$$

is a minimal set of generators for $G_{a, b}(c)$.

References

围 J.C. Rosales, M.B. Branco, D. Torrão
The Frobenius problem for Thabit numerical semigroups Journal of Number Theory, 155: 85-99, 2015.
围 J.C. Rosales, M.B. Branco, D. Torrão
The Frobenius problem for repunit numerical semigroups The Ramanujan J., 40(2): 323-334, 2016.

[^0]: Definition
 A subsemigroup G of $(\mathbb{N},+)$ containing 0 is a $\vartheta_{a, b}$-semigroup if

