Hilbert function of numerical semigroup rings.

Grazia Tamone

DIMA - University of Genova - Italy tamone@dima.unige.it

IMNS - International Meeting on
Numerical Semigroups with Applications

$$
\text { Levico Terme - July 4-8, } 2016
$$

Joint work with Anna Oneto - oneto@dime.unige.it

Subject of the talk

We study the behaviour of the Hilbert function H_{R} of a one dimensional complete local ring R associated to a numerical semigroup $S \subseteq \mathbb{N}$, with a particular focus on the possible decrease of this function. After the basic definitions, we proceed by several steps:

- survey of rings R having the associated graded ring Cohen Macaulay: it is well-known that in these cases the function H_{R} does not decrease
- overview on some other classes of rings with H_{R} non decreasing
- focus on the question of finding conditions on S in order to have decreasing Hilbert function: recent results
- a description of classes of Gorenstein rings with H_{R} non decreasing.

Hilbert function for local rings

We recall the definition of the Hilbert function of a local ring.

Definition

Let (R, \mathfrak{m}, k) be a noetherian d-dimensional local ring, the associated graded ring of R with respect to \mathfrak{m} is

$$
G:=\bigoplus_{n \geq 0} \mathfrak{m}^{n} / \mathfrak{m}^{n+1}
$$

The Hilbert function $H_{R}: \mathbb{N} \longrightarrow \mathbb{N}$ of R is defined by means of the associated graded ring G :

$$
H_{R}(n):=\operatorname{dim}_{k}\left(\mathfrak{m}^{n} / \mathfrak{m}^{n+1}\right)
$$

While the Hilbert function of a Cohen Macaulay graded standard k-algebra is well understood, in the local case very little is still known. There are properties that cannot be carried on G : if R is Cohen Macaulay or even Gorenstein, in general G can be non Cohen Macaulay.

Semigroups rings

This talk deals with the Hilbert function of one dimensional semigroup rings. We recall the definition.
Let S be a numerical semigroup minimally generated by $\left\{n_{1}, n_{2}, \ldots, n_{\nu}\right\}$ where $n_{1}<n_{2}<\cdots<n_{\nu}$ and $G C D\left\{n_{1}, n_{2}, \ldots, n_{\nu}\right\}=1$.
Classically S is associated to the rational affine monomial curve $C \subset \mathbb{A}_{k}^{\nu}$, parametrized by $x_{i}=t^{n_{i}}$, for $i=1, \ldots, \nu$. The coordinate ring of C is $k\left[t^{n_{1}}, \ldots, t^{n_{\nu}}\right]$. C has only one singular point, the origin O, with local ring

$$
\mathcal{O}_{C, O}=k\left[t^{n_{1}}, \ldots, t^{n_{\nu}}\right]_{\left(t^{n_{1}}, \ldots, t^{n_{\nu}}\right)}
$$

Definition

We call semigroup ring associated to S the local ring

$$
R=k[[S]]:=k\left[\left[t^{n_{1}}, \ldots, t^{n_{\nu}}\right]\right]
$$

- R is the completion of $\mathcal{O}_{C, O}$
- R is isomorphic to $k\left[\left[X_{1}, \ldots, X_{\nu}\right]\right] / I$ where I, the defining ideal of C, is generated by binomials.

Semigroups: basic definitions

Given a numerical semigroup $S=\left\langle n_{1}, n_{2}, \cdots n_{\nu}\right\rangle$, let $R=k[[S]]$:

- denote the integer n_{1} by e, the multiplicity of S and of R the integer ν is called the embedding dimension of S and of R
- \mathfrak{m} and $M:=S \backslash\{0\}$ are respectively the maximal ideal of R and of S

Let $v: k((t)) \longrightarrow \mathbb{Z} \cup\{\infty\}$ be the usual valuation given by the degree in t :

- $v(R)=S, \quad v(\mathfrak{m})=M$
- for $n \in \mathbb{N}, \quad v\left(\mathfrak{m}^{n}\right)=n M=M+\cdots+M$ (n times)
- for any pair of nonzero fractional ideals $I \supseteq J$ of R it is possible to compute the length of the R-module I / J by means of valuations:

$$
\ell_{R}(I / J)=|v(I) \backslash v(J)|
$$

Apéry set and type

- The Apéry set (with respect to e) of S is

$$
\text { Apéry }(S):=\{n \in S \mid n-e \notin S\} \quad \text { (shortly denoted by Apéry) }
$$

the set of the smallest elements in S in each congruence class mod e.

- The Frobenius number f is the greatest element in $\mathbb{N} \backslash S$.
- The Cohen Macaulay type of R is $\tau(R):=\ell_{R}\left(R:{ }_{K} \mathfrak{m} / R\right)$ where K is the fraction field of R.
- R is called Gorenstein ring if $\tau(R)=1$, equivalently, the semigroup is symmetric: $n \in S \Longleftrightarrow f-n \notin S$, equivalently, for each $n \in$ Apéry there exists $n^{\prime} \in$ Apéry such that $n^{\prime}+n=e+f$, the greatest element in Apéry.

Cohen Macaulay property of G

In the sequel we shall assume k an infinite field. First we discuss a relevant deeply studied question: the Cohen Macaulayness of G.

For a one dimensional local ring (R, \mathfrak{m}, k) with k infinite there exists an element $x \in \mathfrak{m}$ such that $x \mathfrak{m}^{n}=\mathfrak{m}^{n+1}$, for $n \gg 0$ (superficial element).
We denote by R^{\prime} the quotient ring $R^{\prime}=R / x R$.
For $a \in R$, let a^{*} be its image in G (the initial form of a).
We have the well-known theorem

Theorem

(1) The following conditions are equivalent

- G is Cohen Macaulay
- x^{*} is a non-zero divisor in G
- $H_{R}(n)-H_{R}(n-1)=H_{R^{\prime}}(n)$ for each $n \geq 1$
(2) If G is Cohen Macaulay, then H_{R} is non-decreasing.

Cohen Macaulay property of G

We recall sufficient conditions to have the Cohen Macaulayness of G : some results hold under more general assumptions (this list is not all-inclusive). In the following cases the associated graded ring of R is Cohen Macaulay.

- $e \leq 3$ or $\nu=e$ (maximal embedding dimension) [Sally, 1977]
- R Gorenstein with $\nu=e-2 \quad$ [Sally, 1980]
- $\nu=e-1$ and $\tau(R)<e-2 \quad$ [Sally, 1983]
- The embedding dimension of S is four, under some other arithmetical conditions
[F.Arslan, P.Mete, M.Şahin, N.Şahin, several papers]

Cohen Macaulay property of G

- In most cases when S is generated by an almost arithmetic sequence i.e., $\nu-1$ generators are an arithmetic sequence,
[Molinelli, Patil -T, 1998]
- S is obtained by particular techniques of gluing of semigroups
[Arslan, Mete, M.Șahin, 2009] [Jafari, Zarzuela, 2014]
- S is generated by a generalized arithmetic sequence i.e.
$n_{i}=h n_{1}+(i-1) d$, with $d, h \geq 1,2 \leq i \leq \nu, G C D\left(n_{1}, d\right)=1$
(when $h=1, S$ is generated by an arithmetic sequence)
[Sharifan, Zaare-Nahandi, 2009]
Example: $S=\langle 7,17,20,23,26\rangle=\langle 7,14+d, 14+2 d, 14+3 d, 14+4 d\rangle$

$$
(h=2, d=3)
$$

The semigroup case

If $R=k[[S]]$ is a semigroup ring, the Cohen Macaulayness of G and the behaviour of the Hilbert function of R have also an handy characterisation by means of the semigroup S : we recall some tools.

Definition

For each $s \in S$, the order of s is $\operatorname{ord}(s):=\max \{h \in \mathbb{N} \mid s \in h M\}$
If $s \in S$ and $\operatorname{ord}(s)=k$, then $\left(t^{s}\right)^{*} \in \mathfrak{m}^{k} / \mathfrak{m}^{k+1} \hookrightarrow G$ Note that if $s, s^{\prime} \in S$ then:

$$
\left(t^{s}\right)^{*}\left(t^{s^{\prime}}\right)^{*} \neq \overline{0} \text { in } G \Longleftrightarrow \operatorname{ord}(s)+\operatorname{ord}\left(s^{\prime}\right)=\operatorname{ord}\left(s+s^{\prime}\right)
$$

Further, for a semigroup ring with multiplicity e, the element $x=t^{e}$ is superficial, hence by the above cited results:

Theorem

Let $R=k[[S]]$. The following conditions are equivalent:
(1) G is Cohen Macaulay
(2) $\operatorname{ord}(s+c e)=\operatorname{ord}(s)+c$ for each $s \in S, c \in \mathbb{N}$.

An easy example is the following.

Example

In $R=k\left[\left[t^{7}, t^{9}, t^{20}\right]\right]$ the initial form $\left(t^{7}\right)^{*}$ is a zero-divisor in G : in fact

$$
\operatorname{ord}(20+7)=\operatorname{ord}(27)=3>\operatorname{ord}(20)+1
$$

and so G is not Cohen Macaulay.

For semigroup rings the Apèry set is an useful tool:

Proposition

Let $R=k[[S]], R^{\prime}=R / t^{e} R$ and let $A p_{n}:=\{s \in$ Apéry $(S) \mid \operatorname{ord}(s)=n\}$.

- $H_{R}(n)=|n M \backslash(n+1) M|=|\{s \in S \mid \operatorname{ord}(s)=n\}|$
- $H_{R^{\prime}}(n)=\left|A p_{n}\right|$
- G is Cohen Macaulay $\Longleftrightarrow H_{R}(n)-H_{R}(n-1)=\left|A p_{n}\right|, \quad \forall n \geq 1$ (recall: G is Cohen Macaulay $\left.\Longleftrightarrow H_{R}(n)-H_{R}(n-1)=H_{R^{\prime}}(n)\right)$.

Behaviour of the Hilbert function

In general, when G is not Cohen Macaulay, the function H_{R} can be decreasing or not:

Definition

The Hilbert function of R is said to be decreasing if there exists $n \in \mathbb{N}$ such that

$$
H_{R}(n)<H_{R}(n-1)
$$

in this case we say that H_{R} decreases at level n.

Examples

Example

Let $R=k[[S]]$ with $S=\langle 6,7,15,23\rangle$.
First note that $\operatorname{ord}(15+e)=\operatorname{ord}(15+6)=\operatorname{ord}(21)=3>\operatorname{ord}(15)+1$, then G is not Cohen Macaulay.
One can compute that $H_{R}=[1,4,4,5,5,6 \rightarrow]$ is non-decreasing.

$$
\text { Apéry }(S)=\{0,7,14,15,22,23\}, A p_{1}=\{7,15,23\}, \quad A p_{2}=\{14,22\}
$$ hence $H_{R^{\prime}}=[1,3,2]$.

Example

Let $R=k[[S]]$, with $S=\langle 13,19,24,44,49,54,55,59,60,66\rangle$
First note that $\operatorname{ord}(44+e)=\operatorname{ord}(57)=3>\operatorname{ord}(44)+1$, then G is not Cohen Macaulay. One can verify that H_{R} decreases at level 2 :

$$
H_{R}=[1,10,9,11,12,13 \rightarrow]
$$

Further $A p_{2}=\{38,43,48\}, \quad H_{R^{\prime}}=[1,9,3]$.

Non-decreasing Hilbert function

Under several assumptions we know that $R=k[[S]]$ has non decreasing Hilbert function. In particular this fact is true if

- G is Cohen Macaulay
- $\nu \leq 3$ or $\nu \leq e \leq \nu+2$ [Sally, Elías, Rossi - Valla]
- S is generated by an almost arithmetic sequence [T, 1998]
- S is balanced, i.e. $n_{i}+n_{j}=n_{i-1}+n_{j+1}$, for each $i \neq j \in[2, \nu-1]$ [Patil -T, 2011], [Cortadellas, Jafari, Zarzuela, 2013]
- S is obtained by particular techniques of gluing of semigroups
[Arslan, Mete, M.Şahin, 2009] [Jafari, Zarzuela, 2014]
- R is Gorenstein with $\nu=4$ and
S satisfies some arithmetic conditions [Arslan, Mete, 2007] or S is constructed by gluings [Arslan, Sipahi, N.Șahin, 2013].

Decreasing H-function: main tools

Now we want to describe conditions on the semigroup S in order to obtain rings with decreasing Hilbert function: we need some definitions and facts.

Definition

- a maximal representation of $s \in S$ is any expression

$$
s=\sum_{j=1}^{\nu} a_{j} n_{j}, a_{j} \in \mathbb{N}, \text { with } \sum a_{j}=\operatorname{ord}(s)
$$

- the support of (a maximal representation of) $s \in S$ is

$$
\operatorname{Supp}(s):=\left\{n_{j} \mid a_{j} \neq 0\right\}
$$

- For a subset $X \subset \mathbb{N}$ define $\operatorname{Supp}(X):=\cup_{x \in X} \operatorname{Supp}(x)$.

Decrease of the H-function

Since $H_{R}(n)=|\{s \in S \mid \operatorname{ord}(s)=n\}|$ we consider the following subsets:

$$
\begin{aligned}
S_{n} & :=\{s \in S \mid \operatorname{ord}(s)=n\}= \\
& =\left\{s^{\prime}+e \in S_{n} \mid s^{\prime} \in S_{n-1}\right\} \cup\left\{t+e \in S_{n} \mid \operatorname{ord}(t) \leq n-2\right\} \cup A p_{n} \\
S_{n-1} & =\left\{s^{\prime} \in S_{n-1} \mid s^{\prime}+e \in S_{n}\right\} \cup\left\{s^{\prime} \in S_{n-1} \mid \operatorname{ord}\left(s^{\prime}+e\right)>n\right\} \\
C_{n} & :=\left\{s \in S_{n} \mid s-e \notin S_{n-1}\right\}=\left\{t+e \in S_{n} \mid \operatorname{ord}(t) \leq n-2\right\} \cup A p_{n} \\
D_{n} & :=\left\{s^{\prime} \in S_{n-1} \mid \operatorname{ord}\left(s^{\prime}+e\right)>n\right\}, \text { for } n \geq 2, \quad D_{1}=\emptyset
\end{aligned}
$$

$D_{n}=$ set of elements of S that "skip" the order when adding e.

Proposition

- $H_{R}(n)-H_{R}(n-1)=\left|S_{n}\right|-\left|S_{n-1}\right|=\left|C_{n}\right|-\left|D_{n}\right|$ for each $n \geq 1$.
- G is Cohen Macaulay $\Longleftrightarrow D_{n}=\emptyset$ for each n.
- H_{R} decreases at level $n \Longleftrightarrow\left|C_{n}\right|<\left|D_{n}\right|$.

Proposition

(1) $C_{1}=A p_{1}, \quad C_{2}=A p_{2}$.
(2) [Patil -T, 2011] For $s=\sum_{i=1, \ldots, \nu} a_{i} n_{i} \in C_{k}$ (maximal representation with $\sum a_{i}=k$), and for each choice $0 \leq b_{i} \leq a_{i}, i \in[1, \nu]$ with $\sum b_{i}=h$, the "induced" element s' $=\sum_{i=1, \ldots, \nu} b_{i} n_{i}$ belongs to C_{h}.

Corollary

Let $k \geq 2$:
(1) $\operatorname{Supp}\left(C_{k}\right) \subseteq \operatorname{Supp}\left(A p_{2}\right)$
(2) $\operatorname{Supp}\left(D_{k}+e\right) \subseteq \operatorname{Supp}\left(A p_{2}\right)$
(3) In particular $\operatorname{Supp}\left(A p_{k}\right) \subseteq \operatorname{Supp}\left(A p_{2}\right)$

Proposition

[D'Anna, Di Marca, Micale, 2015]:
(1) If $\left|D_{k}\right| \leq k+1$ for every $k \geq 2$, then H_{R} is non-decreasing
(2) If $\left|D_{k}\right|>k+1$, then $\left|C_{h}\right| \geq h+1$ for all $h \in[2, k]$
(3) If H_{R} decreases, then $\left|C_{2}\right|=\left|A p_{2}\right| \geq 3$.

For $k=2$ the above proposition doesn't give informations on $\left|C_{3}\right|$: a bound is specified in part 1 of the next result. This information will be very useful in the sequel. The proof requires many technical computations.

Proposition

If H_{R} is decreasing then
(1) $\left|C_{3}\right| \geq 4$
(2) If $\left|A p_{2}\right|=3$ there exist $n_{i}, n_{j} \in A p_{1}$ such that

$$
A p_{2}=\left\{2 n_{i}, n_{i}+n_{j}, 2 n_{j}\right\}
$$

Example

By the above cited results, H_{R} decreasing implies $e \geq \nu+3$. The "smallest" known example with $e=\nu+3(e=13, \nu=10)$ is:

Example

$$
\begin{aligned}
& R=k[[S]] \text {, where } S=\langle 13,19,24,44,49,54,55,59,60,66\rangle \\
& H_{R}=[1,10,9,11,12,13 \rightarrow] \\
& \text { Apéry }(S)=\{0,19,24,38,43,44,48,49,54,55,59,60,66\}
\end{aligned}
$$

$D_{2}=\{44,49,54,59\} \quad C_{2}=A p_{2}=\{38,43,48\}$ $=\{19 \cdot 2,19+24,24 \cdot 2\}$
$D_{2}+e=\{57,62,67,72\} \quad 57=3 \cdot 19, \quad 62=2 \cdot 19+24$, $67=19+2 \cdot 24, \quad 72=3 \cdot 24$
$D_{3}=\{68,73\} \quad C_{3}=\{57,62,67,72\}=D_{2}+e$
[Molinelli -T, 1999]

Case $e=\nu+3$

If $e=\nu+3$, by Macaulay's theorem, the possible Hilbert functions of $R^{\prime}=R / t^{e} R$ are $[1, \nu-1,3] \quad[1, \nu-1,2,1] \quad[1, \nu-1,1,1,1]$
As seen above, H_{R} decreasing implies $\left|A p_{2}\right| \geq 3$ and so $H_{R^{\prime}}=[1, \nu-1,3]$.

Theorem

[O-T, 2016] Let $e=\nu+3$. The following conditions are equivalent:
(1) H_{R} decreases
(2) H_{R} decreases at level 2
(3) $H_{R^{\prime}}=[1, \nu-1,3]$ and there exist $n_{i} \neq n_{j} \in A p_{1}$ such that

- $A p_{2}=\left\{2 n_{i}, n_{i}+n_{j}, 2 n_{j}\right\}$
- $D_{2}+e=\left\{3 n_{i}, 2 n_{i}+n_{j}, n_{i}+2 n_{j}, 3 n_{j}\right\}$

Further if the above conditions hold, then $e \geq 13$.

Corollary

When $e=13=\nu+3$:
H_{R} decreases $\Longleftrightarrow A p(S)=\left[\begin{array}{l}n_{i}, n_{j} \\ 2 n_{i}, n_{i}+n_{j}, 2 n_{i} \\ 3 n_{i}-e, 2 n_{i}+n_{j}-e, n_{i}+2 n_{j}-e, 3 n_{j}-e \\ 3 n_{i}+n_{j}-\alpha e, 2 n_{i}+2 n_{j}-\beta e, \\ 3 n_{i}+2 n_{j}-\gamma e\end{array}\right.$
for suitable α, β, γ and $\left[\begin{array}{cl}\text { either } & n_{j}=4 n_{i}(\bmod 13) \\ \text { or } & n_{j}=10 n_{i}(\bmod 13)\end{array}\right.$.

Example

For $S=\langle 13,19,24,44,49,54,55,59,60,66\rangle$ (considered before)

$$
\begin{aligned}
& n_{i}=19, \quad n_{j}=24 \equiv 76=4 n_{i}(\bmod 13) \\
& \alpha=2, \quad \beta=2, \quad \gamma=3
\end{aligned}
$$

Case $e=\nu+4$

As in case $e=\nu+3$, we deduce that H_{R} decreasing implies that the Hilbert function of $R^{\prime}=R / t^{e} R$ can be either $[1, \nu-1,3,1]$ or $[1, \nu-1,4]$

Theorem

[O -T, 2016] Let $e=\nu+4,\left|A p_{2}\right|=3,\left|A p_{3}\right|=1$.
The following conditions are equivalent:
(1) H_{R} decreases
(2) H_{R} decreases at level $\ell \leq 3$
(3) there exist $n_{i} \neq n_{j} \in A p_{1}$ such that

$$
\begin{aligned}
& \text { - } A p_{2}=\left\{2 n_{i}, n_{i}+n_{j}, 2 n_{j}\right\} \\
& \text { - } C_{3}=\left\{3 n_{i}, 2 n_{i}+n_{j}, n_{i}+2 n_{j}, 3 n_{j}\right\} \\
& \text { - } D_{\ell}+e=\left\{4 n_{i}, 2 n_{i}+n_{j}, n_{i}+2 n_{j}, 3 n_{j}\right\} \quad \text { if } \quad \ell=2 \\
& D_{\ell}+e=\left\{(\ell+1) n_{i}, \ell n_{i}+n_{j}, \ldots,(\ell+1) n_{j}\right\} \quad \text { if } \quad \ell=3
\end{aligned}
$$

Example

We show two examples for $e=\nu+4$ with $\ell=2$ and $\ell=3$.

Example

1. Let $S=<17,19,22,43,45,46,47,48,49,50,52,54,59>$

$$
\begin{aligned}
& n_{i}=19, n_{j}=22, \quad \nu=13=e-4, A p_{2}=\{38,41,44\} \\
& A p_{3}=\left\{57=3 n_{i}\right\} \\
& D_{2}+e=\left\{76=4 n_{i}, 60=2 n_{i}+n_{j}, 63=n_{i}+2 n_{j}, 66=3 n_{j}\right\} \\
& \ell=2, \quad H_{R}=[1,13,12,13,15,16,17 \rightarrow]
\end{aligned}
$$

2. Let $S=\langle 19,21,24,46,47,49,50,51,52,53,54,55,56,58,60\rangle$

$$
n_{i}=21, n_{j}=24, \quad e=\nu+4
$$

$$
A p_{2}=\{42,45,48\}, A p_{3}=\left\{63=3 n_{i}\right\}
$$

$$
C_{3}=\{66,69,72\} \cup\{63\},
$$

$$
D_{3}+e=\left\{4 n_{i}, 3 n_{i}+n_{j}, 2 n_{i}+2 n_{j}, n_{i}+3 n_{j}, 4 n_{j}\right\}
$$

$$
\ell=3, \quad H_{R}=[1,15,15,14,16,18,19 \rightarrow] .
$$

Case $e=\nu+4,2$

When $e=\nu+4$, the remaining case with H_{R} decreasing has $H_{R^{\prime}}=[1, \nu-1,4]$: we have an explicit description of the Apéry set of S and

Theorem

[O-T, 2016] Assume e $=\nu+4,\left|A p_{2}\right|=4, A p_{3}=\emptyset$. Are equivalent:
(1) H_{R} decreases at level 2 .
(2) There exist $n_{i}, n_{j}, n_{k} \in A p_{1}$, distinct elements, such that

$$
\text { either }\left\{\begin{array} { l l }
{ A p _ { 2 } } & { = \{ 2 n _ { i } , n _ { i } + n _ { j } , 2 n _ { j } , n _ { i } + n _ { k } \} } \\
{ C _ { 3 } } & { = \{ 3 n _ { i } , 2 n _ { i } + n _ { j } , n _ { i } + 2 n _ { j } , 3 n _ { j } , 2 n _ { i } + n _ { k } \} }
\end{array} \text { or } \left\{\begin{array}{ll}
A p_{2} & \left.=\left\{2 n_{i}, n_{i}+n_{k}, 2 n_{j}, 2 n_{k}\right)\right\} \\
C_{3} & =\left\{3 n_{i}, 2 n_{i}+n_{j}, n_{i}+2 n_{j}, 3 n_{j}, 3 n_{k}\right\}
\end{array}\right.\right.
$$

Example

Let $S=\langle 17,19,22,31,40,42,43,45,46,47,49,52,54\rangle, \quad \nu=e-4$, $n_{i}=19, n_{j}=22, n_{k}=31, \quad A p_{2}=\{38,41,44,50\}=$
$\left\{2 n_{i}, n_{i}+n_{j}, 2 n_{j}, n_{i}+n_{k}\right\}, A p_{3}=\emptyset, \quad H_{R}=[1,13,12,14,16,17 \rightarrow]$.

Hilbert function for certain Gorenstein rings

Theorem

[O-T, 2016] If $R=k[[S]]$ is a Gorenstein semigroup ring with $e \leq \nu+4$, then the Hilbert function H_{R} is non decreasing.

Proof.

First recall that by the above cited Sally's results,for any local one-dimensional Gorenstein ring with $e \leq \nu+2$ the associated graded ring G is Cohen Macaulay and so H_{R} is non decreasing.
If $\nu+3 \leq e \leq \nu+4$, by the above arguments the only possible shape of the Hilbert function $H_{R^{\prime}}$ compatible with the decrease of H_{R} and the symmetry of S is $[1, \nu-1,3,1]$, (with $e=\nu+4$). In this case, the particular structure of Apéry (S) and of D_{2} allow to prove that S cannot be symmetric. This theorem is a contribution to the following problem

Is the Hilbert function of a Gorenstein one-dimensional local ring non-decreasing?

Thanks for your attention!

References

J. Abbott, A.M. Bigatti (2015)

CoCoALib: a $\mathrm{C}++$ library for doing Computations in Commutative Algebra Available at http://cocoa.dima.unige.it/cocoalib

Fing Arslan, P. Mete (2007)
Hilbert functions of Gorenstein monomial curves
Proc. Am. Math. Soc. 135, no. 7 1993-2002.
[
F. Arslan, P. Mete, M. Şahin (2009)

Gluing and Hilbert functions of monomial curves Proc. Am. Math. Soc. 137, no. 7, 2225-2232.

圊 F. Arslan, N. Sipahi, N. Şahin (2013)
Monomial curve families supporting Rossi's conjecture
J. Symb. Comput. 55, 10-18.

國 T．Cortadellas Benitez，R．Jafari，S．Zarzuela Armengou（2013）
On the Apéry set of monomial curves
Semigroup Forum Vol 86，no．2，289－320．
园
M．D＇Anna，M．Di Marca，V．Micale（2015）
On the Hilbert function of the tangent cone of a monomial curve Semigroup Forum 91，no．3，718－730．
园
M．Delgado，P．A．García－Sánchez，J．Morais
‘NumericalSgps＂－a GAP package
Version 0．980．（http：／／www．gap－system．org／Packages／numericalsgps．html）．
T J．Elias（1993），
The Conjecture of Sally on the Hilbert function for curve singularities J．Algebra 160，no．1，42－49

图 The GAP Group (2006)
GAP - Groups, Algorithms, and Programming
Version 4.4.9 (http://www.gap-system.org)
回 J. Herzog, E. Kunz (1971)
Der kanonische Modul eines Cohen Macaulay Rings
Lecture Notes in Math. Springer Berlin 238 (1971).
R. Jafari, S. Zarzuela Armengou (2014)

On monomial curves obtained by gluing
Semigroup Forum 88, 397-416.
S. Molinelli, G.Tamone, (1995)

On the Hilbert function of certain rings of monomial curves Journal of Pure and Applied Algebra 101, no. 2, 191-206 (1995).

R S. Molinelli, D. Patil, G.Tamone, (1998)

On the Cohen Macaulayness of the associated graded ring of certain monomial curves
Beiträge Algebra Geom. 39, no. 2, 433,446.
R. Molinelli, G.Tamone, (1999)

On the Hilbert function of certain non Cohen Macaulay one dimensional rings Rocky Mountain J. Math 29, no. 1, 271-300.
A. Oneto, G. Tamone (2016)

On semigroup rings with decreasing Hilbert function
arXiv:1602.00327v1,
D. P. Patil, G. Tamone (2011)

CM defect and Hilbert functions of monomial curves
J. Pure Appl. Algebra 215, 1539-1551.

國 M．E．Rossi（2011）
Hilbert functions of Cohen Macaulay local rings
Comm．Algebra and its Connections to Geometry－Contemp．Math．555，173－200．
M．E．Rossi，G．Valla（2000）
Cohen Macaulay local rings of embedding dimension $e+d-3$
Proc．London Math．Soc．80，no．1，107－126．
囯 J．D．Sally（1977）
On the associated graded ring of a local Cohen Macaulay ring
J．Math．Kyoto Univ．17，no．1，19－21．
圊 J．D．Sally（1980）
Tangent cones at Gorenstein singularities
Compositio Math．40，no．2，167－175．

固 J．D．Sally（1983）
Cohen Macaulay local rings of embedding dimension $e+d-2$
J．Algebra 83，no．2，393－408．
目
L．Sharifan，R．Zaare－Nahandi（2009）
Minimal free resolutions of the associated graded ring of monomial curves of generalized arithmetic sequences
JPAA 213，no．3，pp 360－369．
局
G．Tamone（1998）
On the Hilbert function of some non Cohen Macaulay graded ringsCohen Macaulay local rings of embedding dimension $e+d-2$
Comm．Algebra 26，no．12，4221－4231．

