Hilbert function of numerical semigroup rings.

Grazia Tamone

DIMA - University of Genova - Italy tamone@dima.unige.it

IMNS - International Meeting on Numerical Semigroups with Applications Levico Terme - July 4 - 8, 2016

Joint work with Anna Oneto - oneto@dime.unige.it

We study the behaviour of the Hilbert function H_R of a one dimensional complete local ring R associated to a numerical semigroup $S \subseteq \mathbb{N}$, with a particular focus on the possible decrease of this function. After the basic definitions, we proceed by several steps:

- survey of rings R having the associated graded ring Cohen Macaulay: it is well-known that in these cases the function H_R does not decrease
- overview on some other classes of rings with H_R non decreasing
- focus on the question of finding conditions on *S* in order to have decreasing Hilbert function: recent results
- a description of classes of Gorenstein rings with H_R non decreasing.

Hilbert function for local rings

We recall the definition of the Hilbert function of a local ring.

Definition

Let (R, \mathfrak{m}, k) be a noetherian d-dimensional local ring, the associated graded ring of R with respect to \mathfrak{m} is

$$G:=\bigoplus_{n\geq 0}\mathfrak{m}^n/\mathfrak{m}^{n+1}$$

The Hilbert function $H_R : \mathbb{N} \longrightarrow \overline{\mathbb{N}}$ of R is defined by means of the associated graded ring G:

 $H_R(n) := \dim_k(\mathfrak{m}^n/\mathfrak{m}^{n+1})$

While the Hilbert function of a Cohen Macaulay graded standard k-algebra is well understood, in the local case very little is still known. There are properties that cannot be carried on G: if R is Cohen Macaulay or even Gorenstein, in general G can be non Cohen Macaulay.

<> ≥ > < ≥ >

Semigroups rings

This talk deals with the Hilbert function of one dimensional semigroup rings. We recall the definition.

Let S be a *numerical semigroup* minimally generated by $\{n_1, n_2, \ldots, n_\nu\}$ where $n_1 < n_2 < \cdots < n_\nu$ and $GCD\{n_1, n_2, \ldots, n_\nu\} = 1$.

Classically S is associated to the rational affine monomial curve $C \subset \mathbb{A}_k^{\nu}$, parametrized by $x_i = t^{n_i}$, for $i = 1, ..., \nu$. The coordinate ring of C is $k[t^{n_1}, \ldots, t^{n_\nu}]$. C has only one singular point, the origin O, with local ring

$$\mathcal{O}_{C,O} = k[t^{n_1}, \ldots, t^{n_{\nu}}]_{(t^{n_1}, \ldots, t^{n_{\nu}})}$$

Definition

We call semigroup ring associated to S the local ring $R = k[[S]] := k[[t^{n_1}, \dots, t^{n_\nu}]]$

- *R* is the completion of \mathcal{O}_{co}
- R is isomorphic to k[[X₁,...,X_ν]]/I where I, the defining ideal of C, is generated by binomials.

Grazia Tamone (Dima)

Given a numerical semigroup $S = \langle n_1, n_2, \cdots n_{\nu} \rangle$, let R = k[[S]]:

- denote the integer n₁ by e, the multiplicity of S and of R the integer ν is called the embedding dimension of S and of R
- \bullet m and $M:=S\setminus\{0\}$ are respectively the maximal ideal of R and of S

Let $v: k((t)) \longrightarrow \mathbb{Z} \cup \{\infty\}$ be the usual valuation given by the degree in t:

- v(R) = S, $v(\mathfrak{m}) = M$
- for $n \in \mathbb{N}$, $v(\mathfrak{m}^n) = nM = M + \cdots + M$ (*n* times)
- for any pair of nonzero fractional ideals I ⊇ J of R it is possible to compute the length of the R-module I/J by means of valuations:

 ℓ_R(I/J) = |v(I) \ v(J)|

- The Apéry set (with respect to e) of S is Apéry(S) := {n ∈ S | n − e ∉ S} (shortly denoted by Apéry) the set of the smallest elements in S in each congruence class mod e.
- The *Frobenius number* f is the greatest element in $\mathbb{N} \setminus S$.
- The Cohen Macaulay type of R is τ(R) := ℓ_R(R :_κm/R) where K is the fraction field of R.
- *R* is called *Gorenstein ring* if $\tau(R) = 1$, equivalently, the semigroup is *symmetric*: $n \in S \iff f - n \notin S$, equivalently, for each $n \in Apéry$ there exists $n' \in Apéry$ such that n' + n = e + f, the greatest element in Apéry.

イロト 不得下 イヨト イヨト 二日

In the sequel we shall assume k an infinite field. First we discuss a relevant deeply studied question: the *Cohen Macaulayness* of *G*.

For a one dimensional local ring (R, \mathfrak{m}, k) with k infinite there exists an element $x \in \mathfrak{m}$ such that $x\mathfrak{m}^n = \mathfrak{m}^{n+1}$, for $n \gg 0$ (superficial element). We denote by R' the quotient ring R' = R/xR. For $a \in R$, let a^* be its image in G (the *initial form of a*). We have the well-known theorem

Theorem

The following conditions are equivalent

- G is Cohen Macaulay
- x^* is a non-zero divisor in G
- $H_R(n) H_R(n-1) = H_{R'}(n)$ for each $n \ge 1$

If G is Cohen Macaulay, then H_R is non-decreasing.

We recall sufficient conditions to have the Cohen Macaulayness of G: some results hold under more general assumptions (this list is not all-inclusive).

In the following cases the associated graded ring of R is Cohen Macaulay.

• $e \leq 3$ or $\nu = e$ (maximal embedding dimension) [Sally, 1977]

• R Gorenstein with $\nu = e - 2$ [Sally, 1980]

•
$$u = e - 1$$
 and $au(R) < e - 2$ [Sally, 1983]

The embedding dimension of S is four, under some other arithmetical conditions
 [F.Arslan, P.Mete, M.Şahin, N.Şahin, several papers]

イロト 不得下 イヨト イヨト 二日

- In most cases when S is generated by an almost arithmetic sequence i.e., ν – 1 generators are an arithmetic sequence, [Molinelli, Patil -T, 1998]
- *S* is obtained by particular techniques of gluing of semigroups [Arslan, Mete, M.Şahin, 2009] [Jafari, Zarzuela, 2014]
- S is generated by a generalized arithmetic sequence i.e. $n_i = hn_1 + (i - 1)d$, with $d, h \ge 1, 2 \le i \le \nu$, $GCD(n_1, d) = 1$ (when h = 1, S is generated by an arithmetic sequence) [Sharifan, Zaare-Nahandi, 2009]

Example: $S = \langle 7, 17, 20, 23, 26 \rangle = \langle 7, 14+d, 14+2d, 14+3d, 14+4d \rangle$ (*h* = 2, *d* = 3)

イロト 不得下 イヨト イヨト 二日

If R = k[[S]] is a semigroup ring, the Cohen Macaulayness of G and the behaviour of the Hilbert function of R have also an handy characterisation by means of the semigroup S: we recall some tools.

Definition

For each $s \in S$, the order of s is $ord(s) := max\{h \in \mathbb{N} \mid s \in hM\}$

If $s \in S$ and ord(s) = k, then $(t^s)^* \in \mathfrak{m}^k/\mathfrak{m}^{k+1} \hookrightarrow G$ Note that if $s, s' \in S$ then:

 $(t^{s})^{*}(t^{s'})^{*} \neq \overline{0}$ in $G \iff ord(s) + ord(s') = ord(s + s')$

イロト イ団ト イヨト イヨト 三日

Further, for a semigroup ring with multiplicity e, the element $x = t^e$ is *superficial*, hence by the above cited results:

Theorem

Let R = k[[S]]. The following conditions are equivalent:

- **1** G is Cohen Macaulay
- ② ord(s + ce) = ord(s) + c for each $s \in S$, $c \in \mathbb{N}$.

An easy example is the following.

Example

In $R = k[[t^7, t^9, t^{20}]]$ the initial form $(t^7)^*$ is a zero-divisor in G: in fact ord(20+7) = ord(27) = 3 > ord(20) + 1and so G is not Cohen Macaulay. For semigroup rings the Apèry set is an useful tool:

Proposition

Let R = k[[S]], $R' = R/t^e R$ and let $Ap_n := \{s \in Apéry(S) \mid ord(s) = n\}$.

- $H_R(n) = |nM \setminus (n+1)M| = |\{s \in S \mid ord(s) = n\}|$
- $H_{R'}(n) = |Ap_n|$
- G is Cohen Macaulay $\iff H_R(n) H_R(n-1) = |Ap_n|, \quad \forall n \ge 1$ (recall: G is Cohen Macaulay $\iff H_R(n) - H_R(n-1) = H_{R'}(n)$).

- - E > - E > -

In general, when G is not Cohen Macaulay, the function H_R can be decreasing or not:

Definition

The Hilbert function of R is said to be decreasing if there exists $n \in \mathbb{N}$ such that

$$H_R(n) < H_R(n-1)$$

in this case we say that H_R decreases at level n.

Examples

Example

Let R = k[[S]] with $S = \langle 6, 7, 15, 23 \rangle$. First note that ord(15 + e) = ord(15 + 6) = ord(21) = 3 > ord(15) + 1, then G is not Cohen Macaulay.

One can compute that $H_R = [1, 4, 4, 5, 5, 6 \rightarrow]$ is non-decreasing.

Apéry(S) = {0,7,14,15,22,23}, $Ap_1 = \{7,15,23\}, Ap_2 = \{14,22\}$ hence $H_{R'} = [1,3,2].$

Example

Let R = k[[S]], with $S = \langle 13, 19, 24, 44, 49, 54, 55, 59, 60, 66 \rangle$

First note that ord(44 + e) = ord(57) = 3 > ord(44) + 1, then G is not Cohen Macaulay. One can verify that H_R decreases at level 2:

 $H_R = [1, 10, 9, 11, 12, 13 \rightarrow]$

Further $Ap_2 = \{38, 43, 48\}, \quad H_{R'} = [1, 9, 3].$

Under several assumptions we know that R = k[[S]] has non decreasing Hilbert function. In particular this fact is true if

- G is Cohen Macaulay
- $\nu \leq 3$ or $\nu \leq e \leq \nu + 2$ [Sally, Elías, Rossi Valla]
- S is generated by an almost arithmetic sequence [T, 1998]
- S is balanced, i.e. $n_i + n_j = n_{i-1} + n_{j+1}$, for each $i \neq j \in [2, \nu 1]$ [Patil -T, 2011], [Cortadellas, Jafari, Zarzuela, 2013]
- *S* is obtained by particular techniques of gluing of semigroups [Arslan, Mete, M.Şahin, 2009] [Jafari, Zarzuela, 2014]
- *R* is Gorenstein with $\nu = 4$ and

S satisfies some arithmetic conditions [Arslan, Mete, 2007] or S is constructed by gluings [Arslan, Sipahi, N.Şahin, 2013].

Now we want to describe conditions on the semigroup S in order to obtain rings with decreasing Hilbert function: we need some definitions and facts.

Definition

• a *maximal representation* of $s \in S$ is any expression

$$s = \sum_{j=1}^{\nu} a_j n_j, \ a_j \in \mathbb{N}, \ ext{with} \ \ \sum a_j = \mathit{ord}(s)$$

- the support of (a maximal representation of) $s \in S$ is $Supp(s) := \{n_j \mid a_j \neq 0\}$
- For a subset $X \subset \mathbb{N}$ define $Supp(X) := \bigcup_{x \in X} Supp(x)$.

Decrease of the *H*-function

Since
$$H_R(n) = |\{s \in S \mid ord(s) = n\}|$$
 we consider the following subsets :
 $S_n := \{s \in S \mid ord(s) = n\} =$
 $= \{s' + e \in S_n \mid s' \in S_{n-1}\} \cup \{t + e \in S_n \mid ord(t) \le n-2\} \cup Ap_n$
 $S_{n-1} = \{s' \in S_{n-1} \mid s' + e \in S_n\} \cup \{s' \in S_{n-1} \mid ord(s' + e) > n\}$
 $C_n := \{s \in S_n \mid s - e \notin S_{n-1}\} = \{t + e \in S_n \mid ord(t) \le n-2\} \cup Ap_n$
 $D_n := \{s' \in S_{n-1} \mid ord(s' + e) > n\}, \text{ for } n \ge 2, \quad D_1 = \emptyset$
 $D_n = \text{set of elements of } S \text{ that "skip" the order when adding } e.$

Proposition

- $H_R(n) H_R(n-1) = |S_n| |S_{n-1}| = |C_n| |D_n|$ for each $n \ge 1$.
- G is Cohen Macaulay $\iff D_n = \emptyset$ for each n.
- H_R decreases at level $n \iff |C_n| < |D_n|$.

3

Proposition

$$C_1 = Ap_1, \quad C_2 = Ap_2.$$

2 [Patil -T, 2011] For $s = \sum_{i=1,...,\nu} a_i n_i \in C_k$ (maximal representation with $\sum a_i = k$), and for each choice $0 \le b_i \le a_i$, $i \in [1, \nu]$ with $\sum b_i = h$,

the "induced" element $s' = \sum_{i=1,...,\nu} b_i n_i$ belongs to C_h .

Corollary

Let $k \geq 2$:

- $I Supp(C_k) \subseteq Supp(Ap_2)$
- $I Supp(D_k + e) \subseteq Supp(Ap_2)$
- $In particular \qquad Supp(Ap_k) \subseteq Supp(Ap_2)$

Proposition

[D'Anna, Di Marca, Micale, 2015]:

- If $|D_k| \le k + 1$ for every $k \ge 2$, then H_R is non-decreasing
- **2** If $|D_k| > k + 1$, then $|C_h| \ge h + 1$ for all $h \in [2, k]$
- If H_R decreases, then $|C_2| = |Ap_2| \ge 3$.

For k = 2 the above proposition doesn't give informations on $|C_3|$: a bound is specified in part 1 of the next result. This information will be very useful in the sequel. The proof requires many technical computations.

Proposition

If H_R is decreasing then

●
$$|C_3| \ge 4$$

• If $|Ap_2| = 3$ there exist $n_i, n_j \in Ap_1$ such that $Ap_2 = \{2n_i, n_i + n_i, 2n_i\}$

Example

By the above cited results, H_R decreasing implies $e \ge \nu + 3$. The "smallest" known example with $e = \nu + 3$ (e = 13, $\nu = 10$) is:

Example

R = k[[S]], where $S = \langle 13, 19, 24, 44, 49, 54, 55, 59, 60, 66 \rangle$ $H_R = [1, 10, 9, 11, 12, 13 \rightarrow]$ Apéry(S) = { 0, 19, 24, 38, 43, 44, 48, 49, 54, 55, 59, 60, 66 } **44 49 54 55 59 60 66** $M \setminus 2M = 13 \ 19 \ 24$ $2M \setminus 3M = 26$ 32 37 38 43 68 48 73 79 $D_2 = \{44, 49, 54, 59\}$ $C_2 = Ap_2 = \{38, 43, 48\}$ $= \{19 \cdot 2, 19 + 24, 24 \cdot 2\}$ $D_2 + e = \{57, 62, 67, 72\}$ $57 = 3 \cdot 19$, $62 = 2 \cdot 19 + 24$, $67 = 19 + 2 \cdot 24, \quad 72 = 3 \cdot 24$ $D_3 = \{68, 73\}$ $C_3 = \{57, 62, 67, 72\} = D_2 + e$ [Molinelli -T, 1999]

If $e = \nu + 3$, by Macaulay's theorem, the possible Hilbert functions of $R' = R/t^e R$ are $[1, \nu - 1, 3]$ $[1, \nu - 1, 2, 1]$ $[1, \nu - 1, 1, 1, 1]$

As seen above, H_R decreasing implies $|Ap_2| \ge 3$ and so $H_{R'} = [1, \nu - 1, 3]$.

Theorem

[O -T, 2016] Let e = v + 3. The following conditions are equivalent:

In H_R decreases

2 H_R decreases at level 2

Further if the above conditions hold, then $e \ge 13$.

- - E > - E > - -

Corollary

When e = 13 = v + 3:

$$H_R \text{ decreases} \iff Ap(S) = \begin{bmatrix} n_i, n_j \\ 2n_i, n_i + n_j, 2n_i \\ 3n_i - e, 2n_i + n_j - e, n_i + 2n_j - e, 3n_j - e \\ 3n_i + n_j - \alpha e, 2n_i + 2n_j - \beta e, \\ 3n_i + 2n_j - \gamma e \end{bmatrix}$$
for suitable α, β, γ and
$$\begin{bmatrix} \text{either } n_j &= 4n_i (\text{mod } 13) \\ \text{or } n_j &= 10n_i (\text{mod } 13). \end{bmatrix}$$

Example

For $S = \langle 13, 19, 24, 44, 49, 54, 55, 59, 60, 66 \rangle$ (considered before) $n_i = 19, \quad n_j = 24 \equiv 76 = 4n_i \pmod{13},$ $\alpha = 2, \quad \beta = 2, \quad \gamma = 3.$

Grazia Tamone (Dima)

2

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Case $e = \nu + 4$

As in case $e = \nu + 3$, we deduce that H_R decreasing implies that the Hilbert function of $R' = R/t^e R$ can be either $[1, \nu - 1, 3, 1]$ or $[1, \nu - 1, 4]$

Theorem

[O -T, 2016] Let $e = \nu + 4$, $|Ap_2| = 3$, $|Ap_3| = 1$. The following conditions are equivalent:

- H_R decreases
- **2** H_R decreases at level $\ell \leq 3$

3 there exist
$$n_i \neq n_j \in Ap_1$$
 such that
• $Ap_2 = \{2n_i, n_i + n_j, 2n_j\}$
• $C_3 = \{3n_i, 2n_i + n_j, n_i + 2n_j, 3n_j\}$
• $D_{\ell} + e = \{4n_i, 2n_i + n_j, n_i + 2n_j, 3n_j\}$ if $\ell = 2$
 $D_{\ell} + e = \{(\ell + 1)n_i, \ell n_i + n_j, \dots, (\ell + 1)n_j\}$ if $\ell = 3$

э

Example

We show two examples for $e = \nu + 4$ with $\ell = 2$ and $\ell = 3$.

Example

1. Let S = <17, 19, 22, 43, 45, 46, 47, 48, 49, 50, 52, 54, 59 >

$$n_i = 19, n_j = 22, \quad \nu = 13 = e - 4, \quad Ap_2 = \{38, 41, 44\}, \\ Ap_3 = \{57 = 3n_i\}, \\ D_2 + e = \{76 = 4n_i, \ 60 = 2n_i + n_j, \ 63 = n_i + 2n_j, \ 66 = 3n_j\}; \\ \ell = 2, \quad H_R = [1, 13, 12, 13, 15, 16, 17 \rightarrow].$$

2. Let $S = \langle 19, 21, 24, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60 \rangle$ $n_i = 21, n_j = 24, e = \nu + 4,$ $Ap_2 = \{42, 45, 48\}, Ap_3 = \{63 = 3n_i\},$ $C_3 = \{66, 69, 72\} \cup \{63\},$ $D_3 + e = \{4n_i, 3n_i + n_j, 2n_i + 2n_j, n_i + 3n_j, 4n_j\};$ $\ell = 3, H_R = [1, 15, 15, 14, 16, 18, 19 \rightarrow].$

・ロン ・聞と ・ ほと ・ ほと

Case $e = \nu + 4$, 2

When $e = \nu + 4$, the remaining case with H_R decreasing has $H_{R'} = [1, \nu - 1, 4]$: we have an explicit description of the Apéry set of S and

Theorem

[O -T, 2016] Assume $e = \nu + 4$, $|Ap_2| = 4$, $Ap_3 = \emptyset$. Are equivalent:

- H_R decreases at level 2.
- **2** There exist $n_i, n_j, n_k \in Ap_1$, distinct elements, such that
 either $\begin{cases}
 Ap_2 = \{2n_i, n_i + n_j, 2n_j, n_i + n_k\} \\
 C_3 = \{3n_i, 2n_i + n_j, n_i + 2n_j, 3n_j, 2n_i + n_k\} \\
 Ap_2 = \{2n_i, n_i + n_k, 2n_j, 2n_k\} \\
 C_3 = \{3n_i, 2n_i + n_j, n_i + 2n_j, 3n_j, 3n_k\}
 \end{cases}$

Example

Let $S = \langle 17, 19, 22, 31, 40, 42, 43, 45, 46, 47, 49, 52, 54 \rangle$, $\nu = e - 4$, $n_i = 19, n_j = 22, n_k = 31, \quad Ap_2 = \{38, 41, 44, 50\} = \{2n_i, n_i + n_j, 2n_j, n_i + n_k\}, Ap_3 = \emptyset, \quad H_R = [1, 13, 12, 14, 16, 17 \rightarrow].$

Hilbert function for certain Gorenstein rings

Theorem

[O -T, 2016] If R = k[[S]] is a Gorenstein semigroup ring with $e \le \nu + 4$, then the Hilbert function H_R is non decreasing.

Proof.

First recall that by the above cited Sally's results, for any local one-dimensional Gorenstein ring with $e \le \nu + 2$ the associated graded ring G is Cohen Macaulay and so H_R is non decreasing. If $\nu + 3 \le e \le \nu + 4$, by the above arguments the only possible shape of the Hilbert function $H_{R'}$ compatible with the decrease of H_R and the symmetry of S is $[1, \nu - 1, 3, 1]$, (with $e = \nu + 4$). In this case, the particular structure of Apéry(S) and of D_2 allow to prove that S cannot be symmetric. This theorem is a contribution to the following problem

Is the Hilbert function of a Gorenstein one-dimensional local ring non-decreasing?

▶ < 몰 ▶ < 몰 ▶</p>

Thanks for your attention!

æ

▶ < 몰 ▶ < 몰 ▶</p>

References

J. Abbott, A.M. Bigatti (2015)

CoCoALib: a C++ library for doing Computations in Commutative Algebra *Available at http://cocoa.dima.unige.it/cocoalib*

F. Arslan, P. Mete (2007)

Hilbert functions of Gorenstein monomial curves *Proc. Am. Math. Soc.* 135, no. 7 1993–2002.

Proc. Am. Math. Soc. 135, 10. 7 1995–2002.

F. Arslan, P. Mete, M. Şahin (2009) Gluing and Hilbert functions of monomial curves *Proc. Am. Math. Soc.* 137, no. 7, 2225–2232.

T. Cortadellas Benitez, R. Jafari, S. Zarzuela Armengou (2013) On the Apéry set of monomial curves Semigroup Forum Vol 86, no. 2, 289-320.

M. D'Anna, M. Di Marca, V. Micale (2015) On the Hilbert function of the tangent cone of a monomial curve *Semigroup Forum* 91, no. 3, 718–730.

M. Delgado, P. A. García-Sánchez, J. Morais 'NumericalSgps'' – a GAP package Version 0.980. (http://www.gap-system.org/Packages/numericalsgps.html).

J.Elias (1993),

The Conjecture of Sally on the Hilbert function for curve singularities

J. Algebra 160, no. 1, 42-49

The GAP Group (2006)

GAP – Groups, Algorithms, and Programming Version 4.4.9 (http://www.gap-system.org)

J. Herzog, E. Kunz (1971)

Der kanonische Modul eines Cohen Macaulay Rings Lecture Notes in Math. Springer Berlin 238 (1971).

- R. Jafari, S. Zarzuela Armengou (2014) On monomial curves obtained by gluing *Semigroup Forum* 88, 397–416.
- S. Molinelli, G.Tamone, (1995)

On the Hilbert function of certain rings of monomial curves Journal of Pure and Applied Algebra 101, no. 2, 191-206 (1995).

S. Molinelli, D. Patil, G.Tamone, (1998)

On the Cohen Macaulayness of the associated graded ring of certain monomial curves

Beiträge Algebra Geom. 39, no. 2, 433,446.

S. Molinelli, G.Tamone, (1999)

On the Hilbert function of certain non Cohen Macaulay one dimensional rings Rocky Mountain J. Math 29, no. 1, 271-300.

A. Oneto, G. Tamone (2016)

On semigroup rings with decreasing Hilbert function arXiv:1602.00327v1,

D. P. Patil, G. Tamone (2011)

CM defect and Hilbert functions of monomial curves

J. Pure Appl. Algebra 215, 1539–1551.

- ∢ ∃ ▶

M.E. Rossi (2011)

Hilbert functions of Cohen Macaulay local rings

Comm. Algebra and its Connections to Geometry-Contemp. Math. 555, 173–200.

M.E. Rossi, G. Valla (2000)

Cohen Macaulay local rings of embedding dimension e + d - 3*Proc. London Math. Soc.* 80, no. 1, 107–126.

J.D. Sally (1977)

On the associated graded ring of a local Cohen Macaulay ring *J. Math. Kyoto Univ.* 17, no. 1, 19–21.

J.D. Sally (1980)

Tangent cones at Gorenstein singularities

Compositio Math. 40, no. 2, 167-175.

J.D. Sally (1983)

Cohen Macaulay local rings of embedding dimension e + d - 2

J. Algebra 83, no. 2, 393-408.

L. Sharifan, R. Zaare-Nahandi (2009)

 $\it M$ inimal free resolutions of the associated graded ring of monomial curves of generalized arithmetic sequences

JPAA 213, no. 3, pp 360-369.

G. Tamone (1998)

On the Hilbert function of some non Cohen Macaulay graded ringsCohen Macaulay local rings of embedding dimension e+d-2

Comm. Algebra 26, no. 12, 4221-4231.