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Subject of the talk

We study the behaviour of the Hilbert function HR of a one dimensional
complete local ring R associated to a numerical semigroup S ⊆ N, with a
particular focus on the possible decrease of this function. After the basic
definitions, we proceed by several steps:

survey of rings R having the associated graded ring Cohen Macaulay:
it is well-known that in these cases the function HR does not decrease

overview on some other classes of rings with HR non decreasing

focus on the question of finding conditions on S in order to have
decreasing Hilbert function: recent results

a description of classes of Gorenstein rings with HR non decreasing.
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Hilbert function for local rings

We recall the definition of the Hilbert function of a local ring.

Definition

Let (R,m, k) be a noetherian d-dimensional local ring, the associated
graded ring of R with respect to m is

G :=
⊕
n≥0

mn/mn+1

The Hilbert function HR : N −→ N of R is defined by means of the
associated graded ring G:

HR(n) := dimk(mn/mn+1)

While the Hilbert function of a Cohen Macaulay graded standard k-algebra
is well understood, in the local case very little is still known. There are
properties that cannot be carried on G : if R is Cohen Macaulay or even
Gorenstein, in general G can be non Cohen Macaulay.
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Semigroups rings

This talk deals with the Hilbert function of one dimensional semigroup
rings. We recall the definition.

Let S be a numerical semigroup minimally generated by {n1, n2, . . . , nν}
where n1 < n2 < · · · < nν and GCD{n1, n2, . . . , nν} = 1.

Classically S is associated to the rational affine monomial curve C ⊂ Aν
k ,

parametrized by xi = tni , for i = 1, ..., ν. The coordinate ring of C is
k[tn1 , . . . , tnν ]. C has only one singular point, the origin O, with local ring

O
C,O

= k[tn1 , . . . , tnν ](tn1,...,tnν )

Definition

We call semigroup ring associated to S the local ring
R = k[[S ]] := k[[tn1 , . . . , tnν ]]

R is the completion of O
C,O

R is isomorphic to k[[X1, . . . ,Xν ]]/I where I , the defining ideal of C ,
is generated by binomials.
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Semigroups: basic definitions

Given a numerical semigroup S = 〈n1, n2, · · · nν〉, let R = k[[S ]]:

denote the integer n1 by e, the multiplicity of S and of R
the integer ν is called the embedding dimension of S and of R

m and M := S \ {0} are respectively the maximal ideal of R and of S

Let v :k((t)) −→ Z∪{∞} be the usual valuation given by the degree in t :

v(R) = S , v(m) = M

for n ∈ N, v(mn) = nM = M + · · ·+ M (n times)

for any pair of nonzero fractional ideals I ⊇ J of R it is possible to
compute the length of the R-module I/J by means of valuations:

`R( I/J ) = |v(I ) \ v(J)|
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Apéry set and type

The Apéry set (with respect to e) of S is
Apéry(S) := {n ∈ S | n − e /∈ S} (shortly denoted by Apéry)

the set of the smallest elements in S in each congruence class mod e.

The Frobenius number f is the greatest element in N \ S .

The Cohen Macaulay type of R is τ(R) := `
R

(
R :

K
m/R

)
where K is

the fraction field of R.

R is called Gorenstein ring if τ(R) = 1,
equivalently, the semigroup is symmetric: n ∈ S ⇐⇒ f − n /∈ S ,
equivalently, for each n ∈ Apéry there exists n′ ∈ Apéry such that
n′ + n = e + f , the greatest element in Apéry.
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Cohen Macaulay property of G

In the sequel we shall assume k an infinite field. First we discuss a relevant
deeply studied question: the Cohen Macaulayness of G .

For a one dimensional local ring (R,m, k) with k infinite there exists an
element x ∈ m such that xmn = mn+1, for n >> 0 (superficial element).
We denote by R ′ the quotient ring R ′ = R/xR .
For a ∈ R, let a∗ be its image in G ( the initial form of a ).
We have the well-known theorem

Theorem
1 The following conditions are equivalent

G is Cohen Macaulay
x∗ is a non-zero divisor in G
HR(n)− HR(n − 1) = HR′(n) for each n ≥ 1

2 If G is Cohen Macaulay, then HR is non-decreasing.
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Cohen Macaulay property of G

We recall sufficient conditions to have the Cohen Macaulayness of G : some
results hold under more general assumptions (this list is not all-inclusive).

In the following cases the associated graded ring of R is Cohen Macaulay.

e ≤ 3 or ν = e (maximal embedding dimension) [Sally, 1977]

R Gorenstein with ν = e − 2 [Sally, 1980]

ν = e − 1 and τ(R) < e − 2 [Sally, 1983]

The embedding dimension of S is four, under some other arithmetical
conditions
[F.Arslan, P.Mete, M.Şahin, N.Şahin, several papers]
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Cohen Macaulay property of G

In most cases when S is generated by an almost arithmetic sequence
i.e., ν − 1 generators are an arithmetic sequence,
[Molinelli, Patil -T, 1998]

S is obtained by particular techniques of gluing of semigroups

[Arslan, Mete, M.Şahin, 2009] [ Jafari, Zarzuela, 2014]

S is generated by a generalized arithmetic sequence i.e.
ni = hn1 + (i − 1)d, with d , h ≥ 1, 2 ≤ i ≤ ν, GCD(n1, d) = 1
(when h = 1, S is generated by an arithmetic sequence)
[Sharifan, Zaare-Nahandi, 2009]

Example: S = 〈7, 17, 20, 23, 26〉 = 〈7, 14+d , 14+2d , 14+3d , 14+4d〉
(h = 2, d = 3)
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The semigroup case

If R = k[[S ]] is a semigroup ring, the Cohen Macaulayness of G and the
behaviour of the Hilbert function of R have also an handy characterisation
by means of the semigroup S : we recall some tools.

Definition

For each s ∈ S , the order of s is ord(s) := max{h ∈ N | s ∈ hM}

If s ∈ S and ord(s) = k , then (ts)∗ ∈ mk/mk+1 ↪→ G
Note that if s, s ′ ∈ S then:

(ts)∗(ts′
)∗ 6= 0 in G ⇐⇒ ord(s) + ord(s ′) = ord(s + s ′)
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Further, for a semigroup ring with multiplicity e, the element x = te is
superficial, hence by the above cited results:

Theorem

Let R = k[[S ]]. The following conditions are equivalent:

1 G is Cohen Macaulay

2 ord(s + ce) = ord(s) + c for each s ∈ S, c ∈ N.

An easy example is the following.

Example

In R = k[[t7, t9, t20]] the initial form (t7)∗ is a zero-divisor in G : in fact

ord(20 + 7) = ord(27) = 3 > ord(20) + 1
and so G is not Cohen Macaulay.
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For semigroup rings the Apèry set is an useful tool:

Proposition

Let R = k[[S ]], R ′ = R/teR and let Apn := {s ∈Apéry(S) | ord(s) = n}.
HR(n) = |nM \ (n + 1)M| = |{s ∈ S | ord(s) = n}|
HR′(n) = |Apn|
G is Cohen Macaulay ⇐⇒ HR(n)− HR(n − 1) = |Apn|, ∀ n ≥ 1

(recall: G is Cohen Macaulay ⇐⇒ HR(n)− HR(n − 1) = HR′(n) ).
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Behaviour of the Hilbert function

In general, when G is not Cohen Macaulay, the function HR can be
decreasing or not:

Definition

The Hilbert function of R is said to be decreasing if there exists n ∈ N
such that

HR(n) < HR(n − 1)

in this case we say that HR decreases at level n.
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Examples

Example

Let R = k[[S ]] with S = 〈6, 7, 15, 23〉.
First note that ord(15 + e) = ord(15 + 6) = ord(21) = 3 > ord(15) + 1,
then G is not Cohen Macaulay.

One can compute that HR = [1, 4, 4, 5, 5, 6→] is non-decreasing.

Apéry(S) = {0, 7, 14, 15, 22, 23}, Ap1 = {7, 15, 23}, Ap2 = {14, 22}
hence HR′ = [1, 3, 2].

Example

Let R = k[[S ]], with S = 〈13, 19, 24, 44, 49, 54, 55, 59, 60, 66〉
First note that ord(44 + e) = ord(57) = 3 > ord(44) + 1, then G is not
Cohen Macaulay. One can verify that HR decreases at level 2:

HR = [1, 10, 9, 11, 12, 13→]
Further Ap2 = {38, 43, 48}, HR′ = [1, 9, 3].
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Non-decreasing Hilbert function

Under several assumptions we know that R = k[[S ]] has non decreasing
Hilbert function. In particular this fact is true if

G is Cohen Macaulay

ν ≤ 3 or ν ≤ e ≤ ν + 2 [Sally, Eĺıas, Rossi - Valla]

S is generated by an almost arithmetic sequence [T, 1998]

S is balanced, i.e. ni + nj = ni−1 + nj+1, for each i 6= j ∈ [2, ν − 1]

[Patil -T, 2011], [Cortadellas, Jafari, Zarzuela, 2013]

S is obtained by particular techniques of gluing of semigroups

[Arslan, Mete, M.Şahin, 2009] [ Jafari, Zarzuela, 2014]

R is Gorenstein with ν = 4 and

S satisfies some arithmetic conditions [Arslan, Mete, 2007]
or S is constructed by gluings [Arslan, Sipahi, N.Şahin, 2013].
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Decreasing H-function: main tools

Now we want to describe conditions on the semigroup S in order to obtain
rings with decreasing Hilbert function: we need some definitions and facts.

Definition

a maximal representation of s ∈ S is any expression

s =
∑ν

j=1 ajnj , aj ∈ N, with
∑

aj = ord(s)

the support of (a maximal representation of ) s ∈ S is

Supp(s) := {nj | aj 6= 0}

For a subset X ⊂ N define Supp(X ) := ∪x∈X Supp(x).
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Decrease of the H-function

Since HR(n) = |{s ∈ S | ord(s) = n}| we consider the following subsets :

Sn := {s ∈ S | ord(s) = n} =

= {s ′ + e ∈ Sn | s ′ ∈ Sn−1} ∪ {t + e ∈ Sn | ord(t) ≤ n − 2} ∪ Apn

Sn−1 = {s ′ ∈ Sn−1 | s ′ + e ∈ Sn} ∪ {s ′ ∈ Sn−1 | ord(s ′ + e) > n}

Cn := {s ∈ Sn | s − e /∈ Sn−1} = {t + e ∈ Sn | ord(t) ≤ n − 2} ∪ Apn

Dn := { s ′ ∈ Sn−1 | ord(s ′ + e) > n}, for n ≥ 2, D1 = ∅
Dn = set of elements of S that ”skip” the order when adding e.

Proposition

HR(n)− HR(n − 1) = |Sn| − |Sn−1| = |Cn| − |Dn| for each n ≥ 1.

G is Cohen Macaulay ⇐⇒ Dn = ∅ for each n.

HR decreases at level n ⇐⇒ |Cn| < |Dn|.
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Proposition

1 C1 = Ap1, C2 = Ap2.

2 [Patil -T, 2011] For s =
∑

i=1,...,ν aini ∈ Ck (maximal representation
with

∑
ai = k), and for each choice 0 ≤ bi ≤ ai , i ∈ [1, ν] with∑

bi = h,

the “induced” element s ′ =
∑

i=1,...,ν bini belongs to Ch.

Corollary

Let k ≥ 2:

1 Supp(Ck) ⊆ Supp(Ap2)

2 Supp(Dk + e) ⊆ Supp(Ap2)

3 In particular Supp(Apk) ⊆ Supp(Ap2)
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Proposition

[D’Anna, Di Marca, Micale, 2015]:

1 If |Dk | ≤ k + 1 for every k ≥ 2, then HR is non-decreasing

2 If |Dk | > k + 1, then |Ch| ≥ h + 1 for all h ∈ [2, k]

3 If HR decreases, then |C2| = |Ap2| ≥ 3.

For k = 2 the above proposition doesn’t give informations on |C3|: a
bound is specified in part 1 of the next result. This information will be
very useful in the sequel. The proof requires many technical computations.

Proposition

If HR is decreasing then

1 |C3| ≥ 4

2 If |Ap2| = 3 there exist ni , nj ∈ Ap1 such that
Ap2 = {2ni , ni + nj , 2nj}
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Example

By the above cited results, HR decreasing implies e ≥ ν + 3. The
”smallest” known example with e = ν + 3 (e = 13, ν = 10) is:

Example

R = k[[S ]], where S = 〈13, 19, 24, 44, 49, 54, 55, 59, 60, 66〉
HR = [1, 10, 9, 11, 12, 13→]

Apéry(S) = { 0, 19, 24, 38, 43, 44, 48, 49, 54, 55, 59, 60, 66 }[
M \ 2M = 13 19 24 44 49 54 55 59 60 66

2M \ 3M = 26 32 37 38 43 48 68 73 79

D2 = {44, 49, 54, 59} C2 = Ap2 = {38, 43, 48}
= {19 · 2, 19 + 24, 24 · 2}

D2 + e = {57, 62, 67, 72} 57 = 3 · 19, 62 = 2 · 19 + 24,
67 = 19 + 2 · 24, 72 = 3 · 24

D3 = {68, 73} C3 = {57, 62, 67, 72} = D2 + e

[Molinelli -T, 1999]
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Case e = ν + 3

If e = ν + 3, by Macaulay’s theorem, the possible Hilbert functions of
R ′ = R/teR are [1, ν − 1, 3] [1, ν − 1, 2, 1] [1, ν − 1, 1, 1, 1]

As seen above, HR decreasing implies |Ap2| ≥ 3 and so HR′ = [1, ν − 1, 3].

Theorem

[O -T, 2016] Let e = ν + 3. The following conditions are equivalent:

1 HR decreases

2 HR decreases at level 2

3 HR′ = [1, ν − 1, 3] and there exist ni 6= nj ∈ Ap1 such that

Ap2 = {2ni , ni + nj , 2nj}
D2 + e = {3ni , 2ni + nj , ni + 2nj , 3nj}

Further if the above conditions hold, then e ≥ 13.
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Corollary

When e = 13 = ν + 3:

HR decreases ⇐⇒ Ap(S) =


ni , nj

2ni , ni +nj , 2ni

3ni−e, 2ni +nj−e, ni +2nj−e, 3nj−e
3ni +nj−αe, 2ni +2nj−βe,
3ni +2nj−γe

for suitable α, β, γ and

[
either nj = 4ni (mod 13)

or nj = 10ni (mod 13) .

Example

For S = 〈13, 19, 24, 44, 49, 54, 55, 59, 60, 66〉 (considered before)

ni = 19, nj = 24 ≡ 76 = 4ni (mod 13),

α = 2, β = 2, γ = 3.
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Case e = ν + 4

As in case e = ν + 3, we deduce that HR decreasing implies that the
Hilbert function of R ′ = R/teR can be

either [1, ν − 1, 3, 1] or [1, ν − 1, 4]

Theorem

[O -T, 2016] Let e = ν + 4, |Ap2| = 3, |Ap3| = 1.
The following conditions are equivalent:

1 HR decreases

2 HR decreases at level ` ≤ 3

3 there exist ni 6= nj ∈ Ap1 such that

Ap2 = {2ni , ni + nj , 2nj}
C3 = {3ni , 2ni + nj , ni + 2nj , 3nj}
D` + e = {4ni , 2ni + nj , ni + 2nj , 3nj} if ` = 2
D` + e = {(`+ 1)ni , `ni + nj , . . . , (`+ 1)nj} if ` = 3
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Example

We show two examples for e = ν + 4 with ` = 2 and ` = 3.

Example

1. Let S =< 17, 19, 22, 43, 45, 46, 47, 48, 49, 50, 52, 54, 59 >

ni = 19, nj = 22, ν = 13 = e − 4, Ap2 = {38, 41, 44},
Ap3 = {57 = 3ni},
D2 + e = {76 = 4ni , 60 = 2ni + nj , 63 = ni + 2nj , 66 = 3nj};
` = 2, HR = [1, 13, 12, 13, 15, 16, 17→].

2. Let S = 〈19, 21, 24, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 58, 60〉
ni = 21, nj = 24, e = ν + 4,
Ap2 = {42, 45, 48},Ap3 = {63 = 3ni},
C3 = {66, 69, 72} ∪ {63},
D3 + e = {4ni , 3ni + nj , 2ni + 2nj , ni + 3nj , 4nj};
` = 3, HR = [1, 15, 15, 14, 16, 18, 19→].
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Case e = ν + 4, 2

When e = ν + 4, the remaining case with HR decreasing has
HR′ =[1, ν− 1, 4]: we have an explicit description of the Apéry set of S and

Theorem

[O -T, 2016] Assume e = ν + 4, |Ap2| = 4, Ap3 = ∅. Are equivalent:

1 HR decreases at level 2.

2 There exist ni , nj , nk ∈ Ap1, distinct elements, such that

either

{
Ap2 = {2ni , ni + nj , 2nj , ni + nk}
C3 = {3ni , 2ni + nj , ni + 2nj , 3nj , 2ni + nk}

or

{
Ap2 = {2ni , ni + nk , 2nj , 2nk)}
C3 = {3ni , 2ni + nj , ni + 2nj , 3nj , 3nk}

Example

Let S = 〈17, 19, 22, 31, 40, 42, 43, 45, 46, 47, 49, 52, 54〉, ν = e − 4,
ni = 19, nj = 22, nk = 31, Ap2 ={38, 41, 44, 50}=
{2ni , ni + nj , 2nj , ni + nk}, Ap3 = ∅, HR = [1, 13, 12, 14, 16, 17→].
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Hilbert function for certain Gorenstein rings

Theorem

[O -T, 2016] If R = k[[S ]] is a Gorenstein semigroup ring with e ≤ ν + 4,
then the Hilbert function HR is non decreasing.

Proof.
First recall that by the above cited Sally’s results,for any local
one-dimensional Gorenstein ring with e ≤ ν + 2 the associated graded ring
G is Cohen Macaulay and so HR is non decreasing.
If ν + 3 ≤ e ≤ ν + 4, by the above arguments the only possible shape of
the Hilbert function HR′ compatible with the decrease of HR and the
symmetry of S is [1, ν − 1, 3, 1], (with e = ν + 4). In this case, the
particular structure of Apéry(S) and of D2 allow to prove that S cannot be
symmetric. This theorem is a contribution to the following problem

Is the Hilbert function of a Gorenstein one-dimensional
local ring non-decreasing?
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Thanks for your attention!

Grazia Tamone (Dima) Hilbert function 27 / 33



References

J. Abbott, A.M. Bigatti (2015)

CoCoALib: a C++ library for doing Computations in Commutative Algebra

Available at http://cocoa.dima.unige.it/cocoalib

F. Arslan, P. Mete (2007)

Hilbert functions of Gorenstein monomial curves

Proc. Am. Math. Soc. 135, no. 7 1993–2002.

F. Arslan, P. Mete, M. Şahin (2009)
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